• Tidak ada hasil yang ditemukan

An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique.

N/A
N/A
Protected

Academic year: 2017

Membagikan "An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique."

Copied!
9
0
0

Teks penuh

(1)

!

"

#

!

$

!

%

#

!

&

$

#

#

'

(

!

)

"

*

#

" "

* +, -) ",*

". +"&- /

01

2

1

3

!

3

4 56475

8

#

$

%

(' 9 / / 3 .

/ - 9 0 -90 :;<== &

. 0

-# -# 0 0 # - 0 > 7< =?

0 # 0 @ A<=;6B?C <D?=E 6 @ ' F

. / / 3 .

/ - 9 0 -90 :;<== &

. 0 @ A<=;6B?C <D?=E 6 @ F #

!

4;5

4B5

4?5

%

"/// .

D:76C==

"/)

< 7C7

4B5 4 =5 4

5

)

!

!

!

+

!

!

'

!

!

'

@

!

!

'

!

!

0

8

#

8

"

&

!

$

.

$

!

#

.

#

!

#

%

4 C5

1

# **

"

6

1

G

$

"

** ,

**

4 ;5

+

'

H

%

%

%%

#

(**

4 :5 "

!

('

9

.

( /

"

)

0

-

*

6

(2)

%%

%%

(** 4 D5 "

$

'

1

#

.

#

1

!

6

4 <5 (

!

C===

'

!

4 75

(

4 B5

'

"

0

4 ?5

"

!

:

6

!

!

$

6

(

+&%

#

**

'

@ .

""

0

.

"""

$

+&%

**

.

"2

.

2" $

$

.

2""

#

.

2"" %

.

2"""

""

(./

.

()/ /,+H

'

6

0

!

"

/

4 <5 4C=5 *

)

#

4C 5

%

!

4 B5 4CC5@

(

)

(

(

)

)

(

(

)

)

[

]

(

)

(

)

(

)

[

]

[

C ;

]

C = + − + + = + + + + + = φ ω φ ω φ ω φ τ ω φ τ ω φ ω

$

#

$E $

C#

E

$

;#

' /!

/

I;

!

I* J:

(

$

C#

A$

CC#

I(

C

$

CC#

A$

C;#

I(

C

$

#

A $

;#

I=

-

$

'

$ $

C

$

;

!

=

+

=

+

C C C

=

=

+

=

+

C C C

=

C

8

$ 6

'6

(

&

C /

/

$

C

C

+

=

;

"

/

$

'

$

'

6

#

"""

(

+ "%")"(K

*

/-+(K

*

/ 1,+9 /,+H

+

+&%

#

B=G

+&%

#

#

'

/

/

$

/

#

4C;5 0

+&%

(3)





=

C

LL

LL

$

C

σ

=

=

=

C

:

)

LL LL

/

)

:

(

# **

#

'

!

"

&

!

6

4C:5 **

4CD5

**

#

"

'

"2

/.

.

H. /0 /.)+" ",*

4C<5

4C75

"

.

M

C= #2

===02(

D=

'

!

%

;=6#

π

6

C==2

"

%

6

@

*

)

C

.

)

))

C

;

.

K

))

C

:

.

K

))

C (6

&6

)6

D

K

))

C (&6

&)6

)(6

<

))

C

7

.

K

K

K

C

K

;

(6

&6

)6

B

K

K

K

C

K

;

(&6

&)6

)(6

?

K

K

C

K

;

= 0

#

#

(&K/ " .H. /00, /K /.)+" ",*

/$ C=92 ===02(

K K D01 ;02

KC 3 K; K B01 ;02

3 C C==2

C=JCD #2

C3 ; CDJ= < #2

K CD#2 =#

K C 3 K ; CD#2 C=#

)) ) )

( 3 & (

E & C

2 %

/( -+/

/

N +() ",*

"

#

+&%

**

$

$

.

$

""

$

!

@

=

=

D

0

.

@

(

)

C

C

    

  

=

=

(4)

I C ;O

(&K/ ""

./K/) / %/( -+/.

% %

% % = 0 /$

%C 0 /$ % 0 /$

C

%; 0 /$

C % C

0 . .

%:

0 . .

% ;

0 . .

C %D

0 . .

C

% : . /$

%< 0 $ /$ % D . /$

C

%7 0 $ /$ C % <

. . .

%B

0 $ . .

% 7

. . .

C %?

0 $ . .

C

%

C

$

(

%

C

$

%

C

$

$

.

$

%

C

$

2"

.

+-) -+/ ,% -+ ,./

*

/-+(K

*

/ 1,+9

"

#

#

( &

)

%

;

$

#

0( K(&

M

%

; .

!

%

:

'

#

%

:

#

(

C<B

"

;:

<=P

<7

C=P

=== C=== ;=== :=== D=== <=== 7=== B=== 6 D

6 6= D

= = D D

(

. *

;=== ;D== :=== :D== D=== DD== <=== <D== =

= C = : = < = B C : <

. *

/

$

/ /$

C@ . ..

% =@ 0 /$I=

%:@0 .. % <@ . ..

%B@0 $ .. % C@ 0 ..

% @

%<@0 $ /$ I :

(5)

"""

(&K/ """

*-0&/+ ,%.(0 K/. %,+ +("*"* 2(K" ( ",* (* /. "*

*

;:

2 <7

<7

%

+&%

**

;:

<7

"2

+&%

**

6

%

D

(&K/ "2 ./ "* ,%/2/* H /

/

* )

K % C

K K % ;

% :

K . D

) . <

" 7

%

D

6

2""

/.

+

/.-K

+&%

+&%

6

+&%

2

(

+&%

+&%

7

+&%

%

2

.K

.)

K

KK

KKK

"

%

2"

**

**

<7

%

2"

.K

.)

K

KK

KKK

"

2"

)

**

+&%

**

+&%

#

6

2"" "

6

+&%

BB 7 BP

?: B7CP

**

+&%

0

**

==P

2""" "

**

+&%

**6

!

(6)

(&K/ 2 +&% /. "* +/.-K

) ( +&%6( + ) ( +&%6& + ) ( +&%6) +

.K D : ?=B D .K D D ;:: D .K D : ?DC D

.) < < =D;; < .) < < 7B < .) < < C7?: <

.) < D ?=7C < .) < D ;;:B D .) < < B7B <

K C C =:<C C K C C C=C: C K C C D?DD ;

KK ; ; =;B: ; KK ; C B:< ; KK ; C 7=CC ;

K C C 7:: C K C ; =CC ; K C = D:

KK ; : =C;7 : KK ; C BBC? ; KK ; 6C= CC 6C=

K C ??=D C K C C 7=C C K C B ;C C

KKK : C D:?B ; KKK : : C<:< : KKK : ; C? ;

K C ?D:; C K C ?? < C K C BC;7 C

KK ; C = <? C KK ; ; C=:? ; KK ; 6; C7 6;

KK ; ; CD:B ; KK ; ; = DC ; KK ; C ;=:? C

KK ; C 7 <B ; KK ; ; =;;< ; KK ; ; B<7 :

KKK : : =BC : KKK : ; ?D7C : KKK : : =D 7 :

KKK : : =;D: : KKK : ; ?7? : KKK : ; =<<C ;

K C ?<D< C K C C ;:=; C K C C :?BB C

K C 77;D C K C C DC:B ; K C 7 C C

K C ? ?C C K C B7CD C K C C =7?D C

K C B=BB C K C B:<< C K C C =B=B C

K C C :C ; C K C C <7 ; ; K C C <BD C

K C C =C;B C K C C C:? C K C C =:: C

KK ; C 7C ; KK ; C ??=? ; KK ; : C;7: :

KK ; C ?DCB ; KK ; C ??<7 ; KK ; ; <: ;

KKK : ; ?= ? : KKK : ; CDC7 ; KKK : ; D?C ;

KKK : ; B7B : KKK : : C;C : KKK : ; BBC :

K C ? <D C K C C =?=? C K C C D7

K C C DB=D ; K C C B=B C K C < B< C

K C C DB? C K C C =C;< C K C C CB?: C

K C C C=7? C K C B: C K C = ?<<7

KK ; C B?:: ; KK ; C <; D ; KK ; C ?7:: ;

KKK : : =D?7 : KKK : ; :B:C ; KKK : : =:?D :

KKK : ; B:B : KKK : ; BBD; : KKK : ; B<;? :

" 7 C ;C= C " 7 C ;C; C " 7 = < <

(7)

(&K/ 2" ** /. "* +/.-K

) ( **6( ) ( **6& ) ( **6)

.K D D .K D D .K D D

.K D < .K D < .K D <

.K D < .K D < .K D <

.K D D .K D D .K D D

.) < < .) < < .) < <

.) < < .) < D .) < <

.) < < .) < D .) < D

K C C K C C K C C

KK ; ; KK ; ; KK ; ;

K C C K C C K C C

KK ; ; KK ; ; KK ; <

K C C K C C K C C

KKK : : KKK : : KKK : :

KKK : : KKK : : KKK : :

K C C K C C K C C

K C C K C C K C C

K C C K C C K C C

KK ; ; KK ; ; KK ; ;

KK ; ; KK ; ; KK ; ;

KKK : : KKK : : KKK : :

KKK : : KKK : : KKK : :

KKK : : KKK : : KKK : :

K C C K C C K C C

K C C K C C K C C

K C C K C C K C C

KK ; ; KK ; ; KK ; ;

KK ; ; KK ; ; KK ; ;

KK ; ; KK ; ; KK ; ;

KK ; ; KK ; ; KK ; ;

KK ; ; KK ; ; KK ; ;

KKK : : KKK : : KKK : :

KKK : : KKK : : KKK : :

" 7 7 " 7 7 " 7 7

(8)

(&K/ 2""

),0 (+".,* ,%*/-+(K*/ 1,+9)K(.."%")( ",*())-+()H

) P

/ +&% **

(

" = ==

* 6" ?< ?C; ?< ?C;

&

" = ==

* 6" ?= 7<? ?; B:<

)

" = ==

* 6" 7B :< ?; B:<

(

" = ==

* 6" BB 7 B ?: B7C

(&K/ 2"""

/+%,+0(*)/),0 (+".,*&/ 1//**/-+(K*/ 1,+9.

+&% **

K / CD

) - . = C;7D? = D?CD

) - . = 7CCB 7 = C=;7=C

2""" )

,*)K-.",*

(

6

6

!

#

!

'

$

$

!

+&%

**

**

+&%

**

#

6

(

)9*,1K/ 0/*

#

0

/

0

-

# #

0

0

#

8

-9

0

#

+

/%/+/*)/.

4 5 0 0 ' 0 + 8 ' . 0 & Q(

R

! " # $ $

% & $ * 8 ) C==B CC?=6CC?D

4C5 + . Q* !

R ! $

9 K 0 C= = C?:6C??

4;5 0 & & #6> Q+

R ! "

# $ $ % & $ * 8

) C==B C7:;6C7:B

4:5 " > & 6S ' / " , '6 Q.

R ' % (

B D D<D6D7= . C= =

4D5 9 + . + 0 * 9 Q

6 6

R ) & B ; B=D6

B ? 0 C=

4<5 9 + . + 0 * 9 ) Q"

R ! 9 # " C= = 6

:

475 ( . ( 8 # 1 0 K ) ) Q

6 6

@ R $

! ) C= = 6B

4B5 0 T ) & & #68 Q+ R

$ ) * $ 0 -.( C= 6B

4?5 H % Q* 6 ! R

$ ! . 0

C= = 6<

4 =5 0 T ) & & #68 Q(

! R

% # + ( C: 7<:677 ( C==?

4 5 2 0 0 * Q( !

! R %

) CC ::C6::B % C==7

4 C5 T Q1 6 #

R % # + ?

: D<=U D<B , C==:

4 ;5 0 % , ( ( Q,

** R , !

$ - ! . > & 0 C==B <::U <:B

4 :5 H Q(

R / ) %

# ! 0 1 2 ) C==D

U:

4 D5 0 / ' / / 6 0 . R( 6(**

! R $

) * $. )( 6B C=

4 <5 . > H # 0 ) Q/ R3 ) &

<D ; D7?6< < * ??

4 75 K " / ' 0 0 > ) K Q

6

R ! ) % & $

1( 2 ; <= 6 <=: C===

4 B5 H > V 1 K > 1 Q

R % * (

% # D CD76C<D % C=

4 ?5 . + . Q 6 6

R % # + C< ;;6: >

C=

4C=5 K & # > Q) @ ( R

) - ??<

4C 5 % # Q R #

1 # ;<<6;B ?B

4CC5 H > V 1 H . N Q

R / ) * $

0 0* 6B C= =

4C;5 H . . H & Q(

# R = B

:?D6 D=; * ??7

4C:5 / ' Q, R

) ( & ;; ; =<DU =7<

. ?<C

4CD5 ( Q #

! R! * & 3 ;?

C ?UC;C % C==C

4C<5 0 & + ( , , 0 # Q- !

R

) & B= < 7;;67;B > C= =

4C75 H % Q* 6 ! R

0 $ ! $ *. C= = U

<

&. - 0

- 0 0 0. * - -9 C==<

C==B . - # # 0 0 #

- 0

.

(9)

-90 . . ' F A<=;6 B?C <D?=

&. "" & 0.

0/ - # - 0 0 ???

C==C C==7 !

% / &

/ - 9 0

Referensi

Dokumen terkait

Based on the previous research, development out-of-plane of face detection using SURF and skin color YCbCr color space technique has been proposed in this project due to the

Our research is the combination of embedded linguistic feature creation and tuning algorithm, feature selection and rule-based classification in one neural network mechanism.. The

It can classify three types of diseases namely Apple-Black- Rot, Corn-Common Rust, Grape-Leaf-Blight .The Disease Detection steps followed by image processing , and classification which

In making this deaf sign language detection application using the Single Shot Detection SSD method for making detection applications, hand movements are used to detect the letters that

Rules generation based on feature extraction Several samples of rules are listed as below: • Rule 1: IF Length is Short AND Width is Short AND Perimeter is Small AND Area is Small

In this paper, we used a type of neuro-fuzzy system called Multiple Adaptive Network based Fuzzy Inference System MANFIS to perform 3D object recognition.. System Overview In this

In this backdrop, an ensemble approach has been proposed in current work to tackle the issues of single classifiers and accordingly, a highly scalable and constructive majority