• Tidak ada hasil yang ditemukan

Analisis Performansi Sinyal GSM Dengan Optimasi Tilting Antena BTS Berdasarkan Drive Test

N/A
N/A
Protected

Academic year: 2016

Membagikan "Analisis Performansi Sinyal GSM Dengan Optimasi Tilting Antena BTS Berdasarkan Drive Test"

Copied!
64
0
0

Teks penuh

(1)

ANALISIS PERFORMANSI SINYAL GSM DENGAN OPTIMASI TILTING ANTENA BTS BERDASARKAN DRIVE TEST

SKRIPSI

Diajukan untuk melengkapi dan memenuhi syarat mencapai gelar sarjana sains

PEBRIANTONO SIBORO 050801031

DEPARTEMEN FISIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA

(2)

PERSETUJUAN

Judul : ANALISIS PERFORMANSI SINYAL GSM

DENGAN OPTIMASI TILTING ANTENA BTS BERDASARKAN DRIVE TEST

Kategori : SKRIPSI

Nama : PEBRIANTONO SIBORO

Nomor Induk Mahasiswa : 050801031

Program Study : SARJANA (S1) FISIKA

Departemen : FISIKA

Fakultas : MATEMATIKA DAN ILMU

PENGETAHUAN ALAM (FMIPA) UNIVERSITAS SUMATERA UTARA

Diluluskan di Medan, Januari 2011

Diketahui/Disetujui oleh:

Departemen Fisika FMIPA USU

Ketua Pembimbing

(DR. Marhaposan Situmorang) (DR. Kerista Tarigan,M.Eng.Sc)

(3)

PERNYATAAN

ANALISIS PERFORMANSI SINYAL GSM DENGAN OPTIMASI TILTING ANTENA BTS BERDASARKAN DRIVE TEST

SKRIPSI

Saya mengakui bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.

Medan, Januari 2011

(4)

PENGHARGAAN

Puji dan Syukur penulis panjatkan kepada Tuhan Yang Maha Esa, dengan perlindungan, dan limpah karunia-Nya Skripsi ini dapat diselesaikan dalam waktu yang telah ditetapkan.

Ucapan terima kasih saya sampaikan kepada Bapak Dr.Kerista Tarigan,M.Eng.Sc, selaku dosen pembimbing yang sangat berperan serta dalam penyelesaian tulisan ini, yang telah banyak memberikan bimbingan serta panduan untuk menyempurnakan tulisan ini. Ucapan terima kasih juga saya ucapkan kepada Bapak DR.Marhaposan Situmorang dan Ibu Dra.Justinon,M.Si selaku ketua dan sekretaris Departemen Fisika FMIPA USU serta kepada semua dosen di Departemen Fisika FMIPA USU yang dengan tulus memberikan pelajaran dan bimbingan yang sangat berguna bagi penulis.

Ucapan Terima kasih saya sampaikan kepada seluruh Enginering PT.SINERGI TELECOM TELKOMSEL cabang Medan yang sudah memberikan saya kesempatan untuk melakukan Riset/Penelitian sampai selesai. Terkhusus kepada pembimbing saya Bapak Krismas dan Bapak Widi yang sudah begitu banyak membantu sampai terselesaikannya skripsi ini dengan baik.

Akhirnya tidak terlupakan dan yang paling teristimewa kepada Ibunda tercinta E. Sinabutar dan Ayahanda S. Siboro (Alm) serta keluarga saya yang selalu mendoakan

(5)

ABSTRAK

Menurunnya kualitas layanan GSM (Global System for Mobile Communications ) Telkomsel disebabkan oleh meningkatnya user, kurang fokusnya pancaran antena, dan menurunnya daya sinyal. Untuk mengoptimalisasi layanan tersebut telah dilakukan suatu pengukuran drive test dan tilting antena pada BTS Bosar Galugur [PMR036].

(6)

GSM SIGNAL PERFORMANCE ANALYSIS WITH BTS TILTING ANTENNA OPTIMATION BASED ON TEST DRIVE

ABSTRACT

Declining service quality GSM (Global System for Mobile Communications) Telkomsel is caused by increased user Telkomsel, less focus beam antennas, and decreased signal power. To optimize the service we have conducted a drive test measurements and tilting antenna on BTS Bosar Galugur [PMR036].

(7)

DAFTAR ISI

1.3 Perumusan Permasalahan 2

1.4 Batasan Masalah 2

1.5 Manfaat Penelitian 3

1.6 Metodologi Penelitan 3

1.7 Sistematika Penulisan 4

BAB II TINJAUAN PUSTAKA

2.1 Awal Perkembangan GSM (Global System for

Mobile Communications ) di Indonesia 5 2.1Alokasi Frekuensi GSM Telkomsel 6

2.3Asitektur Jaringan GSM 8

2.3.1 Mobile Station (MS) 9

2.3.2 Base Station Subsystem (BSS) 10 2.3.2.1 Base Station Controller (BSC) 10 2.3.2.2 Base Transceiver Station (BTS) 10

2.3.3 Network Subsystem 11

2.3.3.1 Mobile Switching Center (MSC) 11 2.3.3.2 Home Location Register (HLR) 12 2.3.3.3 Visitor Location Register (VLR) 12 2.3.3.4 Equipment Identity Register (EIR) 12 2.3.3.5 Authentication Centre (AuC) 13

2.4.Konsep Seluler 13

2.5 Jenis Antena Untuk Base Station 14 2.5.1 Pola Radiasi Antena 15

2.5.2 Tilting Antena 16

2.6 Klasifikasi Daerah Layanan 16 2.7 Penentuan Radius Sel Jaringan GSM 16

2.8 Metode Lee 18

BAB III METODE PENELITIAN

(8)

3.2 Prosedur Pengambilan Data 21 3.3 Metode Optimasi Tilting Antenna 23 3.3.1 Pengukuran Dengan Drive Test 23 3.3.2 Parameter Deteksi Optimasi Performansi

Jaringan GSM 24

BAB IV DATA DAN ANALISA

4.1 Data 27

4.1.1 Data Drive Test 27

4.1.2 Data Tilting Antena 27

4.1 Hasil Pengukuran Pada Kondisi Awal 28 4.2 Analisis Pengukuran Setelah Tilting Antenna BTS 30 4.3 Penentuan Radius Cell GSM 34

BAB V PENUTUP

5.1 Kesimpulan 39

5.2 Saran 39

Daftar Pustaka 40

(9)

DAFTAR TABEL

Halaman Tabel 2.1 Standarisasi frekuensi bands pada GSM 7

Tabel 3.1 Data teknis BTS Bosar Galugur 22

Table 3.2 Kathrein Antenna tipe 800 10213 26

Tabel 4.1 Statistical Drive Test Before 27

Tabel 4.2 Statistical Drive Test After 27

Tabel 4.3 New Site Final Phisical Confihuration 27 Tabel 4.4 Spesifikasi BTS Bosar Galugur[PMR036] 34 Tabel 4.5 Peningkatan Performasi Jaringan Sebelum dan Sesudah 39 Tabel 4.6 Perubahan cakupan jaringan Sebelum dan Sesudah 39

(10)

DAFTAR GAMBAR

Halaman

Gambar 2.1 GSM & GPRS radio interface 6

Gambar 2.2 Pembatasan Frekuensi GSM 7

Gambar 2.3 Arsitektur Jaringan GSM 8

Gambar 2.4. Base Tranceiver Station 11

Gambar 2.5. Kondisi sel heksagonal dan bentuk cakupannya 13

Gambar 2.6. Jenis Antena 14

Gambar 2.7. Konfigurasi Site 15

Gambar 2.8 Polarisasi Antenna 15

Gambar 3.1. Instrumentasi pengukuran 21

Gambar 3.2. Pengukuran RxLevel, RxQual dan SQI 22 Gambar 3.3 Handset Sony Ericsson T68 dan Software TEMS Investigation 4.1

pada Jaringan GSM Telkomsel 23

Gambar 3.4 Kathrein skala division 26

Gambar 4.1 Hasil drive test RxLev Before (kondisi awal) 28 Gambar 4.2 Hasil drive test RxQual Before (Kondisi Awal) 29 Gambar 4.3 Hasil drive test SQI Before (Kondisi Awal) 29 Gambar 4.4 Cakupan sinyal antenna BTS Kondisi Awal 30 Gambar 4.5 Cakupan sinyal cell ID PL4036A downtilt dari 0 menjadi 4 31 Gambar 4.6 Cakupan sinyal cell ID PL4036B downtilt dari 0 menjadi 3 32

Gambar 4.7 Hasil drive test RxLev After 32

Gambar 4.8 Hasil drive test RxQual After 33

(11)

DAFTAR SINGKATAN

AMPS : Advanced Mobile Phone Service APN : Access Point Name

ARFCN : Absolute Radio Frequency Channel Number ATM : Asyncronous Transfer Mode CCPCH : Common Control Pilot Channel CE : Chanel Element

dBi : Decibel referred to an isotropic radiator dBm : Decibel referred to milliwatt

dBm/Hz : Decibel referred to milliwatts per Hertz DCH : Dedicated Channel

DCCH : Dedicated Control Channel

DHCP : Dynamic Host Configuration Protocol DPCCH : Dedicated Pilot Control Channel DPCH : Downlink Dedicated pysichal Channel DSCH : Dedicated Signalling Channel

DTCH : Dedicated Traffic Channel

FDMA : Frequency Division Multiple Access FER : Frame Error Rate

F-SYNC : Forward Synchronization Channel FSSS : Frequenncy Hopping Spread Spectrum

FA : Foreign Agent

(12)

GGSN : Gateway GPRS Support Node IMSI : International Mobile Subcriber Identity IGP : Interior Gateway Protocol

ISDN : Integrated Service Digital Network ISP : Internet Service Provider

ISHO : Inter-System Handover

ITU : International Telecomunication Union IWF : Interworking Function

MSISDN : Mobile Station Internatioanl ISDN number MSRN : Mobile Subcriber Roaming Number NMS : Network Management System NAI : Network Access Identifier

OVSF : Orthogonal Variable Spreading Codes PCF : Packet Control Function

PCCH : Paging Control Chanel PDSN : Packet Data Serving Node PCB : Power Control Bit

PLD : Program Load Data

PNLM : Pricate Neighbor List Message QoS : Quality of Service

R-SCH : Reverse Supplemental Channel R-SCCH : Reverse Supplemental Code Channel RSCP : Received Signal Code Power

RLP : Radio Link Protocol R-ACH : Reverse Access Channel R-PICH : Reverse Pilot Channel

(13)

R-FCH : Reverse Fundamental Channel

RN : Radio Network

RNC : Radio Network Controller RRC : Radio Resources Control RBPF : Receiver Band Pass Filter RF : Radio Frequency

RFER : Reverse Frame Error Rate RPP : P-P interface Processor RTC : Reverse Traffic Channel RUIF : Radio Unit Interface

RX : Receiver

SGSN : Serving GPRS Support Node SHCCH : Shared Control Channel SHO : Soft Handover

SIR : Signal to Interference Ratio) SCH : Syncronization Channel SSD : Shared Secret Data

SVC : Signaling Virtual Channel T_TDROP : Drop Time Treshold TCH : Traffic Channel

TDMA : Time Division Multiple Access

TMSI : Temporary Mobile Subscriber Identity TRU : Transceiver Unit

TRX : Transceiver

T_ADD : Pilot Detection Tresshold

UARFCN : UMTS Absolute Radio Frequency Channel Number UE : User Equipment

UTRAN : UMTS Terrestrial Radio Access Network VLR : Visitor Location Register

(14)

ABSTRAK

Menurunnya kualitas layanan GSM (Global System for Mobile Communications ) Telkomsel disebabkan oleh meningkatnya user, kurang fokusnya pancaran antena, dan menurunnya daya sinyal. Untuk mengoptimalisasi layanan tersebut telah dilakukan suatu pengukuran drive test dan tilting antena pada BTS Bosar Galugur [PMR036].

(15)

GSM SIGNAL PERFORMANCE ANALYSIS WITH BTS TILTING ANTENNA OPTIMATION BASED ON TEST DRIVE

ABSTRACT

Declining service quality GSM (Global System for Mobile Communications) Telkomsel is caused by increased user Telkomsel, less focus beam antennas, and decreased signal power. To optimize the service we have conducted a drive test measurements and tilting antenna on BTS Bosar Galugur [PMR036].

(16)

BAB 1

PENDAHULUAN

1.1 Latar Belakang Masalah

Peningkatan jumlah pemakai jaringan GSM (Global System for Mobile

Communications) akhir-akhir ini mengakibatkan terjadinya penurunan kualitas

layanan. Kualitas layanan ( Qulity Of Service) yang akan diberikan semestinya sesuai dengan standar kualitas yang telah ditetapkan oleh pemerintah dan operator. Untuk memenuhi nilai standar yang telah ditetapkan maka diperlukan optimasi jaringan agar tidak terjadinya penurunan nilai kualitas seperti sinyal suara, kehandalan sambungan, drop call dan kecepatan handover pada suatu sel atau jaringan tertentu.

Untuk mengetahui penurunan layanan jaringan GSM, maka dilakukan survey lapangan dan menerima keluhan dari pelanggan. Dari keluhan pelanggan tersebut kemudian dilakukan drive test. Drive test adalah salah satu langkah awal dalam proses optimasi jaringan yang bertujuan untuk mengumpulkan data-data pengukuran pada suatu area kurang optimal. Data tersebut dapat dipergunakan untuk mengidentifikasi masalah-masalah jaringan seperti level sinyal (RxLev) yang lemah, kualitas sinyal (RxQual) yang buruk, dan sebagainya.

Salah satu penyebab menurunnya level sinyal dan kualitas sinyal pada suatu area adalah rundukan (tilting).

Pengoptimasian jaringan dilakukan dengan bantuan peralatan drive test sistem konvensional yang terdiri dari sebuah handset MS (mobile station) tipe Soni Ericsson T68, softwere TEMS Investigation Version 4.1 untuk mengontrol dan menyimpan data dari test mobile tersebut, dan sebuah penerima Global Positioning

(17)

Kegiatan drive test dan optimasi ini harus dilakukan secara berkala dan berkesinambungan untuk menjamin kualitas jaringan yang baik, yang pada akhirnya demi untuk kepuasan pelanggan Telkomsel dalam berkomunikasi.

1.2 Tujuan Penelitian

Tujuan dari pelaksanaan Tugas Akhir ini adalah sebagai berikut :

1. Untuk mengetahui faktor-faktor yang mempengaruhi menurunnya level dan kualitas sinyal GSM Telkomsel.

2. Menentukan kualitas layanan operator GSM Telkomsel dengan melakukan drive test.

3. Menganalisis penyebab menurunnya kualitas sinyal operator GSM Telkomsel.

1.3 Perumusan Masalah

Berdasarkan latar belakang yang telah diuraikan di atas, maka perumusan masalah adalah adalah sebagai berikut :

1. Data yang diambil hanya pada jaringan GSM Telkomsel Regional Medan BTS Bosar Galugur [PMR036] karena kurang optimalnya jaringan.

2. Bagaimana tilting antena untuk masing-masing sektor dapat meningkatkan performansi jaringan GSM Telkomsel BTS Bosar Galugur [PMR036] di Pematang Siantar.

1.4 Batasan Penelitian

Berdasarkan perumusan permasalahan yang diuraikan di atas, maka batasan masalah pada pelaksanaan Skripsi ini adalah sebagai berikut :

1. Optimasi jaringan GSM Telkomsel dilakukan hanya dengan tilting antenna BTS.

(18)

4. Optimasi jaringan dilakukan hanya dalam 1 (satu) BTS yaitu BTS Bosar Galugur [PMR036] Pematang Siantar.

1.5 Manfaat Penelitian

1. Untuk memberikan informasi kepada operator Telkomsel tentang terjadinya dan kurang optimalnya jaringan.

2. Mengetahui konfigurasi jaringan yang sesuai dengan perencanaan GSM Telkomsel.

3. Untukmemberikan pelayanan yang optimal bagi pengguna GSM Telkomsel.

1.6 Metodologi Penelitian

1. Metode Study pustaka

Dengan mempelajari berbagai teori sebagai landasan yang sehubungan dengan GSM yang diberikan oleh PT.Telkomsel Medan.

2. Metode Study Bimbingan

Diskusi dengan dosen pembimbing yang telah ditunjuk oleh pihak departemen fisika USU mengenai masalah – masalah yang timbul selama penulisan skripsi berlangsung.

3. Metode pengukuran

Data yang digunakan dalam tugas akhir ini adalah data di lapangan yakni hasil drivetest sebelum dan sesudah optimasi tilt antenna BTS.

4. Metode pengolahan data

(19)

1.7 Sistematika Penulisan

Sistematika penulisan yang digunakan dalam tugas akhir ini adalah : Bab I Pendahuluan

Berisi mengenai latar belakang penulisan, tujuan Penulisan, batasan masalah dalam penulisan, tempat penelitian, manfaat penelitian, metodologi penulisan dan sistematika penulisan

Bab II Dasar Teori

Bab ini menjelaskan tentang GSM (Global System of Mobile

Communication, alokasi frekuensi, arsitektur GSM, konsep selular,

jenis dan polarisasi antena, tilting antenna, klasifikasi daerah layanan,penentuan radius cell jaringan GSM, metode Okumura-Hata dan Metode Lee.

Bab III Hasil dan Pengolahan Data Drivetest

Dalam bab ini berisi instrumentasi penelitian, prosedur pengambilan data, metode optimasi tilting antenna, pengukuran dengan drive test, dan parameter deteksi optimasi performansi jaringan GSM.

Bab IV Analisis dan Pembahasan

Berisi tentang data-data pengukuran drive test kemudian di analisis untuk dilakukan tilting antenna sehingga diperoleh performansi jaringan Telkomsel BTS Bosar Galugur [PMR036] yang lebih optimal.

Bab V Kesimpulan dan Saran

(20)

BAB II

TINJAUAN PUSTAKA

2.2 Awal Perkembangan GSM (Global System for Mobile Communications ) di Indonesia

PT. Telekomunikasi Indonesia sebagai penyelenggara telekomunikasi terbesar di Indonesia telah mempersiapkan proyek GSM ini dengan sungguh – sungguh. Sebagai langkah awal pada bulan Agustus 1992, PT. Telkom mengadakan studi komparasi kebeberapa operator dan manufactures sistem seluler di Eropa, Amerika dan Hongkong.

Menindak lanjuti langkah sebelumnya, PT. Telkom mengundang para vendor (Siemens, Alcatel, Ericsson dan AT&T) untuk mempresentasikan teknologinya kepada tim di Indonesia, dari sini selanjutnya dapat ditentukan spesifikasi teknis dan struktur dasar GSM yang akan digunakan. Pemerintah Indonesia menetapkan sistem seluler GSM yang digunakan karena sistem ini sesuai dengan sistem yang telah ada yaitu EWSD, NEAX dan 5-SS. Oktober 1993 Batam sebagai proyek GSM di Indonesia.

Dirjen Postel mengeluarkan ketetapan nomor 4243/Dirjen/1993 tanggal 14 desember 1993 yang menetapkan sistem telepon bergerak seluler GSM Batam-Bintan dengan memakai swiching dari Siemens dan radio (BSC, SRB) dari Ericsson. Sebenarnya di Batam pada waktu itu telah beroperasi sistem telepon kabel bergerak inti multy zone memakai sistem AMPS pada frekuensi 800 MHz tetapi kurang diminati (dari 500 subcriber hanya 86 yang terpasang) dan sering mengalami interferensi dengan ETACS Singapura.

2.3 Alokasi Frekuensi GSM Telkomsel

(21)

uplink : 890 MHz - 915 MHz

downlink : 935 MHz - 960 MHz

Nilai rentang frekuensi untuk tiap slotnya adalah sebesar 200 kHz. Kemudian kedua sub-band tersebut dibagi lagi menjadi kanal-kanal, sebuah kanal pada satu

sub-band memiliki pasangan dengan sebuah kanal pada sub-band yang lain. Tiap

sub-band dibagi menjadi 124 kanal, yang kemudian masing-masing diberi nomor

yang dikenal sebagai ARFCN (Absolute Radio Frequency Channel Number). Jadi sebuah MS yang dialokasikan pada sebuah ARFCN akan beroperasi pada satu frekuensi untuk mengirim dan satu frekuensi untuk menerima sinyal.

Untuk GSM, jarak antar pasangan dengan ARFCN sama selalu 45MHz, dan

bandwidth tiap kanal sebesar 200kHz. Kanal pada tiap awal sub-band digunakan

sebagai guard band. Spektrum GSM menghasilkan 124 ARFCN, masing-masing diberi nomor 1 sampai 124. Kanal sebanyak 124 inilah yang nantinya dibagi-bagi buat operator-operator GSM yang ada di suatu negara.

Gambar 2.1 GSM & GPRS radio interface [sumber : communication management]

(22)

pengaruh penggunaan frekuensi yang lebih tinggi dibandingkan dengan frekuensi 900 MHz tadi. GSM di frekuensi 1800 MHz biasa dikenal sebagai DCS (Digital

Celluler System) 1800. Standarisasi band frekuensi untuk beberapa negara

diperlihatkan dalam tabel 2.1 berikut.

Tabel 2.1 Standarisasi frekuensi bands pada GSM

[Sumber: The Journal of The Communication Network ]

Pada DCS 1800, ada 374 kanal frekuensi pembawa yang bisa digunakan untuk melayani pelanggan GSM. Kanal-kanal itu dibagi menjadi:

uplink : 1720 MHz - 1785 MHz

downlink : 1805 MHz - 1880 MHz

Gambar 2.2 Pembatasan Frekuensi GSM [Sumber: The Journal of The Communication Network ]

(23)

digunakan frekuensi yang lebih besar yaitu frekuensi 1900 dan dikenal dengan PCS (Personal Communication System) 1900.

uplink : 1850MHz - 1910MHz

downlink : 1930MHz - 1990MHz

PCS 1900 akan memiliki coverage area yang lebih sempit tetapi dengan kapasitas yang lebih besar untuk melayani pelanggan jika dibandingkan dengan kapasitas sel DCS 1800 maupun GSM 900.

2.3 Asitektur Jaringan GSM

Arsitektur jaringan GSM seperti pada gambar 2 terdiri dari 3 komponen utama yaitu: 1. Mobile Station (MS)

2. Base Station Subsytem (BSS)

3. Network Switching Subsytem (NSS)

Gambar 2.3 Arsitektur Jaringan GSM [sumber : AIRCOM International 2002]

(24)

BTS pada dasarnya hanya merupakan “pesuruh” saja. Otak yang mengatur lalu-lintas trafik di BTS adalah BSC (Base Station Controller). Location Updating, penentuan BTS dan proses Handover pada percakapan ditentukan oleh BSC ini. Beberapa BTS pada satu region diatur oleh sebuah BSC. BSC-BSC ini dihubungkan dengan MSC (Mobile Switching Center). MSC merupakan pusat penyambung yang menyatu jalur hubungan antar BSC maupun antar BSC dan jenis layanan komunikasi lain (PSTN, operator GSM lain, CDMA, dan sebagainya). Saat ini teknik switching terus berkembang, dan begitu pula dengan layanan GSM. Beberapa operator GSM di Indonesia telah menerapkan Intelegent Network lanjutan dalam teknik switchingnya.

2.3.1 Mobile Station (MS)

Mobile Station (MS) terdiri dari Mobile Equipment (ME) yang disebut juga terminal, dan sebuah SIM (Subscriber Identity Module) card. SIM Card memberikan personal mobilitas sehingga pelanggan dapat mengakses jaringan GSM bersangkutan dengan menggunakan terminal (Handphone) lain. Dengan memasukan SIM Card tersebut ke terminal GSM, pelanggan dapat menerima dan membuat panggilan (Call), dan berbagai layanan yang disediakan operator pengeluar SIM Card tersebut. Mobile Equipment (ME) diidentifikasikan oleh suatu kode unik yang disebut dengan IMEI (International Mobile Equipment Identity). SIM Card sendiri berisi data-data pelanggan, kode rahasia untuk autentifikasi, dan informasi lainnya. SIM Card dapat dilindungi dari anautorized user dengan password atau PIN (Personal Identity Number).

2.3.2 Base Station Subsystem (BSS)

(25)

digital pada land network (A-interface) antara BSS dan MSC terdiri dari BSC, BTS dan XCDR (speech trancoder).

2.3.2.1 Base Station Controller (BSC)

Fungsi dari BSC adalah untuk mengontrol BTS, memproses bentuk panggilan, operation and maintenance dan menyediakan interface antara BSS dan MSC (A-interface). Sedangkan fungsi utamanya adalah mengatur kanal radio dan mentransfer sinyal informasi dari dank e Mobile Station (MS).

2.3.2.2 Base Transceiver Station (BTS)

Setiap BTS menyediakan kanal radio (RF- carriers) untuk suatu area cakupan. Kanal RF digunakan untuk hubungan antara MS dan BSS (Air-interface). BTS mengandung transceiver radio yang menangani sebuah cell dan hubungan dengan Mobile Station (MS).

BTS sering juga disebut dengan Radio Base Station (RBS). BTS merupakan penghubung antar terminal pelanggan dan sentral melalui kanal frekuensi radio. Sering disebut sebagai cell site. Untuk mencakup suatu daerah pelayanan dibutuhkan satu atau lebih BTS, tergantung jumlah sel di dalam pelayanan.

BTS terdiri dari :

a. Unit Kontrol

(26)

b. Unit Kanal

Perangkat pemancar dan penerima akan diperlengkapi atau diberikan dalam setiap unit kanal. Sebagian besar unit kanal adalah unit kanal bicara. Unit kanal pada suatu ketika akan berfungsi menyalurkan panggilan, tergantung pada jumlah panggilan pada BTS yang harus dilaksanakan.

Gambar 2.4. Base Tranceiver Station

2.3.3 Network Subsystem

NSS terdiri dari Mobile Switching Center (MSC), Home Location Register (HLR), Visitor Location Register (VLR), Equipment Identity Register (EIR) dan Authentication Center (AuC).

2.3.3.1 Mobile Switching Center (MSC)

(27)

2.3.3.2 Home Location Register (HLR)

HLR menyimpan semua data yang berhubungan dengan pesawat pelanggan. Data statis menerangkan kapabilitas akses pelanggan, jenis pelayanan dan pelayanan tambahan. HLR juga mempunyai data dinamis tentang pesawat pelanggan yang roaming. MSC menggunakan data dinamik untuk segera meroutekan panggilan yang datang ke pesawat pelanggan yang dipanggil.

2.3.3.3 Visitor Location Register (VLR)

VLR menyimpan informasi tentang pesawat pelanggan yang memasuki area pelayanannya. VLR dapat dianggap sebagai database pelanggan yang dinamik yang secara intesif bertukar data dengan HLR. Hubungan kedua database tersebut memungkinkan MSC untuk menset-up panggilan yang masuk maupun keluar dalam area pelayanan MSC tersebut. Data disimpan dalam VLR mengikuti pelanggan jika memasuki area lain.

2.3.3.4 Equipment Identity Register (EIR)

EIR merupakan database yang menyimpan International Mobile Equipment Identity (IMEI) pesawat pelanggan. Database tersebut dikategorikan dalam tiga hal yaitu white list (pesawat tersebut sah atau legal), Grey list (pesawat sedang dalam pengamatan), black list (pesawat tersebut tidak sah atau illegal).

2.3.3.5 Authentication Centre (AuC)

(28)

rahasia yang disimpan dalam AuC. Database dalam AuC juga diproteksi terhadap mekanisme akses yang tidak berhak.

2.4. Konsep Seluler

Dalam sistem radio seluler terdapat empat bentuk sel yaitu lingkaran, segitiga sama sisi, bujur sangkar dan segi enam beraturan (heksagonal). Bentuk sel yang paling cocok untuk sistem radio seluler adalah berbentuk heksagonal karena dengan radius sel yang sedikit untuk mencakup wilayah pelayanan dibandingkan dengan bentuk sel segitiga atau bujur sangkar. Bentuk sel yang sesungguhnya tidak beraturan dan bergantung pada kontur permukaan daerah seperti terlihat pada gambar 2.5.

Gambar 2.5. Kondisi sel heksagonal dan bentuk cakupannya

Beberapa faktor yang paling mempengaruhi ukuran sel didalam suatu daerah layanan yaitu : kepadatan trafik telepon, kekuatan pemancar, sensitivitas penerima dari BTS maupun dari MS, tinggi antena (BTS maupun MS) dan keadaan topografinya.

Bentuk sel heksagonal sering digunakan dalam perencanaan karena dapat mempermudah dalam menganalisa. Luas daerah yang diliputi oleh sebuah sel heksagonal adalah sebesar :

2 3 2 3

R

L = × × (2.1)

dimana :

( )

2

Km heksagonal sel

sebuah daerah

luas = L

(29)

2.5 Jenis Antena Untuk Base Station

Pada umumnya GSM Telkomsel mengunakan antena keluaran Kathrein. Berdasarkan jenis antena yang digunakan, sel dapat dibagi menjadi dua yaitu sel omnidireksional dan sel sektoral. Sel omnidireksional hanya mampu melayani dengan luasan yang sempit. Pada sel sektoral terdapat tiga arah pancaran, yang masing-masing melingkupi area sebesar 120o.

Gambar 2.6. Jenis Antena

Satu sel akan dilayani oleh site. Dalam satu site bisa memiliki lebih dari satu sel. Setiap site biasanya terdiri atas sebuah menara (tower) antena dan shelter. Ada juga yang hanya menjadi pengulang (repeater) untuk minilink saja. Penempatan site biasanya dilakukan di atas tanah, namun untuk daerah yang padat site ditempatkan di atas gedung-gedung yang tinggi. Konfigurasi site dapat dilihat pada Gambar 2.7.

Gambar 2.7. Konfigurasi Site 1

2

1200 1200

1200

300

300

(30)

Menara (1) : Menara digunakan untuk meletakkan berbagai macam antena. seperti antena sektoral, antena dan radio transmisi (minilink). Tinggi menara disesuaikan dengan kebutuhan.

Shelter (2) : Shelter terbuat dari bahan sejenis besi sebagai tempat untuk menyimpan

berbagai komponen site, seperti BTS, perangkat transmisi, batere-BFU (Battery Fuse

Unit), fan unit, cooling unit/air condinditioner, heating unit.

2.5.1 Pola Radiasi Antena

Pola radiasi antena sangatlah komplek, dikarenakan di dalam kenyataannya bentuk radiasi antena adalah tiga dimensi, namun dapat di untuk memudahkan analisa dimodelkan ke dalam sistem Koordinat Cartesian (dua dimensi). Pola radiasi biasanya diplotkan dalam dua pola yaitu pola horisontal dan pola vertikal seperti gambar berikut:

Gambar 2.8 Polarisasi Antenna

2.5.2 Tilting Antena

Tilting atau lebih dikenal dengan kemiringan antena, berfungsi untuk mengatur cakupan area cell. Downtilting antena ada dua yaitu :

Electrical tilting

Nilai Tilt diatur secara elektronik dan dapat diubah ubah. Mechanical tilting.

(31)

2.6 Klasifikasi Daerah Layanan

Karena tipe daerah baik alamiah maupun buatan manusia ikut menentukan propagasi gelombang radio. Tipe daerah dibedakan berdasarkan struktur yang dibuat manusia (human-made structure) dan keadaan alamiah daerah . Tipe daerah ini secara garis besar dibagi menjadi daerah urban, daerah suburban dan daerah terbuka (open area). Daerah Sub-Urban memiliki ciri-ciri antara lain :

 Tingkat halangan lebih rendah dibanding daerah urban, sehingga propagasi sinyal radio relatif lebih baik dan median kuat sinyal tinggi.  Jalan-jalan lebar

 Kecepatan pergerakan (mobilitas) kenderaan lebih tinggi dibanding daerah urban.

 Berada dipinggiran kota maupun kota kota kecil

2.7 Penentuan Radius Sel Jaringan GSM

Untuk menentukan jari – jari sel harus ditentukan terlebih dahulu model propogasi yang digunakan, sesuai dengan besar frekuensi kerja dan kondisi morfologi daerah yang akan ditentukan jari – jari selnya. Berdasarkan dua hal tadi maka untuk daerah Medan bisa digunakan model propagasi Okumura-Hatta. Radius atau jari – jari sel dapat ditentukan setelah nilai redaman maksimum diperoleh. Penentuan area difokuskan pada arah reverse (downlink). Karena redaman propogasi dipengaruhi oleh jarak maka terdapat suatu nilai – nilai maksimal sektor pada arah tertentu yang masih memenuhi syarat MAPL (maks alloweble propagation loss) tersebut. Bentuk umum persamaan redaman propagasi sebagai fungsi jarak, frekuensi dan tinggi antena.

L(d

km) = L1 + 10γ log dkm (2-2) dimana :

d

km = jarak link (km)

L1 = redaman propagasi total pada jarak d km

(32)

saat jari-jari sel R

km = dkm, maka redaman propagasi (L) sama dengan MAPL. Sehingga persamaannya menjadi :

MAPL = L(R

km) = L1 + 10γ log dkm (2-3)

Model propagasi yang digunakan adalah Okumura – Hata untuk daerah density

urban

dengan persamaan sebagai berikut :

L = 46,3 + 33,9 log f– 13,82 log h

BS – a(hMS) + [44,9 – 6,55 log(hBS)] x log r (2-4)

Dan faktor koreksi tinggi antena menggunakan persamaan seperti di bawah yaitu untuk kategori urban :

a(h

Ms) = (1,1 log(f) – 0,7)hMS – (1,56 log(f) – 0,8) dB (2-5)

Rumusan radius sel propagasi Okumura-Hata sebagai berikut :

γ

(33)

2.8 Metode Lee

Level sinyal dari BS yang diterima oleh MS pada daerah datar, dapat dinyatakan sebagai berikut :

)

Sedangkan nilai α ditentukan dengan : )

1 = (tinggiantenaBSyangdigunakan)/30,48meter

α

Setelah faktor koreksi α maka diperoleh :

(34)

Gt = penguatan antena SRB Gm = penguatan antena MS

Pr adalah daya sinyal yang diterima rata-rata terukur dalam satu multiframe SACCH (Slow Associated Control Channel). Besarnya sinyal terima RxLev yang dinormalisasikan dapat dihitung dengan persamaan :

RxLev = Pr + 110 (2-11)

dimana:

RxLev = daya sinyal terima ternormalisasi (dBm), dan

Pr = nilai pengukuran daya sinyal terima (0-(-110) dBm).

2.9 Beberapa Faktor Penyebab Menurunnya sinyal GSM Telkomsel

Hal-hal yang menyebabkan menurunnya sinyal GSM Telkomsel yaitu : 1. Perubahan lingkungan operasi jaringan: gedung baru, jalan baru, dan

tumbuh-tumbuhan baru.

2. Perubahan struktur jaringan: Perubahan dalam distribusi BTS dan kapasitas system dan menurunnya daya sinyal.

3. Salah prediksi penyebaran pelanggan pada saat desain jaringan 4. Pertumbuhan pengguna (user)yang tidak terduga

5. Ketidakfokusan pancaran antena

2.10 Optimasi Jaringan

Optimasi jaringan adalah solusi untuk meningkatkan kapasitas, kualitas dan performa infrakstruktur jaringan Telkomsel.

Tujuan dari Optimasi jaringan :

(35)

3. Melakukan perawatan peralatan secara berkala.

Kegunaan Optimasi jaringan yaitu :

1. Pemberdayaan sistem dan peralatan secara optimal 2. Meminimalkan biaya perbaikan

3. Mengurangi komplain dari pelanggan 4. Mengoptimalkan kepuasan pelanggan

(36)

BAB III

METODE PENELITIAN

Metode penelitian yang dilakukan untuk mengoptimalisasi pancaran antena terhadap pemakai layanan adalah metode Tilting. Untuk merealisasikan metode tersebut maka dilakukan pengukuran sebelum dan sesudah tilting. Instrumentasi/peralatan yang dipergunakan dan prosedur pengukuran adalah sebagai berikut.

3.1. Instrumentasi Penelitian.

Instrumentasi yang digunakan dalam penelitian ini terdiri dari : 1. Laptop

Sebagai tempat menginstal semua softwere yang dibutuhkan dan menampilkan output pengukuran.

2. Softwere TEMS Investigation GSM versi 4.1

Digunakan untuk mengoptimasi jaringan GSM, diantaranya mengukur level sinyal RX Level, RX Qual,SQI, dll.

3. Handset MS (mobile station) tipe Soni Ericsson T68

Sebagai Mobile Station dan alat dalam melakukan pengukuran pensinyalan saat melakukan drive test.

4. GPS (Global Positioning System)

Digunakan untuk menentukan lokasi coverage jaringan GSM 5. Softwere MCOM 4.2

Untuk melihat nilai ARFCN. 6. Softwere Map Info

Untuk melihat lokasi yang diteliti. 7. Skala Kethrein

Untuk melihat cakupan sinyal akibat perubahan tilting antenna. 8. Kabel USB

Sebagai penghubung antara handphone dan laptop. 3.2 Prosedur Pengambilan Data

(37)

Dari hasil survei lapangan, BTS Bosar Galugur [PMR036] berada pada daerah sub-urban. Hal ini dapat dilihat dari gambar pendukung pada lampiran 1.

b) Data teknis BTS.

Data teknis BTS di peroleh dari Telkomsel Cabang Medan dengan rincian pada table berikut ini :

Tabel 3.1 Data teknis BTS Bosar Galugur

Site Name Month Target On Air Config BSC Name

Bosar Galugur Januari, 2010 BPMS4

Site ID NE Type Band New Site ID

PMR036 BTS 900 PMR036

LAC CI New Configuration Type of Work

367 40361, 40362 New Site

c) Pengukuran

Pada tahap ini dilakukan pengukuran di lokasi BTS yang telah ditentukan yaitu BTS Bosar Galugur [PMR036]. Pengukuran level sinyal yang terdiri dari RxLevel, RX Qual, SQI dengan melakukan drive test menggunakan TEMS 4.1 Investigation GSM.

Gambar 3.1. Pengukuran RxLevel, RxQual dan SQI

(38)

(panggilan jatuh). Secara teknis dapat diilustrasikan pada Gambar 3.1. Adapun akurasi pengukuran RxLev menggunakan TEMS 4.1 ini adalah ± 1 dB.

Di bawah ini adalah langkah – langkah dalam melakukan drive test :

a. Dihubungkan Laptop dengan Tems Sony Ericsson T68 dengan menggunakan kabel USB. Kemudian dihubungkan GPS dengan Laptop seperti pada gambar set up pengukuran pada gambar 3.2.

b. Kemudian, Laptop, MS1, dan GPS dihidupkan. Setelah itu buka Software Tems Investigation 4.1 sehingga tampil seperti pada gambar 3.3.

c. Drive test dengan mengendarai mobil seperti pada gambar 3.1 dilakukan pengukuran disekitar area cakupan BTS. Yang pertama dilakukan pengukuran RX Level pada masing – masing sektor antena yaitu antena sektor A dan sector sektor B hingga ke BTS tetangga, lalu file disimpan. Setelah itu dilakukan pengukuran RX Qual pada masing – masing antena sektornya hingga ke BTS tetangga lalu file disimpan. Setelah itu dilakukan pengukuran SQI pada masing – masing antena sektornya hingga ke BTS tetangga lalu file disimpan.

d. Dilakukan tilting antenna untuk masing-masing .

e. Kemudian dilakukan drive test ulang hingga diperoleh jaringan yang optimal di daerah BTS tersebut.

Secara umum set up pengukuran dapat dilihat dalam gambar 3.2 berikut ini.

(39)

3.3 Metode Optimasi Tilting Antenna

Rundukan ( tilting ) antenna BTS ( Base Tranciever Station ) yang tidak optimal menjadi salah satu penyebab menurunnya level sinyal ( RxLev ) dan kualitas sinyal (RxQual ) pada area cakupan BTS tersebut sehingga tidak terbentuk percakapan yang baik.

Banyak cara yang digunakan untuk meningkatkan performansi jaringan GSM. Salah satu diantaranya dengan optimasi tilting antena. Sebelum dilakukan optimasi tilting antena terlebih dahulu dilakukan drive test. Drive test adalah salah satu langkah awal dalam proses optimasi yang bertujuan untuk mengumpulkan data-data pengukuran pada area yang hendak di optimasi.

3.3.1 Pengukuran Dengan Drive Test

Drive Test digunakan untuk outdoor (luar ruangan) yang dilakukan dengan mengendarai (drive) mobil seperti terlihat dalam gambar 3.1. Drive Test didefenisikan sebagai proses pengukuran system komunikasi bergerak pada sisi gelombang radio di udara yaitu dari arah pemancar/BTS ke MS/Handphone atau sebaliknya, dengan menggunakan handphone yang didesain secara khusus untuk pengukuran.

(40)

Di dalam proses melakukan Drive Test tersebut handphone khusus yang digunakan salah satunya adalah Sony Ericsson T68 yang didesain dan bekerja sama oleh perusahaan Ericsson tersebut dan output pengukurannya menggunakan software Tems Investigation 4.1 yang di instalkan pada laptop/notebook seperti terlihat dalam gambar 3.2.

Data yang terukur oleh TEMS Investigation GSM adalah RX Level, RX Qual, dan SQI yang diterima oleh handset mobile station T68 dan terekam dalam TEMS dalam satuan desibel (dB).

3.3.2 Parameter Deteksi Optimasi Performansi Jaringan GSM

Dengan menggunakan TEMS Investigation 4.1, parameter optimasi jaringan dengan standarisasi Telkomsel berikut ini :

1. RX Level

Tingkat kuat level sinyal penerima di MS (skala 0 - 85 dB),makin besar minus dB makin lemah. Persentase standarisasi RX Level yang digunakan Operator Telkomsel adalah sebagai berikut: jika angka menuju >95% maka berpredikat Excelent, 90 – 95 % Good, 80 – 90 % fair, dan jika <80 % maka digolongkan poor atau buruk sekali.

2. RX Qual

Tingkat kualitas sinyal penerima di MS (Skala 0 – 5 dB) makin besar makin jelek. Standarisasi RxQual yang digunakan Operator Telkomsel adalah sebagai berikut: jika angka menuju >95% maka berpredikat Excelent, 90 – 95 % Good, 80 – 90 % fair, dan jika <80 % maka digolongkan poor atau buruk sekali.

3. SQI (Speech Quality Indicator)

(41)

2. Kathrein Skala Division

Antena yang digunakan pada BTS Bosar Galugur [PMR036] Telkomsel adalah keluaran Kathrain dengan tipe antenna Kath_800 10213. Rinciaan antenna kathrain 800 10213 berikut ini :

Table 3.2 Kathrein Antenna tipe 800 10213

Kathrein skala division seperti gambar berikut ini :

(42)

BAB IV

DATA DAN ANALISA

4.1 Data

4.1.1 Data Drive Test

Berdasarkan set up pengukuran drive test seperti pada gambar 3.2 maka diperoleh data pada tabel 4.1 dan 4.2 berikut ini :

Tabel 4.1 Statistical Drive Test Before

N o P a ra m e te r T a rg e t R e s u lt P a s s e d (Y /N )

1 R x L e ve l 0 - 85 > = 9 8 % 8 1 .0 0 % N o

2 R x Q u a l 0 - 5 > = 9 7 % 7 9 .0 0% N o

3 S Q I > = 1 8 > = 9 5 % 8 6 .5 0% N o

Tabel 4.2 Statistical Drive Test After

N o P a ra m e te r T a rg e t R e s u lt P a s s e d (Y /N )

1 R x L e ve l 0 - 85 > = 9 8 % 1 0 0 .00 % Y e s

2 R x Q u a l 0 - 5 > = 9 7 % 9 7 .0 0% Y e s

3 S Q I > = 1 8 > = 9 5 % 9 6 .7 2% Y e s

4.1.2 Data Tilting Antenna

Berdasarkan set up tilting antenna BTS, maka diperoleh data pada tabel 4.3 berikut ini :

Tabel 4.3 New Site Final Physical Configuration

C e ll ID L o n g itu d e L a titu d e D ire c tio n (b e a rin g

H e ig h t (m e te r)

T o w e r H e ig h t (m e te r)

T ilt

(d e g re e s ) A n te n n a T y p e

P L 4 0 3 6A 9 9 .2 26 6 4 2 .9 0 19 3 6 0 7 0 7 2 M 4 (4 ) K a th _ 8 0 0 1 0 21 3

(43)

4.2 Hasil Pengukuran Pada Kondisi Awal

Berdasarkan data pengukuran pada tabel 4.1 yaitu sebelum dilakukan tilting antena maka diperoleh RxLev seperti pada gambar 4.1 berikut.

900 Band: Percentage Result ; RXLEV = 81% Target 98%

Gambar 4.1 Hasil drive test RxLev Before (kondisi awal)

Dari hasil drive test tersebut diperoleh kondisi Rx Level buruk yang ditandai dengan warna merah pada sector A site ID PL4036A dengan persentase 81% dari target Telkomsel 98%. Untuk sector B site ID PL4036B terlihat RX Level kondisinya baik.

Percentage Result ; RXQUAL = 79.00% Target 97%

(44)

Sementara kualitas sinyal (RxQual) mencapai 79.00% dimana pada kedua sector terlihat RxQual kondisi poor yang ditandai dengan warna merah seperti terlihat dalam gambar 4.2.

Percentage Result ; SQI = 86.50 % Target 95%

Gambar 4.3 Hasil drive test SQI Before (Kondisi Awal)

Kualitas percakapan SQI dalam keadaan dedicated atau menelpon berpredikat kurang baik mencapai 86.50% seperti terlihat dalam gambar 4.3.

Dengan menggunakan Kathrein Skala Division cakupan antenna BTS dengan tinggi tower 72, antenna berada pada ketinggian 70 meter, down tilt 0, vertical beam width 80 diperoleh cakupan sinyal untuk site ID PL4036A pada azimuth 600 dan site ID PL4036B pada azimuth 1200 adalah sama seperti terlihat dalam gambar 4.4.

(45)

Gambar 4.4 menunjukkan bahwa cakupan sinyal over horizon sehingga cakupan sinyal lebih luas.

Hasil drive test awal BTS Bosar Galugur [PMR036] diperoleh kondisi sinyal jaringan kurang optimal dengan rincian RX Level 81.00% berpredikat poor, RX Qual 79.00%, serta SQI 86.50%. . Hasil Drive test tersebut membenarkan klaim pelanggan Telkomsel akan buruknya sinyal didaerah tersebut.

Dari analisa hasil drive test pada kondisi awal dilapangan, didapat bahwa posisi sector antenna BTS Bosar Galugur [PMR036] belum optimal menyebabkan buruknya sinyal.

4.3 Analisi Pengukuran Setelah Tilting Antenna BTS

Untuk mengatasi permasalahan lemahnya performansi sinyal tersebut diatas maka dilakukan tilting antenna untuk masing-masing sector. Dengan melakukan beberapa kali downtilt antenna maka diperoleh tilting antenna baru seperti terlihat pada table 4.4.

Dari konfigurasi antenna BTS tersebut, dengan menggunakan kathrein skala division diperoleh cakupan sinyal untuk sector A dengan cell ID PL4036A downtilt dari 0 menjadi 4 berikut ini :

(46)

Downtilt untuk cell ID PL4036A dari 0 menjadi 4 sangat mempengaruhi cakupan sinyal. Dari gambar 4.5 diatas menunjukkan bahwa semakin besar downtilt maka cakupan sinyal makin pendek yakni lower 3dB mencapai 0.4981 Km, main beam mencapai 1.001 Km dan upper beam over horizon.

Gambar 4.6 Cakupan sinyal cell ID PL4036B downtilt dari 0 menjadi 3 Pada sector B dengan cell ID PL4036B dilakukan downtilt dari 0 menjadi 3 diperoleh cakupan sinyal seperti gambar 4.6. Downtilt ini menghasilkan jarak pancar yang semakin dekat dengan lower 3dB mencapai 0.5701 Km dan main beam mencapai 1.3357 Km.

Setelah dilakukan tilting antenna BTS pada masing-masing sector maka dilakukan drive test ulang seperti pada gambar 3.2 hingga diperoleh performansi jaringan yang baru yakni RX Level mencapai 100% dari target Telkomsel 98%.

900 Band: Percentage Result ; RXLEV = 100.00% Target 98%

(47)

Interval nilai pengukuran RX Level yang terbaca pada TEMS investigation 4.1 yaitu :

a. -80 s/d 0 dBm = terbaca baik, direpresentasikan berwarna hijau

b. -85 s/d - 81 dBm = terbaca cukup baik, direpresentasikan berwarna kuning c. -90 s/d - 86 dBm = terbaca kurang baik, direpresentasikan berwarna merah d. -120 s/d - 91 dBm = terbaca buruk sekali, direpresentasikan berwarna biru

Kualitas sinyal RX Qual mencapai 97% dari target Telkomsel 97%, seperti terlihat dalam gambar 4.8.

Percentage Result ; RXQUAL = 97% Target 97%

Gambar 4.8 Hasil drive test RxQual After

Interval nilai pengukuran RxQual yang terbaca pada TEMS investigation 4.1 yaitu : a. 0 s/d 3 dBm = terbaca baik, direpresentasikan berwarna hijau

(48)

Kualitas suara SQI dalam keadaan dedicated atau menelpon mencapai 96.72% dari target 95% dengan rincian interval nilai pengukuran SQI berikut ini :

a. 18 s/d 30 = terbaca baik, dipresentasikan berwarna hijau b. 0 s/d 17 = terbaca buruk, dipresentasikan berwarna kuning

Percentage Result ; SQI = 96.72% Target 95%

Gambar 4.9 Hasil drive test SQI After

(49)

4.3 Penentuan Radius Cell GSM Telkomsel

BTS Bosar Galugur [PMR036] dengan spesifikasi sebagai berikut: Tabel 4.4 Spesifikasi BTS Bosar Galugur[PMR036]

Parameter Nilai

Max.Allowable Path Loss (MAPL) 106,1603 dB

Frekuensi (f) 900 MHz

Tinggi Antenna BTS 70 m

Gain antenna BTS 16,7dBi (14,65 dBm) Daya pancar BTS Kelas 4 (Pt) 40 watt (43 dBm)

Tinggi MS 1.5 m

Gain MS 0 (sangat kecil)

Part Lost Sloope (γ) 43,1 dB/dec

Untuk menentukan radius sel (R) dan Luas Cakupan Sel (L) dapat dihitung dengan menggunakan persamaan (2-7) dan persamaan (2.1) adalah sebagai berikut :

( )

( ) ( )

(50)

Dengan menggunakan metode lee, level daya sinyal dari BS yang diterima oleh MS dapat dihitung dengan persamaan 2-8.

)

Faktor koreksi α ditentukan dengan persamaan (2-9): )

1= (tinggiantenaBSyangdigunakan)/30,48meter

(51)

{

(gain antenaMSyangdigunakan terhadapdipol0,5 ) / 1

}

Maka diperoleh :

)

Dari persamaan 2-8 dapat diperoleh daya sinyal terima Pr awal dengan asumsi Po =

-72 dBm yaitu :

Dengan mensubstitusi nilai Pr ke persamaan 2-11 maka diperoleh RX Level

ternormalisasi awal:

RxLev = (Pr + 110) dBm

RxLev = (-174,43 + 110) dBm

RxLev = -64,43 dBm

Maka level sinyal terima ternormalisasi RxLev = -64,43 (dBm).

Dari hasil drive test after tilting antenna BTS, diperoleh level sinyal ternormalisasi RX Level = -51 dBm terlihat dalam lampiran 1. Maka daya sinyal terima dapat dihitung dengan menggunakan persamaan 2-11:

(52)

Pr = (RxLev – 110) dBm

Pr = (-51 - 110) dBm

Pr = -161 dBm

Dari persamaan (2-1) diperoleh luas area cakupan before tilting BTS Bosar Galugur [PMR036] dengan R = 2,884 km.

Setelah dilakukan tilting antenna BTS, diperoleh radius cell baru (R) sebesar 2,3297 Km seperti terlihat pada lampiran 2.

Dengan menggunakan persamaan (2-1) diperoleh luas cakupan :

2

Tabel 4.5 Peningkatan Performasi Jaringan Sebelum dan Sesudah

(53)

Tabel 4.6 Perubahan cakupan jaringan Sebelum dan Sesudah

No. Nama BTS

Sebelum Sesudah

R(km) Luas (km)2 R(km) Luas (km)2 1. Bosar Galugur

[PMR036] 2,884 21.625 2.08 11,248

(54)

BAB 5

5.1 Kesimpulan

Dari hasil perhitungan dan analisa data yang telah dilakukan maka dapat diambil beberapa kesimpulan seperti berikut ini :

1. Berdasarkan hasil data pengukuran, maka penurunan level dan kualitas jaringan GSM Telkomsel BTS Bosar Galugur [PMR036] terjadi akibat meningkatnya

user, ketidakfokusan pancaran antena , dan menurunnya daya sinyal.

2. Berdasarkan hasil data pengukuran drive test maka diperoleh :

 Kualitas jaringan sebelum dilakukan tilting antena adalah kurang baik dengan persentase performansi jaringan RxLev sebesar 81%, RxQual 79 %, dan SQI 86,5%.

 Kualitas jaringan setelah dilakukan tilting antena adalah baik dengan persentase performansi jaringan RxLev sebesar 100%, RxQual 97 %, dan SQI 96,72%.

3. Dari hasil analisis pengukuran, maka yang menyebabkan menurunnya kualitas jaringan adalah tilting antenna. Untuk sector A cell ID PL036A diperoleh tilting antenna sebesar 40 dan sector B cell ID PL036B diperoleh tilting antenna sebesar 30.

5.2 Saran

1. Kegiatan drivetest sebaiknya dilakukan secara reguler dan berkesinambungan untuk secara proaktif mengantisipasi masalah-masalah yang timbul pada jaringan selular sebelum datangnya keluhan dari pelanggan.

2. Pengaturan tilting dan penambahan BTS sebaiknya disesuaikan dengan keberadan user atau pengguna disekitar BTS.

(55)

DAFTAR PUSTAKA

Ericsson.2004.GSM Radio Access-Network System Performance Management

Reference Manual, Ericsson.

Hayat William H, John A. Buck.2006.Elektromagnetika,Edisi Ketujuh, Erlangga.Jakarta

StallingsWlliam.2007.Komunikasi dan Jaringan Nirkabel,Edisi Kedua, Jilid 1. Erlangga.Jakarta.

journal.uii.ac.id/index.php/Snati/article/view/1429/1244 student.eepis-its.edu/~a12ix/data/celullar/(GSM).ppt

www.ittelkom.ac.id/.../index.php?...58%3Aarsitektur...gsm

www.telkomsel.com/web/template/default/id/.../tnc_Telkomsel.pdf

(56)

Lampiran 1.

Initial Tuning Drive Test Report

S ite N a m e M o n th T a rg e t O n A ir C o n fig B S C N a m e

B o s a r G alu g u r J a n ua ri, 2 0 1 0 B P M S 4

S ite ID N E T y p e B a n d N e w S ite ID

P M R 0 3 6 B T S 9 0 0 P M R 0 3 6

L A C C I N e w C o n fig u ra tio n T y p e o f W o rk

3 6 7 4 0 3 6 1, 4 03 6 2 N e w S ite

1 . D R IV E T E S T Q U A L IT Y

A. Statistical Drive Test Before

N o P a ra m e te r T a rg e t R e s u lt P a s s e d (Y /N )

1 R x L e ve l 0 - 85 > = 9 8 % 8 1 .0 0 % N o

2 R x Q u a l 0 - 5 > = 9 7 % 7 9 .0 0% N o

3 S Q I > = 1 8 > = 9 5 % 8 6 .5 0% N o

B. Statistical Drive Test After

N o P a ra m e te r T a rg e t R e s u lt P a s s e d (Y /N )

1 R x L e ve l 0 - 85 > = 9 8 % 1 0 0 .00 % Y e s

2 R x Q u a l 0 - 5 > = 9 7 % 9 7 .0 0% Y e s

(57)

C . D e d ic a te d M o d e , R x L e ve l (P lo t)

Before

9 0 0 B a n d : P e rc e n ta g e R e s u lt ; R X L E V = 8 1 % T a rg e t 9 8 %

After

(58)

D . D e d ic a te d M o d e , R x Q u a l (P lo t)

Before

Percentage Result ; RXQUAL = 79.00% Target 97%

After

(59)

E . D e d ic a te d M o d e , S Q I (P lo t)

Before

Percentage Result ; SQI = 86.50 % Target 95%

After

(60)

2 . R E C O M M E N D E D C H A N G E S T ILT IN G A N T E N N A

A. Changes to antenna system

C e ll ID C h a n g e R e a s o n

P L 4 0 3 6 A D o w n tilt fro m M 0 (0 ) to A d ju s te d T o im p ro v e c o v e ra g e P L 4 0 3 6 B D o w n tilt fro m M 0 (0 ) to A d ju s te d T o im p ro v e c o v e ra g e

B. New Site Final Physical Configuration

C e ll ID L o n g itu d e L a titu d e D ire c tio n (b e a rin g

H e ig h t (m e te r)

T o w e r H e ig h t (m e te r)

T ilt

(d e g re e s ) A n te n n a T y p e

P L 4 0 3 6A 9 9 .2 26 6 4 2 .9 0 19 3 6 0 7 0 7 2 M 4 (4 ) K a th _ 8 0 0 1 0 21 3

(61)

Lampiran 3

Overview Technical Data GSM 900 and DCS 1800

GSM 900 DCS 1800 Rem

Frequencies

MS to BTS = Uplink, lower band BTS to MS = Downlink, upper band Carrier spacing

Guard bands

Channel frequencies lower band Fi (n) = Channel frequencies upper band Fu (n) = Range of channel number n, (=ARFCN) Number of normally available RF channels

890...915 MHz Tolerance normal->extreme conditions

20 W (43dBm)

Reference sensitivity level Hand-Helos Vehicle mounted MS and BTS

-102 dBm -104 dBm

-100 dBm -100 dBm Reference Interference level

C0-channel C/lc Adjacent (200KHz) channel C/Ia 1 Adjacent (400KHz) channel C/Ia 2 Adjacent (600KHz) channel C/Ia 3

9dB

1) Between bottom edge of each subband and first carrier 2) ARFCN = Absolute Radio Frequency Channel Number 3) 1 and 124 resp. 512 and 885 will normally not be used

4) Values givent at the antenna conector of the equipment. For the equipment with integral antenna only,a reference antenna with 0dBi gain is assumed. 5) Values given at the input of the BSS TX combiner antenna with 0 dBi gai is

assumed.

(62)

Output power Mobile station :

The mobile station maximum peak power and lowest power control level shall be according to it class, is defined in the foloowing table (see also GSM 02.06).

Power

Tolerance (dB) for condotions

Lowest power control level DCS 1800 only Normal Extreme

1 Note : The lowest power control level for all classes of GSM 900 MS is 15

The different power steps needed for adaptive power control (see GSM 05.08) shall have the nominal peak power levels as defined in the table below, starting from the lowest power control level up to the maximum level power corresponding to the class of the particular mobile station. Whenever a power control level corresponds to the power class of the MS, the tolerance of ± 2 or 2,5 dB (see above) shall apply.

GSM 900 DCS 1800

Furthanmore the peak power actually transmitted by the MS at each of the power control steps shall form a monotonic sequence, and the interval between power steps shall be 2 ± 1,5 dB.

(63)

Balance between Up-and Downlink

UPLINK MS-transmit band/BS-receive band 890 MHz – 915 MHz Primary band (P-GSN900)

880 MHz – 915 MHz Extension band (E-GSM900) DOWNLINK MS-receive band/BS-transmit band 935 MHz – 960 MHz Primary band (P-GSN900)

925 MHz – 960 MHz Extension band (E-GSM900)

Base Station (BS) Mobile Station (MS)

DOWNLINK

(64)

Lampiran 4

Gambar 1. Penentuan daya sinyal Po mula-mula

Gambar

Gambar 2.1 GSM & GPRS radio interface
Tabel 2.1 Standarisasi frekuensi bands pada GSM
Gambar 2.3 Arsitektur Jaringan GSM
Gambar 2.4. Base Tranceiver Station
+7

Referensi

Dokumen terkait

a. Peraturan perundangan, ketentuan yang harus dipatuhi mengenai hal-hal seperti kondisi kerja umum, perancangan, pemeliharaan, pengawasan, pengujian dan pengoperasian

Rekombinasi spesifik tapak adalah rekombinasi yang selalu terjadi pada tapak-tapak khusus atau pada urut-urutan molekul DNA tertentu (Gardner,1991).Rekombinasi

Penelitian ini bertujuan untuk mengetahui pengaruh Keahlian, Kecermatan Profesional dan Kepatuhan Pada Kode Etik terhadap Kualitas Auditor pada Inspektorat Provinsi

8.4 Hantaran bolaraga daripada seorang pemain kepada pemain yang lain hendaklah dengan menggunakan bahagian kaki (sepakan) dan tinggi melebihi

magang yang berjudul “Evaluasi IT Quality Assurance pada Badan Pendapatan dan Aset Daerah Provinsi Nusa Tenggara Timur” dapat selesai tepat pada waktunya.. Dengan

3) Maupun juga terjadinya tindak kekerasan/penganiayaan baik yang yang dilakukan oleh petugas Lapas terhadap Narapidana, Narapidana terhadap Narapidana lain,

STD-Pregnancy Prevention, Dimensi ketiga dari asertivitas seksual dimana pada dimensi ini ingin mengetahui baik insiatif dan penolakan dalam aktivitas seksual yang

Dari hasil survey diketahui bahwa ada siswa yang tidak berani mengungkapkan pendapatnya di dalam kelas atau hanya sekedar menjawab pertanyaan yang diberikan oleh