• Tidak ada hasil yang ditemukan

BSA for drought QTL identification

N/A
N/A
Protected

Academic year: 2017

Membagikan "BSA for drought QTL identification"

Copied!
8
0
0

Teks penuh

(1)

ContentslistsavailableatSciVerseScienceDirect

Field

Crops

Research

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f c r

Bulk

segregant

analysis:

“An

effective

approach

for

mapping

consistent-effect

drought

grain

yield

QTLs

in

rice”

Prashant

Vikram

a

,

B.P.

Mallikarjuna

Swamy

a

,

Shalabh

Dixit

a

,

Helaluddin

Ahmed

a,1

,

M.T.

Sta

Cruz

a

,

Alok

K.

Singh

b

,

Guoyou

Ye

c

,

Arvind

Kumar

a,∗

aPlantBreedingGenetics&BiotechnologyDivision,InternationalRiceResearchInstitute,DAPOBox7777,MetroManila,Philippines bDepartmentofGeneticsandPlantBreeding,V.B.S.PurvanchalUniversity,Jaunpur,India

cCropResearchInformaticsLaboratory,InternationalRiceResearchInstitute,DAPOBox7777,MetroManila,Philippines

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received26February2012

Receivedinrevisedform30May2012

Accepted30May2012

Keywords:

QTLs

Quantitativetraitloci

Selectivegenotyping

Bulksegregantanalysis

Grainyieldunderdrought

a

b

s

t

r

a

c

t

MappingQTLsforgrainyieldunderdroughtinriceinvolvesphenotypingandgenotypingoflarge map-pingpopulations.Thehugecostincurredingenotypingcould beconsideredasabottleneckinthe process.Wholepopulationgenotyping(WPG),selectivegenotyping(SG),andbulksegregantanalysis (BSA)approacheswereemployedfortheidentificationofmajorgrain-yieldQTLsunderdroughtinricein thepastfewyears.TheefficiencyofdifferentQTLmappingapproachesinidentifyingmajor-effect grain-yieldQTLsunderdroughtinricewascomparedusingphenotypicandgenotypicdataoftworecombinant inbredlinepopulations,Basmati334/SwarnaandN22/MTU1010.Allthreegenotypingapproacheswere efficientinidentifyingconsistent-effectQTLswithanadditiveeffectof10%ormore.Comparative anal-ysisrevealedthatSGandBSArequired63.5%and92.1%fewerdatapoints,respectively,thanWPGin theN22/MTU1010F3:4mappingpopulation.TheBSAapproachsuccessfullydetectedconsistent-effect droughtgrain-yieldQTLsqDTY1.1andqDTY8.1detectedbyWPGandSG.UnlikeSG,BSAdidnotleadtoan

upwardestimationoftheadditiveeffectandphenotypicvariance.Theresultsclearlydemonstratethat BSAisthemostefficientandeffortsavinggenotypingapproachforidentifyingmajorgrainyieldQTLs underdrought.

©2012ElsevierB.V.Allrightsreserved.

1. Introduction

Advancesinmolecularmarkertechnologyhaveenabled fast-trackimprovementofcropplantsinrecentyears.Marker-based approaches,includingmarker-assistedbackcrossingandQTL pyra-miding,havebeenappliedincerealsforimprovingthetolerance ofbioticandabioticstresses(CollardandMackill,2008;Yeand Smith,2010).Droughtisanimportantabioticstresscausinghuge lossesinriceyields.Progressinbreedingricefordrought toler-ancecouldbemademoreefficientbyapplyingmarker-assisted breeding(Bernieretal.,2007).Tounveilthegeneticbasisofa com-plextraitsuchasgrainyieldunderdrought,itisaprerequisiteto

Abbreviations: BSA,bulksegregantanalysis;MAS,marker-assistedselection;

QTLs,quantitativetraitloci;SG,selectivegenotyping;WPG,wholepopulation

geno-typing.

Correspondingauthor.Tel.:+6325805600x2586;fax:+6325805699.

E-mailaddresses:p.vikram@irri.org(P.Vikram),m.swamy@irri.org

(B.P.M.Swamy),s.dixit@cgiar.org(S.Dixit),helaluddinahmed@hotmail.com

(H.Ahmed),m.stacruz@cgiar.org(M.T.S.Cruz),alok6619@gmail.com(A.K.Singh),

G.Ye@cgiar.org(G.Ye),akumar@cgiar.org(A.Kumar).

1 Presentaddress:PlantBreedingDivision,BangladeshRiceResearchInstitute,

Joydebpur,Gazipur1701,Bangladesh.

genotypeandphenotypemappingpopulationsconsistingofalarge numberofindividuals.Thecostsassociatedwithlarge-scale phe-notypingandgenotypingareabottlenecktoconductingastudyon severalpopulationsatanyparticulartimeinidentifyingQTLswith consistenteffectsacrossmultipleenvironmentsandgenetic back-grounds.Withlittlealternativeavailabletophenotypeindifferent seasons/environments,thecostsinvolvedwithgenotypingcould beeffectivelyreducedbysuccessfullyapplyingdifferent genotyp-ingapproaches.

Inamodelcerealcropsuchasrice(Oryzasativa)withagenome sizeof389Mb,itisacommonpracticetouse200–400lines (recom-binantinbredlines,backcrossinbredlines,doubledhaploids)asa mappingpopulation.Adensemapcoveringall12chromosomes withanaveragegeneticdistanceof10–15cMhasbeendeveloped toidentifythepreciseQTLs.InmostoftheQTLmapping experi-ments,thewholegenomeisscanned(Gomezetal.,2010;Lanceras et al.,2004; Xu etal., 2005)toultimately findonly a few sig-nificantmarkersshowingassociationwiththetraitunderstudy. Toreducetheextraburden andcostsassociated with genotyp-ingoflargemappingpopulations,alternativestrategieshavebeen proposed.Atrait-basedgenotypicanalysiscalled“selective geno-typing” (SG)wassuggested byLebowitzet al.(1987),in which progeniesarecategorizedintodistinctclassesbasedonthetrait

0378-4290/$–seefrontmatter©2012ElsevierB.V.Allrightsreserved.

(2)

typinginsteadofthewholepopulation(LanderandBotstein,1989). Thisapproachwasusedformappingmajor-effectdrought grain-yieldQTLqDTY12.1usingonly169(38.7%)linesfromapopulation sizeof436(Bernieretal.,2007);later,thisQTLwasreconfirmed withonly4.5%ofthelinesfromthewholepopulation(Navabietal., 2009).Anothertimeandeffortsavingapproachisbulksegregant analysis(BSA)(Michelmooreetal.,1991).InBSA,DNAofprogenies correspondingtothephenotypicextremesisextractedandpooled. Therefore,onlytwopoolsofextremelinesalongwiththeparents aregenotypedfortheidentificationofmarkerslinkedwiththetrait ofinterest.BSAwasfirstappliedtotheidentificationofmarkers linkedwithdiseaseresistance.Initially,itwasappliedtothe dis-easesinwhichresistancewasmostlygovernedbymajorgenes, usuallyqualitativeinnature(Michelmooreetal.,1991).Recently, BSAhasbeenappliedforquantitativetraitsalsosuchasQTLsfor heattoleranceinrice(Zhangetal.,2009),salttolerancein Egyp-tiancotton(El-Kadietal.,2006),anddroughttoleranceinwheat andmaize(AltinkutandGozukirmizi,2003;Quarrieetal.,1999; Kanagarajetal.,2010;Venuprasadetal.,2009;Vikrametal.,2011), aswellasQTLsforgrainyieldunderdroughtinmaize(Quarrieetal., 1999).BSAhasbeenusedfortheidentificationofQTLsassociated withhighgrainyieldunderdroughtinrice(Venuprasadetal.,2009, 2011;Vikrametal.,2011).

Wholepopulationgenotypinginvolvesmarkersfromallthe12 chromosomessothattheyrepresentwholegenomeandgenetic backgroundistakenintoaccountwhileQTLanalysis.Contrarily, BSAandSG(selectivegenotyping)approachesmaynotconsider all recombination optionsduring QTL identification due tothe unavailabilityofadditionalmarkerdataonthesamechromosome andotherchromosomes.However,theseapproaches havebeen proventobepowerfulenoughtoidentifymajorQTLsthatare wor-thyforMAS(Bernieretal.,2007;Venuprasadetal.,2009;Vikram etal.,2011).BSAandSGmightfailtodetectQTLswithsmaller effectsbecauseonlytheextremeortaillinesareusedfor analy-sis.Also,interactionsbetweendifferentlociareleastlikelytobe detectedthroughtheseapproaches.QTLanalysisthroughBSAor SGapproachesdoesnottakesintoaccountthebackgroundsothat theymighttiltupwardthemagnitudeofphenotypicvariance,LOD (logarithmofodds)score,andadditiveeffects.

Thestudywasundertakentoperformacomparativeanalysisof SGandBSAinidentifyingmajor-effectQTLsforgrainyieldunder droughtandcomparethefluctuationsinphenotypicvariance, addi-tiveeffect,LOD,andlevelofsignificancevaluesobtainedinBSA andSGcomparedwithWPG(wholepopulationgenotyping).WPG, SG,andBSAapproacheswerecomparedinapopulationderived fromatraditionalvariety(Basmati334)andapopularlowlandrice variety(Swarna).Comparativeanalysisoftheseapproachesmight bebiasedifonlyone populationistakeninto account.To vali-datetheresultsandperformacomprehensiveanalysis,phenotypic andgenotypicdataofaricepopulationappliedtoQTLmappingin earlierstudieswereused(Vikrametal.,2011).

2. Materialsandmethods

Thestudywas conductedat theInternationalRice Research Institute(IRRI), LosBa ˜nos,Laguna, Philippines.AnF3:4 Basmati 334/Swarna population was phenotyped for grain yield under droughtandgenotypedthroughWPG,SG,andBSA.Basmati334isa drought-tolerantlocallandracewhereasSwarnaisapopular low-landricecultivarinIndia(Sivaranjanietal.,2010;Verulkaretal., 2010).Thephenotypicandgenotypic dataoftheN22/MTU1010 population were also used for comparison of WPG, SG, and BSA (Vikram et al., 2011). Basmati334/Swarna population was

mentswereshownonJune17,2008whereas,DS2010experiments onDecember9,2009.

2.1. PhenotypingofBasmati334/Swarnapopulation

TheF3:4 Basmati334/SwarnaRILpopulationwasphenotyped forgrainyieldunderdroughtstressaswellasirrigated/non-stress conditions(SupplementaryTable1).Thenumbersof linesused fordroughtscreeningwere204duringWS2008and367during DS2010.The204linesusedinWS2008wereasubsetof367lines thatwerephenotypedinDS2010.Screeningforgrainyieldunder droughtinthelowlandriceecosystemwascarriedoutatIRRIusing astandardphenotypingprotocol(Kumaretal.,2008;Venuprasad etal.,2007).Dataforgrainyield(gm−2convertedtokgha−1),days to50%flowering(DTF),plantheight(PH),biomass(BIO),and har-vestindex(HI)wererecorded.

2.2. GenotypingofBasmati334/Swarnapopulation

LeafsampleswerecollectedfromawholeF4plotofthe non-stressexperimentandbulked.DNAwasextractedbythemodified CTAB(cetyltri-methylammoniumbromide)methodMurrayand Thompson,1980).DNAwasquantifiedon0.8%agarosegeltoadjust theconcentrationto25ng␮L−1.QuantifiedDNAwassubjectedto PCRamplificationwitha15-␮Lreactionmixtureinvolving50ng DNA,1×PCRbuffer,100␮MdNTPs,250␮Mprimers,and1unit Taqpolymeraseenzyme.Eightpercentnon-denaturingPAGEwas usedfortheresolutionofPCRproducts(Sambrooketal.,1989).A parentalpolymorphismsurveybetweenBasmati334andSwarna wascarriedoutwith880simplesequencerepeat(SSR)markers (Temnykhetal.,2001;McCouchetal.,2002;IRGSP,2005). Geno-typingoftheBasmati334/Swarnapopulationof367lineswasdone by71polymorphicSSRmarkersspreadthroughoutthe12 chromo-somesofthericegenome.BSAwasalsodoneforQTLidentification withonly10%ofthelinesfromthepopulation(5%withhighyield and5%withlowyieldunderdroughtstress).Grainyielddatafrom thestresstrialofDS2010wereusedforselectinglinesto consti-tuteBSA.DNAofalltheselectedlineswasquantifiedandbulked inequal quantitytopreparehigh-and low-yieldbulks.DNAof thesetwobulkswasscreenedwith203polymorphicSSR mark-ersalongwithparents–Basmati334andSwarna(Fig.1).Asimilar procedureforBSAintheN22/MTU1010populationwascarriedout (Vikrametal.,2011).Polymorphicmarkersfromallthe12 chromo-someswereselectedatequaldistancesothattheyrepresentwhole genome.SGwascarriedoutwiththesamenumberofmarkersused inWPG.BothRILpulations-Basmati334/SwarnaandN22/MTU1010 presentedinthestudywereanalyzedthroughwholegenomeand BSAboth.

2.3. Statisticalanalysis

Statistical analysis was performed through SASv9.1.3 (SAS InstituteInc.,2004).TheREMLalgorithmofPROCMIXEDofSAS v9.1.3wasusedforthedeterminationofmeanvaluesofentries usingamodelin whichlinesweretreatedasafixedeffectand replicationsandblockswithinreplicationsasrandom.Inbredline mean-basedbroad-senseheritability(H)wascomputedas:

H= Vg

Vg+Ve/r

(3)

Fig.1.BulkedsegregantanalysisstrategyusedforidentifyingQTLsforgrainyieldunderdroughtinrice.

2.4. LinkagemapconstructionandQTLanalysis

AgeneticlinkagemapoftheBasmati334/Swarnapopulation wasconstructedthroughMapdisto softwareusing theKosambi mapfunctionandanLODscoreof3.0asthethreshold(Kosambi, 1944; Lorieux, 2007). All the non-linked markers were placed ontheirrespectivechromosomesbasedonthephysicalposition (IRGSP,2005).Asimilarprocedurewasfollowedbyearlierworkers (Amrawathietal.,2008).QTLnetworksoftwarev2.1wasusedfor mixedmodel-basedcompositeintervalmapping(Yangetal.,2008). Inthisprocedure,candidatemarkerintervalsweredeterminedand selectedintervalswereusedasaco-factorinaone-dimensional genomescan.Thesignificancelevelforthedeterminationof candi-dateintervals,putativeQTLdetection,andQTLeffectswassetata probabilitylevelof0.05.Thethresholdwasdeterminedusing1000 permutations.Forthegenomescan,awindowsizeof10cMand walkspeedof1cMwerefollowed.QTLanalysisresultswere con-firmedwithQGenesoftwaretovalidatethemagnitudesoftheQTLs identifiedthroughthreedifferentstrategies.Phenotypicvariance andLODoftheQTLswereestimatedthroughcompositeinterval mappingusingQGenesoftware(Nelson,1997).ALODvalueof2.5 wasconsideredasthresholdtodeterminesignificanceofQTLs. Sim-ilarthresholdvaluewasusedbecauseallQTLsusedinthisanalysis werefoundsignificantinanalysisthroughQTLnetworksoftware.

2.5. AnalysisforSGandBSA

QTLanalysiswithalessernumberoflinesinbothpopulations wascarried out to workout the efficiency ofSG and BSA. For analysisthroughSG,36.5%ofthelines(10%highestyielding,10% lowestyielding,and16.5%randomlines)wereused(Bernieretal., 2007).ThelinkagemapconstructedusingWPGwasalsousedto locatetheQTLsidentifiedbySGanalysis.QTLanalysisforBSAwas carriedoutwiththreemarkers–RM210,RM223,andRM339– intheBasmati334/Swarnapopulationandwitheightmarkers– RM315,RM431,RM212,RM3825,RM11943,RM12023,RM12091, andRM12146–intheN22/MTU1010population.

ToestimatethesizeofpopulationforQTLanalysisfor grain yieldunderdrought,QTLanalysiswith90%,80%,70%,60%,and

50%populationsizewasperformedinbothpopulations.Forthis purpose,awholepopulationwassortedbasedongrainyieldunder drought.Equalnumbersofindividualswereomittedfrom high-yieldinglines,low-yieldinglines,andlineswithmediumyieldfrom thestresstrialstomakesurethatthelinesselectedwererandom anddistributionremainednormal.

3. Results

TheresultsofQTLidentificationforgrainyield,daysto50% flow-ering,plantheight,andharvestindexunderdroughtbyWPGin theBasmati334/SwarnaandN22/MTU1010populationsare pre-sentedinSupplementaryTables2and3.QTLsforgrainyieldunder droughtidentifiedthroughWPG,SG,andBSAinbothpopulations arepresentedinTable1.

3.1. QTLsidentifiedforgrainyieldunderdroughtwithWPG

Aconsistent-effectQTL(qDTY8.1)forgrainyieldunderdrought locatedbetweenthemarkerintervalsRM339andRM210on chro-mosome8wasdetectedintheBasmati334/Swarnapopulation. ThisQTLexplained phenotypicvariance(R2)of15.6% and7.1%, withanadditiveeffect(additiveeffectaspercentoftrialmean) of16.8%and22.6%,duringWS2008(wetseason2008)andDS2010 (dryseason2010),respectively(Table1).TwoQTLs,qDTY1.1 and qDTY10.1,werefoundsignificantforgrainyieldunderdroughtin theN22/MTU1010population.qDTY1.1explainedphenotypic vari-anceof11.9%and4.5%,withanadditiveeffectof18.1%and10.0% duringDS2009andDS2010,respectively.qDTY10.1explained phe-notypicvarianceof5.2%and3.2%andanadditiveeffectof13.2% and12.6%duringDS2009andDS2010,respectively(Table1).

3.2. QTLsidentifiedforgrainyieldunderdroughtwithSG

[image:3.612.111.497.56.302.2]
(4)

Population Approach Season QTL Chr. Peakinterval F-value AE(%) LOD R

Basmati334/Swarna

WPG WS2008 qDTY8.1 8 RM339–RM210 14.1 −16.8b 7.1 15.6

DS2010 15.4 −22.6 5.1 7.1

SG WS2008 qDTY8.1 8 RM339–RM210 10.7 −25.4 4.3 21.9

DS2010 15.8 −39.8 5.6 16.5

BSA WS2008 qDTY8.1 8 RM223–RM210 9.5 −12.2 2.2 4.9

DS2010 21.1 −20.8 4.7 5.8

N22/MTU1010

WPG DS2009 qDTY1.1 1 RM11943–RM12091 36.7 18.1 9.3 11.9

DS2010 18.5 10.0 3.6 4.5

WPG DS2009 qDTY10.1 10 RM216–RM304 19.9 −13.2 3.9 5.2

DS2010 15.7 −12.6 2.6 3.2

SG DS2009 qDTY1.1 1 RM11943–RM431 22.8 28.8 5.6 17.7

DS2010 15.3 10.3 3.9 12.9

SG DS2009 qDTY1.1a 1 RM12091–RM12146 – – – –

DS2010 16.1 10.8 2.8 9.4

BSA DS2009 qDTY1.1 1 RM11943–RM431 34.7 18.3 9.3 11.9

DS2010 13.9 10.1 3.6 4.5

aPeakinterval,peakoftheQTLintervalwasbetweenthesemarkerintervals.R2,phenotypicvarianceexplainedbytheQTL.

b NegativesignindicatesthatallelecontributionisfromsusceptibleparentSwarna.

c AE%(additiveeffect%),additiveeffectasthepercentageoftrialmean[additiveeffect/trialmean×100].

during DS2009 and DS2010, respectively. Additive effects con-tributed by qDTY1.1 were 28.8% and 10.3% during DS2009 and DS2010,respectively.

3.3. QTLsidentifiedforgrainyieldunderdroughtwithBSA

qDTY8.1 in Basmati334/Swarnaand qDTY1.1 in N22/MTU1010

weredetectedbyBSA.RM210wasidentifiedtobeassociatedwith grainyieldunderdroughtintheBasmati334/Swarnapopulation viaBSA.Threemarkerswererunonthewholepopulationtodetect

qDTY8.1.It explained phenotypicvariance of 4.9% and 5.8% and

additiveeffectsof12.2%and20.8%duringWS2008andDS2010, respectively(Table1).InthecaseofqDTY1.1,RM315andRM431 weredetectedaslinkedmarkersforgrainyieldunderdroughtinthe N22/MTU1010population.Eightpolymorphicmarkerswererun onthewholepopulationtodetermineQTLboundaries(Fig.1).The phenotypicvarianceexplainedbyqDTY1.1inDS2009andDS2010 was11.9%and4.5%,respectively.AdditiveeffectsinDS2009and DS2010were18.3%and10.1%,respectively(Table1).

3.4. MagnitudeandefficiencyofQTLsindifferentgenotyping approaches

All three approaches successfully detected two consistent-effect QTLs, qDTY8.1 and qDTY1.1, in Basmati334/Swarna and N22/MTU1010populations,respectively(Table1).qDTY10.1,which wasfoundintheN22/MTU1010population,wasdetectedonlyin WPG.The F-valueofqDTY8.1 waslesserin WS2008and greater inDS2010inSGincomparisonwithWPG.Theadditiveeffectof qDTY8.1 washighestinSG,followedbyWPGandBSAinWS2008 andDS2010.TheLODvaluewashighestinWPGandSGinWS2008 andDS2010,respectively.Thephenotypicvariancewashighestin SG,followedbyWPGandBSAinWS2008andDS2010,respectively (Table1).ComparativeanalysisoftheparametersofqDTY1.1reveals thattheF-valueislowerinSGthaninWPG(Table1).Theadditive effectinSGwashighest,followedbyBSAandWPGinDS2009as wellasDS2010(Table1).Itisnotablethattheadditiveeffectwas leastinWPGinbothyears.TheLODvalueofqDTY1.1wasthesame inWPGandBSAinDS2009andDS2010.ButLODestimatedbySG waslowerduringDS2009and higherinDS2010thanLOD esti-matedwithWPGandBSA.ThephenotypicvarianceofqDTY1.1was thesameinWPGandBSA,whereasitwasgreaterinSGinDS2009 andDS2010(Table1).

3.5. QTLeffectanalysiswithdifferentpopulationsizes

QTLanalysisforgrainyieldunderdroughtwascarriedoutwith differentpopulationsizes.qDTY1.1identifiedwithphenotypicdata (underdroughtstress)ofDS2009withanoriginalpopulationsize of362wasalsosuccessfullydetectedinalesserpopulationsizeof 218lines.ThesameQTLwasdetectedwithphenotypicdata(under droughtstress)ofDS2010intheoriginalpopulationbutfailedtobe detectedinareducedpopulationsize(Table2).Asimilartrendwas observedforqDTY8.1intheBasmati334/Swarnapopulationduring DS2008.Additiveeffectdecreasedwithadecreaseinpopulation size.ThetrendinDS2010forthisQTLwassimilarforadecrease inpopulationsizeupto30%,but thereafterit becameconstant uptoa50%decreaseinpopulationsizeandthendecreasedagain (Table2).TheadditiveeffectofqDTY10.1didnotshowanypattern withrespecttopopulationsize.

4. Discussion

[image:4.612.33.554.73.230.2]
(5)

Table2

ComparativeanalysisofQTLeffectsindifferentpopulationsizeswithadecreaseinpopulationsize.

Population QTL Populationsize Year F-value AE(%)a P-value AE%in100%populationsize

Basmati334/Swarna qDTY8.1

183(∼90%) WS2008 26.7 −15.8 <0.001 −16.8

331(∼90%) DS2010 24.1 −23.2 <0.001 −22.6

162(∼80%) WS2008 28.6 −15.6 <0.001 −16.8

295(∼80%) DS2010 18.0 −17.2 <0.001 −22.6

141(∼70%) WS2008 27.7 −14.9 <0.001 −16.8

259(∼70%) DS2010 17.1 −16.9 <0.001 −22.6

120(∼60%) WS2008 17.1 −11.3 <0.001 −16.8

223(∼60%) DS2010 11.5 −17.1 <0.001 −22.6

99(∼50%) WS2008 13.4 −11.0 <0.001 −16.8

187(∼50%) DS2010 11.4 −17.1 <0.001 −22.6

78(∼40%) WS2008 8.2 −9.5 0.004 −16.8

151(∼40%) DS2010 8.8 −15.7 <0.001 −22.6

N22/MTU1010

qDTY1.1

326(∼90%) DS2009 27.9 14.1 <0.001 18.1

DS2010 12.9 8.7 <0.001 10.0

290(∼80%) DS2009 17.2 11.0 <0.001 18.1

DS2010 – – – 10.0

254(∼70%) DS2009 14.3 9.9 <0.001 18.1

DS2010 – – – 10.0

218(∼60%) DS2009 9.8 7.7 0.002 18.1

DS2010 – – – 10.0

182(∼50%) DS2009 – – – 18.1

DS2010 – – – 10.0

qDTY10.1

326(∼90%) DS2009 16.6 −10.7 <0.001 −13.2

DS2010 – – – −12.6

290(∼80%) DS2009 17.2 −9.7 <0.001 −13.2

DS2010 – – – −12.6

254(∼70%) DS2009 8.5 −9.9 <0.001 −13.2

DS2010 8.4 −2.5 0.003 −12.6

218(∼60%) DS2009 – – – −13.2

DS2010 10.2 −10.0 0.002 −12.6

182(∼50%) DS2009 9.3 −8.4 0.002 −13.2

DS2010 – – – −12.6

aAE%(additiveeffect%),additiveeffectasthepercentageoftrialmeancalculatedas“Additiveeffect/trialmean×100′′

.

genotypingapproaches,WPG,SG,andBSA,werecomparedfortheir efficiencyinidentifyingconsistent-effectQTLsforgrainyieldunder drought.

4.1. QTLidentificationusingWPG,SG,andBSA

qDTY8.1wasdetectedintheBasmati334/Swarnapopulationby WPG.The increasedyield atthe qDTY8.1 locus wascontributed fromthesusceptibleparentSwarna.Contributionsofthepositive QTLallelefromadrought-susceptibleparentwerealsoreported (Bernieretal.,2007;Kumaretal.,2007).ThepositiveQTLallelefor major-effectdroughtgrainyieldQTLqDTY12.1wascontributedby susceptibleparentWayRarem(Bernieretal.,2007).Asusceptible parent(CT9993)wasfoundtoincreasethegrainyieldoftolerant parentIR62266(Kumaretal.,2007).qDTY1.1wasalsodetected suc-cessfullythroughWPGintheN22/MTU1010population(Table1). QTLmappinginlargepopulationsthroughWPGinvolveshighcost, muchtime,andmuchlabor(Kanagarajetal.,2010).SGhasbeen reportedasanalternativestrategyintheidentificationofQTLswith majoreffects(DarvasiandSoller,1992;LanderandBotstein,1989; Bernieretal.,2007).ThesimulationofQTLmappingwithdifferent populationsizesdemonstratedthatQTLsexplaining15%ormoreof thephenotypicvarianceforpopulationsizecouldbedetectedusing 30outof500lineswithapowerof0.8(Navabietal.,2009).Inour study,theconsistent-effectQTLsqDTY1.1 andqDTY8.1 explaining upto11.9%and15.6%ofthephenotypicvarianceweresuccessfully detectedthroughSGof36.5%ofthelines(Table1).Shashidharetal. (2005)firstappliedBSAfortheidentificationofQTLsforgrainyield underdroughtinrice.Large-effectQTLqDTY3.1forgrainyieldunder droughtwasalsodetectedbyBSA(Venuprasadetal.,2009).Inour study,qDTY8.1andqDTY1.1weresuccessfullydetectedthroughBSA (Table1;Fig.1).BSAhasbeenreviewedasasuitablestrategyfor highlyheritabletraitsthatfollowMendelianinheritance(Tuberosa

etal.,2002).However,ithasalsobeenappliedintheidentification ofQTLsfortraitshavinglowheritability(Grattapagliaetal.,1996). Evenfortraitssuchasgrainyieldunderdroughtwithmoderateto highheritability,BSAcanbeusedtoidentifythemajor-effectQTLs (Venuprasadetal.,2009).

4.2. ComparativeanalysisofWPG,SG,andBSA

ComparativeanalysisoftheparametersofqDTY8.1andqDTY1.1 clearlyindicatesthattheestimatedadditiveeffectwashigherinSG thaninWPG(Table1).PhenotypicvarianceofqDTY8.1andqDTY1.1 wasalsohighestinSGamongallthreeapproaches(Table1). Over-estimationofthephenotypicvarianceintheSGapproachwasalso reported(Valesetal.,2005).qDTY8.1andqDTY1.1wereidentifiedat higherF-valueswithWPGthanwithSGexceptinDS2010inthe Basmati334/Swarnapopulation(Table1).Suchoverestimationof theadditiveeffectinSGisduetotheuseofaselectednumberof genotypes(Collardetal.,2005).Forconsistent-effectQTLsforgrain yieldunderdrought,WPGwascomparablewiththeBSAapproach. PhenotypicvarianceofqDTY8.1waslessinBSAthaninWPG.Onthe otherhand,thisvaluewasthesameforqDTY1.1(Table1).Forboth qDTY8.1andqDTY1.1,theadditiveeffectunderBSAwassimilarto thatunderWPGbutlowerthanthatunderSG(Table1).

[image:5.612.43.566.73.371.2]
(6)

underdrought,covariateanalysiswascarriedouttopredictthe meangrainyieldafterkeepingdaysto50%floweringasacovariate. Singlemarkeranalysiswascarriedoutwiththepredictedmean grainyieldunderdroughtanditwasfoundtobenon-significant (datanotpresented).ThisanalysisconfirmsthatqDTY10.1is not atrueQTLforgrainyieldunderdroughtandtheadditiveeffect contributedbythisQTLisduetoearlinessratherthantoleranceof drought.

PreciseapplicationofSGandBSAdependsontheproper clas-sificationofindividuals intodistinctgroups thatroughlyreflect thegenotypesoftargetQTLs(QTLstobeidentified).Thiswillbe moreeffectiveifphenotypeisagoodindicatoroftheQTL geno-type.Genetically,theeffectofthetargetQTLmustbesolargethat thecollectiveeffectsofotherQTLsandtheirinteractionswiththe targetQTLdonotresultinsignificantdistortionofthe relation-shipbetweentheQTLgenotypeandthephenotypicperformance. QTLstudiessuggestthatamajorQTLismorelikelytobepresent inthepopulationsderivedfromcontrastingparents,implyingthat SGandBSAwillbemoresuccessfulwhenappliedtosuch popula-tions(Bernieretal.,2007;Venuprasadetal.,2009;Semagnetal., 2010).

4.3. Effectofpopulationsizeintheidentificationof consistent-effectdroughtQTLs

Thesizeofthemappingpopulationtobeusedforthe detec-tionofdroughtyieldQTLsisanimportantfactorforconcluding whetherSGandBSAareadvantageousoverWPG.Increasingthe initialpopulationsizeandreducingtheselectionproportionwill increasethedifferencebetweenthetwoextremegroupsandasa resultimprovedetectionpower.Themostextremegenotypesare thosethatcontaindesirableQTLallelesandoccurinlow frequen-ciesinthemappingpopulation.Populationsizesusedformapping droughtyieldQTLs(qDTY1.1,qDTY8.1,andqDTY10.1)wereplotted againsttheiradditiveeffects (Fig.2).qDTY1.1,which showedan 18.1%additiveeffectwithpopulationsizeof362,wasdetectedwith aslowasa218populationsize.ThisQTLshoweda10%additive effectwithpopulationsizeof362withphenotypicdataofDS2010 and could not bedetected with a populationsize of less than 326(Table2).qDTY8.1 showed15.8%and23.2%additiveeffectin WS2008andDS2010,respectively,andwassignificantlydetected using40%of thepopulationsizesin respectiveyears(Table2). Theseresultsrevealtheimportanceofalargepopulationsizein mappingdroughtyieldQTLs.Severalstudiesconductedinpastfor droughtrelatedtraitswithpopulationsizeslessthan250(Babu etal.,2003;Lancerasetal.,2004)couldnotidentifyadroughtgrain yieldQTLwiththeeffect,largeenoughtodeployinMAS.Onthe otherhand,mostofthestudieswhichidentifiedlargeand consis-tenteffectQTLsinvolvedpopulationswithmorethan300inbred lines(Bernieretal.,2007;Venuprasadetal.,2009;Vikrametal., 2011).Basedontheresultsofpresentstudyandpreviousreports itcouldbeconcludedthatapopulationsizeof300–350 recombi-nantinbredlinesisgoodenoughtomapmajorQTLsforgrainyield underdrought.

4.4. BSA:aneffectiveapproachforgrainyieldunderdrought

BSAisapowerful,effort-saving,andcost-effectiveapproachfor detectingconsistent-effectQTLs,evenfortraitsshowingcontinual distributionsuchasgrainyieldunderdrought.QTLmappingusing BSAledtotheidentificationofseveralconsistent-effectQTLsfor grainyieldunderdroughtatIRRI(Table3).Thereareafewsamples tobegenotyped,whichinturnreducesthenumberofdatapoints (SupplementaryTable4).LinkedmarkersidentifiedviaBSAcanbe

Fig.2. Graphshowingvariationinadditiveeffectsagainstpopulationsizes.Y-axis

correspondstotheadditiveeffects(AE%,additiveeffectsaspercentageoftrialmean)

andX-axispopulationsize.(A)qDTY1.1;(B)qDTY8.1and(C)qDTY10.1.

confirmedbygenotypingoftaillinesthatarealsousedformaking DNApools(Kanagarajetal.,2010).TheBSAapproachcompared withWPGprovidesopportunitiestogenotypemultiplepopulations asrevealedbythenumberofdatapointsgeneratedinBSAandWPG inourstudywiththeN22/MTU1010population(Supplementary Table4).Forlarge-effectQTLs,itmightbemoreimportanttotest theireffectsinmultiplebackgrounds.SeveralQTLsforgrainyield underdroughtwereidentifiedinthreeN22-derivedpopulations simultaneouslybecauseoftheeaseofapplicationandeffectiveness (Vikrametal.,2011).

TheprecisionandQTLdetectionpowerofBSAcanbeincreased byrepeatingitwithbulkshavingalargenumberofsamplesinthe secondstage.Alternatively,fourDNAbulkscouldbeusedinsteadof justtwoforeachphenotypicextremeconsistingofthefirstand sec-ond5%mosttolerantandsusceptiblelinestoreducefalse-positive bands(Xuetal.,2000).InBSA,onlyafewmarkerswereusedforQTL analysissothattherewaslittleoptiontocontrolthebackground effectsofothersegregatingQTLsusingacofactor.Dependingupon themagnitudeanddirectionoftheeffectofbackgroundQTLs,the effectofthetargetQTLmightbeover-orunder-estimated com-pared toconventional WPG. Therefore, BSA hasa limitation in determiningtheepistaticinteractionsfortheQTLs.Itisadvisable toincludeafewmarkersperchromosomesothatthebackground effectcanbepartiallyremoved.

[image:6.612.311.546.53.377.2]
(7)

Table3

MajorQTLsforgrainyieldunderdroughtinriceidentifiedandvalidatedindifferentpopulationsatIRRIviaBSA.

Population QTL PV/GV(%) Reference

N22/Swarna qDTY1.1 14.3 Vikrametal.(2011)

N22/IR64 qDTY1.1 19.3 Vikrametal.(2011)

N22/MTU1010 qDTY1.1 13.4 Vikrametal.(2011)

Dhagaddeshi/Swarna qDTY1.1 32.0 Ghimireetal.(2012)

Dhagaddeshi/IR64 qDTY1.1 9.3 Ghimireetal.(2012)

Apo/Swarna

qDTY2.1a 16.0 Venuprasadetal.(2009)

qDTY3.1a 31.0 Venuprasadetal.(2009)

qDTY6.1a 66.0 Venuprasadetal.(2011)

Apo/IR72 qDTY6.1a 63.0 Venuprasadetal.(2011)

Vandana/IR72 qDTY6.1a 40.0 Venuprasadetal.(2011)

Basmati334/Swarna qDTY8.1 15.6 IRRI(unpublished)

IR77298-5-6-18/Sabitri qDTY3.2 10.5 IRRI(unpublished)

PV,phenotypicvariance;GV,genotypicvariance.

aQTLsexplainedonthebasisofgenotypicvariances.

ofinterest.Thisincreasestheprobabilityof identifyingmarkers thatarequiteclosertothetargetQTLwithminimumunwanted linkages. SeveralSNP genotypingplatforms have recentlybeen developed in rice (Affymetrix, Illumina, perlegen) and can be successfullyusedforQTLidentificationstudies.InadditiontoQTL mapping,BSAhasbeenappliedtotranscriptomicsinrecentyears (Panditetal.,2010;Kadametal.,2012).

5. Conclusions

Identifyinggenomicregionsassociatedwithdroughtrequires phenotyping and genotyping of large mapping populations. Resourcesincludingtime,effortandcostinvolvedingenotyping thelargemappingpopulationsisabottleneckintheidentification ofdroughtgrainyieldQTLs.Thethreemappingstrategies,WPG,SG, andBSA,werecomparedwithrespecttotheQTLeffects.SG over-estimatedQTLeffectscomparedwithWPG.BSAwasfoundtobean effectiveapproachintheidentificationofconsistent-effectdrought grainyieldQTLs.AQTLforgrainyieldunderdroughtwasidentified inaBasmati334/SwarnapopulationthroughBSAonchromosome 8(qDTY8.1).BSAcanbeappliedinmultiplericepopulations simul-taneouslytoidentifyconsistent-effectdrought grainyield QTLs worthyforMAS.

Acknowledgments

TheauthorsthanktheGenerationChallengeProgramfor provid-ingfinancialsupportforthisstudy.Theauthorsalsoacknowledge the technical support received from Marilyn Del Valle, Lenie Quiatchon,JocelynGuevarra,andPaulMaturaninthecompletion ofthisstudy.Experimentsconductedinourstudycomplywiththe currentlawsofthePhilippines.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fcr.2012.05.012.

References

Altinkut,A.,Gozukirmizi,N.,2003.Searchformicrosatellitesassociatedwithwater

stresstoleranceinwheatthroughbulkedsegregantanalysis.Mol.Biotechnol.

23,97–106.

Amrawathi,Y.,Singh,R.,Singh,A.K.,Singh,V.P.,Mohapatra,T.,Sharma,T.R.,Singh,

N.K.,2008.Mappingofquantitativetraitlociforbasmatiqualitytraitsinrice

(OryzasativaL.).Mol.Breeding21,49–65.

Babu, R.C.,Nguyen,B.D., Chamarerk,V., Shanmugasundaram, P., Chezhian,P.,

Jeyaprakash,P.,Ganesh,S.K.,Palchamy,A.,Sadasivam,S.,Sarkarung,S.,Wade,

L.J.,Nguyen,H.T.,2003.Geneticanalysisofdroughtresistanceinriceby

molec-ularmarkers:associationbetweensecondarytraitsandfieldperformance.Crop

Sci.43,1457–1469.

Becker, A., Chao, D.Y., Zhang, X., Salt, D.E., Baxter, I., 2011. Bulk

segregant analysis using SNP microarrays. PLoS One 6, e15993,

http://dx.doi.org/10.1371/journal.pone.0015993.

Bernier,J.,Kumar,A.,Venuprasad,R.,Spaner,D.,Atlin,G.N.,2007.Alarge-effectQTL

forgrainyieldunderreproductive-stagedroughtstressinuplandrice.CropSci.

47,507–516.

Collard,B.C.Y.,Jahufer,M.Z.Z.,Brouwer,J.B.,Pang,E.C.K.,2005.Anintroductionto

markers,quantitativetraitloci(QTL)mappingandmarkerassistedselectionfor

cropimprovement:thebasicconcepts.Euphytica142,169–196.

Collard,B.C.Y.,Mackill,D.J.,2008.Marker-assistedselection:anapproachfor

pre-cisionplantbreedinginthetwentyfirstcentury.Philos.Trans.Roy.Soc.B363,

557–572.

Darvasi,A.,Soller,M.,1992.Selectivegenotypingfordeterminationoflinkage

betweenamarkerlocusandaquantitativetraitlocus.Theor.Appl.Genet.85,

353–359.

El-Kadi,D.A.,Afiah,S.A.,Aly,M.A.,Badran,A.E.,2006.Bulkedsegregantanalysis

todevelopmolecularmarkersforsalttoleranceinEgyptiancotton.Arab.J.

Biotechnol.9,129–142.

Ghimire,K.H.,Quiatchon,L.A.,Vikram,P.,Swamy,B.P.M.,Dixit,S.,Ahmed,H.U.,

Her-nandez,J.E.,Borromeo,T.H.,Kumar,A.,2012.Identificationandmappingofa

QTL(qDTY1.1)withaconsistenteffectongrainyieldunderdrought.FeildCrops

Res.131,88–96.

Gomez,S.M.,Boopathi, N.M.,Kumar,S.S.,Ramasubramanian,T.,Chengsong,Z.,

Jeyaprakash,P.,Senthil,A.,Babu,R.C.,2010.Molecularmappingandlocation

ofQTLsfordrought-resistancetraitsinindicarice(OryzasativaL.)linesadapted

totargetenvironments.ActaPhysiol.Plant32,355–364.

Grattapaglia,D.,Bertolucci,F.L.G.,Sederoff,R.,1996.Geneticmappingofquantitative

traitlocicontrollinggrowthandwoodqualitytraitsinEucalyptusgrandisusing

amaterialhalf-sibfamilyandRAPDmarkers.Genetics,1205–1214.

IRGSP: International Rice Genome SequencingProject, 2005. Themap-based

sequenceofthericegenome.Nature436,793–800.

Kadam, S., Singh, K., Shukla, S.,Goel, S., Vikram, P., Pawar, V., Gaikwad,K.,

Chopra, R.K., Singh, N.K., 2012. Genomic associations for drought

toler-anceonthe shortarm ofwheatchromosome4B.Func. Integr.Genomic.,

http://dx.doi.org/10.1007/s10142-012-0276-1.

Kanagaraj,P.,Prince,K.S.J.,Sheeba,J.A.,Biji,K.R.,Paul,S.B.,Senthil,A.,Babu,R.C.,

2010.Microsatellitemarkerslinkedtodroughtresistanceinrice(Oryzasativa

L.).Curr.Sci.98,836–839.

Kosambi,D.D.,1944.Theestimationofamapdistancefromrecombinationvalues.

Ann.Eugenics12,172–175.

Kumar,R.,Venuprasad,R.,Atlin,G.N.,2007.Geneticanalysisofrainfedlowlandrice

droughttoleranceundernaturally-occurringstressineasternIndia:heritability

andQTLeffects.FieldCropsRes.103,42–52.

Kumar,A.,Bernier,J.,Verulkar,S.,Lafitte,H.R.,Atlin,G.N.,2008.Breedingfordrought

tolerance:directselectionforyield,responsetoselectionanduseof

drought-tolerantdonorsinuplandandlowland-adaptedpopulations.FieldCropsRes.

107,221–231.

Lanceras,J.C.,Pantuwan,G.,Jongdee,B.,Toojinda,T.,2004.Quantitativetraitloci

associatedwithdroughttoleranceatreproductivestageinrice.PlantPhysiol.

135,384–399.

Lander,E.S.,Botstein,D.,1989.MappingMendelianfactorsunderlyingquantitative

traitsusingRFLPlinkagemaps.Genetics121,185–199.

Lebowitz,R.J.,Soller,M.,Beckmann,J.S.,1987.Trait-basedanalysesforthedetection

oflinkagebetweenmarkerlociandquantitativetraitlociincrossesbetween

inbredlines.Theor.Appl.Genet.73,556–562.

Lorieux,M.,2007.MapDisto,afreeuser-friendlyprogramforcomputinggenetic

maps.In:ComputerDemonstrationGivenatthePlantandAnimalGenomeXV

Conference,Jan13–17,SanDiego,CA,p.958,http://mapdisto.free.fr.

McCouch,S.R.,Teytelman,L.,Xu,Y.,Lobos,K.B.,Clare,K.,Walton,M.,Fu,B.,

Maghi-rang,R.,Li,Z.,Xing,Y.,Zhang,Q.,Kono,I.,Yano,M.,Fjellstrom,R.,DeClerck,

G.,Schneider,D.,Cartinhour,S.,Ware,D.,Stein,L.,2002.Developmentand

mappingof2240newSSRmarkersfor rice(Oryzasativa L.).DNARes.9,

[image:7.612.41.568.74.196.2]
(8)

Acad.Sci.USA88,9828–9832.

Murray,M.G.,Thompson,W.F.,1980.Rapidisolationofhighmolecularweightplant

DNA.NucleicAcidsRes.8,4321–4326.

Navabi,A.,Mather,D.E.,Bernier,J.,Spaner,D.M.,Atlin,G.N.,2009.QTLdetection

withbidirectionalandunidirectionalselectivegenotyping:marker-basedand

trait-basedanalyses.Theor.Appl.Genet.118,347–358.

Nelson,J.C.,1997.QGENE:softwareformarker-basedgenomicanalysisand

breed-ing.Mol.Breeding3,239–245.

Pandit,A.,Rai,V.,Bal,S.,Sinha,S.,Kumar,V.,Chauhan,M.,Gautam,R.K.,Singh,R.,

Sharma,P.C.,Singh,A.K.,Gaikwad,K.,Sharma,T.R.,Mohapatra,T.,Singh,N.K.,

2010.CombiningQTLmappingandtranscriptomeprofilingofbulkedRILsfor

identificationoffunctionalpolymorphismforsalttolerancegenesinrice(Oryza

sativaL.).Mol.Genet.Genomics284,121–136.

Quarrie,S.,Lazic-jancic,V.,Kovacevic,D.,Steed,A.,Pekic,S.,1999.Bulksegregant

analysiswithmolecularmarkersanditsuseforimprovingdroughtresistance

inmaize.J.Exp.Bot.50,1299–1306.

Sambrook,J.,Fritsch,E.F.,Maniatis,T.,1989.MolecularCloning:aLaboratoryManual,

2nded.ColdSpringHarbor,NewYork.

SASInstituteInc.,2004.SASOnlineDoc9.1.3.SASInstituteInc.,Cary,NC.

Semagn,K.,Bjørnstad,A.,Xu,Y.,2010.Thegeneticdissectionofquantitativetraits

incrops.Electron.J.Biotechnol.13,1–45.

Shashidhar,H.E.,Vinod,M.S.,Sudhir,N.,Sharma,G.V.,Krishnamurthy,K.,2005.

Markerslinkedtograinyieldusingbulkedsegregantanalysisapproachinrice

(OryzasativaL.).RiceGenet.Newsl.22,69–71.

Sivaranjani,A.K.P.,Pandey,M.K.,Sudharshan,I.,Kumar,G.R.,SheshuMadhav,M.,

Sundaram,R.M.,Varaprasad,G.S.,Shobharani,N.,2010.Assessmentofgenetic

diversityamongbasmatiandnon-basmatiaromaticricesofIndiausingSSR

markers.Curr.Sci.99,221–226.

Swamy,B.P.M.,Vikram,P.,Dixit,S.,Ahmed,H.U.,Kumar,A.,2011.Meta-analysisof

grainyieldQTLidentifiedduringagriculturaldroughtingrassesshowed

con-sensus.BMCGenomics12,319.

Swamy,B.P.M.,Kumar,A.,2011.Sustainablericeyieldinwatershortdroughtprone

environments:conventionalandmolecularapproaches.In:TeangShui,Lee(Ed.),

IrrigationSystemsandPracticesinChallengingEnvironments.InTech,Croatia,

pp.149–168.

Temnykh,S.,Declerck,G.,Lukashova,A.,Lipovich,L.,Cartinhour,S.,McCouch,S.,

2001.Computationalandexperimentalanalysisofmicrosatellitesinrice(Oryza

sativaL.):frequency,lengthvariation,transposonassociations,andgenetic

markerpotential.GenomeRes.11,1441–1452.

Tuberosa, R., Salvi, S., Sanguineti, M.C., Landi, P., Maccaferri, M., Conti, S.,

2002.MappingQTLsregulatingmorpho-physiologicaltraitsandyield:case

C.C.,Richardson,K.L.,Sandoval-Islas,J.S.,Utz,H.F.,Hayes,P.M.,2005.Effectof

populationsizeonestimationofQTL:atestusingresistancetobarleystriperust.

Theor.Appl.Genet.111,1260–1270.

Venuprasad,R.,Bool,M.E.,Quiatchon,L.,StaCruz,M.T.,Amante,M.,Atlin,G.N.,

2011.Alarge-effectQTLforricegrainyieldunderuplanddroughtstresson

chromosome1.Mol.Breeding,http://dx.doi.org/10.1007/s11032-011-9642-2.

Venuprasad,R.,Dalid,C.O.,DelValle,M.,Zhao,D.,Espiritu,M.,StaCruz,M.T.,Amante,

M.,Kumar,A.,Atlin,G.N.,2009.Indentificationandcharacterizationof

large-effectquantitativetraitlociforgrainyieldunderlowlanddroughtstressinrice

usingbulk-segregantanalysis.Theor.Appl.Genet.120,177–190.

Venuprasad,R.,Lafitte,H.R.,Atlin,G.N.,2007.Responsetodirectselectionforgrain

yieldunderdroughtstressinrice.CropSci.47,285–293.

Verulkar,S.B.,Mandal,N.P.,Dwivedi,J.L.,Singh,B.N.,Sinha,P.K.,Mahato,R.N.,Swain,

P.,Dongre,P.,Payasi,D.,Singh,O.N.,Bose,L.K.,Robin,S.,Babu,R.C.,Senthil,

S.,Jain,A.,Shashidhar,H.E.,Hittalmani,S.,VeraCruz,C.,Paris,T.,Hijmans,R.,

Raman,A.,Haefele,S.,Serraj,R.,Atlin,G.,Kumar,A.,2010.Breedingresilient

andproductivericegenotypesadaptedtodrought-pronerainfedecosystemsof

India.FieldCropsRes.117,197–208.

Vikram,P.,Swamy,B.P.M.,Dixit,S.,StaCruz,M.T.,Ahmed,H.U.,Singh,A.K.,Kumar,

A.,2011.qDTY1.1,amajorQTLforricegrainyieldunderreproductive-stage

droughtstresswithaconsistenteffectinmultipleelitegeneticbackgrounds.

BMCGenetics12,89.

Vikram,P.,Kumar,A.,Singh,A.K.,Singh,N.K.,2012.Rice:genomics-assistedbreeding

fordroughttolerance.In:Tuteja,N.,Gill,S.S.,Tiburico,A.F.,Tuteja,R.(Eds.),

ImprovingCropResistancetoAbioticStress.Wiley-VCHVerlagGmbH&Co.

KGaA,Germany,pp.715–731.

Xu,J.L.,Lafitte,H.R.,Gao,Y.M.,Fu,B.Y.,Torres,R.,Li,Z.K.,2005.QTLsfordrought

escapeandtoleranceidentifiedinasetofrandomintrogressionlinesofrice.

Theor.Appl.Genet.111,1642–1650.

Xu,K.,Xu,X.,Ronald,P.C.,Mackill,D.J.,2000.Ahigh-resolutionlinkagemapofthe

vicinityofthericesubmergencetolerancelocusSub1.Theor.Appl.Genet.263,

681–689.

Yang,J.,Hu,C.C.,Hu,H.,Yu,R.,Xia,Z.,Ye,X.,Zhu,J.,2008.QTLnetwork:mappingand

visualizinggeneticarchitectureofcomplextraitsinexperimentalpopulations.

Bioinformatics24,721–723.

Ye, G., Smith, K.F., 2010. Marker-assisted gene pyramiding for cultivar

development. Plant Breeding Reviews, vol. 3. John Wiley and Sons,

pp.219–256.

Zhang,G.L.,Chen,L.Y.,Xiao,G.Y.,Xiao,Y.H.,Chen,X.B.,Zhang,S.T.,2009.Bulked

segregantanalysistodetectQTLrelatedtoheattoleranceinrice(Oryzasativa

Gambar

Fig. 1. Bulked segregant analysis strategy used for identifying QTLs for grain yield under drought in rice.
Table 1
Table 2
Fig. 2.
+2

Referensi

Dokumen terkait

Specifically, this study was guided by the following objectives: to determine which is the best raw materials to use in 3D printing among chocolate, flour and

Aplikasi ini akan mengenalkan pengobatan alternatif dengan tutorial untuk mengkonsumsi semut jepang dengan disertai tabel takaran untuk beberapa penyakit, dan juga

20 Otonomi Daerah, Pemerintahan Umum, Administrasi Keuangan Daerah, Perangkat Daerah, Kepegawaian dan Persandian Unit Organisasi : 1. 01 Dewan Perwakilan

Insekta adalah hewan yang paling adaptif di bumi karena dapat hidup pada berbagai tempat dan habitan dengan kondisi iklim yang berbeda; mulai dari kutup, sub tropis, tropis

Tabel 1 ' Hasil analisis tekstur tanah (kandungan pasir, debu, dan liat), jenis tanah dan indeks kemantapan agregat.. Spektrum infra red gugus fungsional utama eksopolisakarida

Berdasarkan teori kereaktifan logam alkali dan alkali tanah dengan air, dalam sistem periodik, dalam satu golongan, dari nomor atam yang paling kecil ke nomor atom yang paling

Jika tidak terinfeksi pada masa perinatal, maka bayi dari ibu HBsAg positif tetap memiliki resiko tinggi untuk mengidap infeksi virus Hepatitis B kronis melalui kontak

[r]