• Tidak ada hasil yang ditemukan

TA : Rancang Bangun Monitor Suhu Gas Metana dan Karbon Dioksida pada Biogas.

N/A
N/A
Protected

Academic year: 2017

Membagikan "TA : Rancang Bangun Monitor Suhu Gas Metana dan Karbon Dioksida pada Biogas."

Copied!
92
0
0

Teks penuh

(1)

RANCANG BANGUN MONITOR SUHU GAS METANA DAN KARBON DIOKSIDA PADA BIOGAS

TUGAS AKHIR

Disusun Oleh :

Nama : Christian Andrean Pradigdya

NIM : 09.41020.0075

Program : S1 (Strata Satu)

Jurusan : Sistem Komputer

SEKOLAH TINGGI

MANAJEMEN INFORMATIKA & TEKNIK KOMPUTER

SURABAYA

(2)

vii DAFTAR ISI

Halaman

ABSTRAK……. ... iv

KATA PENGANTAR ……. ... vii

DAFTAR ISI ……... vii

DAFTAR TABEL……. ... xi

DAFTAR GAMBAR……. ... viii

DAFTAR LAMPIRAN ……. ... xvii

BAB I PENDAHULUAN ... 1

1.1 Latar Belakang Masalah ... 1

1.2 Perumusan Masalah ... 2

1.2 Pembatasan Masalah ... 3

1.2 Tujuan ... 3

1.5 Sistematika Penulisan ... 4

BAB II LANDASAN TEORI ... 6

2.1 Biogas ... 6

2.1.2 Proses Pembentukan Biogas ... 7

2.1.2 Parameter Proses Pembuatan Biogas ... 7

2.2 Mikrokontroler AVR ATmega8535 ... 10

2.1.2 Fasilitas Atmega8535 ... 11

2.2.2 Susunan Pin ... 11

2.3 Analog to Digital Converter ... 14

2.3.1 ADC Control and Status Register ... 14

(3)

viii

2.3.3 Special Function I/O Register (SFIOR)... 16

2.4 Inter Integrated Circuit (I2C) ... 17

2.5 Komunikasi Serial (Universal Synchronous and Asynchronous Receiver Transmitter) ... 18

2.6 Sensor Suhu LM35 ... 22

2.7 Real Time Clock ... 23

2.8 Openlog Open Source Datalogger ... 25

2.9 Sensor Gas Metana MQ-4 ... 26

2.10 Sensor Gas Karbon Dioksida MG-811 ... 27

2.11 DT Sense Gas Sensor ... 28

2.11.1 Perangkat Keras DT Sense Gas Sensor... 29

2.11.2 LED indikator ... 33

2.11.3 Antarmuka I2C ... 33

BAB III METODE PENELITIAN ... 35

3.1 Model Penelitian ... 35

3.2 Perancangan Perangkat Keras ... 39

3.2.1 Perancangan Digester ... 39

3.2.2 Perancangan Sistem Minimum ... 40

3.2.3 Perancangan Sensor Suhu LM35 ... 41

3.2.4 Perancangan Real Time Clock DS1307 ... 45

3.2.5 Konfigurasi Openlog Data Logger ... 47

3.2.6 Konfigurasi DT Sense Gas Sensor ... 51

3.3 Perangkat Lunak ... 53

(4)

ix

3.4.2 Program Visual Basic 6.0 ... 56

BAB IV HASIL DAN PEMBAHASAN ... 58

4.1 Pengujian Sistem Minimum ... 58

4.1.1 Tujuan Pengujian ... 58

4.1.2 Peralatan yang Digunakan ... 58

4.1.3 Prosedur Pengujian ... 58

4.1.4 Hasil Pengujian... 60

4.2 Pengujian Sensor Suhu LM35 ... 61

4.2.1 Tujuan Pengujian ... 61

4.2.2 Peralatan yang Digunakan ... 61

4.2.3 Prosedur Pengujian ... 62

4.2.4 Hasil Pengujian... 62

4.3 Pengujian Openlog Data Logger ... 63

4.3.1 Tujuan Pengujian ... 64

4.3.2 Peralatan yang Digunakan ... 64

4.3.3 Prosedur Pengujian ... 64

4.3.4 Hasil Pengujian... 65

4.4 Pengujian Aplikasi Analisis Data ... 67

4.4.1 Tujuan Pengujian ... 67

4.4.2 Peralatan yang Digunakan ... 67

4.4.3 Prosedur Pengujian ... 67

4.4.4 Hasil Pengujian... 68

4.5 Pengujian Pengaruh Suhu... 70

(5)

x

4.5.2 Peralatan yang Digunakan ... 70

4.5.3 Prosedur Pengujian ... 70

4.5.4 Hasil Pengujian... 71

BAB V PENUTUP ... 78

5.1 Simpulan... 78

5.1 Saran... 78

(6)

xi

DAFTAR TABEL

Halaman

Tabel 2.1 Fungsi khusus Port B... 12

Tabel 2.2 Fungsi khusus Port C... 13

Tabel 2.3 Fungsi khusus Port D ... 13

Tabel 2.4 Konfigurasi Register ADCSRA ... 14

Tabel 2.5 Konfigurasi clock ADC ... 15

Tabel 2.6 Register ADMUX ... 15

Tabel 2.7 Special Function I/O Register (SFIOR) ... 16

Tabel 2.8 Pemilihan trigger ADC ... 17

Tabel 2.9 Rumus Perhitungan UBRR ... 19

Tabel 2.10 Register UCSRA ... 20

Tabel 2.11 Register UCSRB ... 20

Tabel 2.12 Ukuran karakter bit ... 21

Tabel 2.13 Register UCSRC ... 21

Tabel 2.14 Konektor interface J3 ... 30

Tabel 2.15 Soket SR-5 J4... 32

Tabel 2.16 Konektor Output J5 ... 32

Tabel 3.1 Pin I/O Sistem Minimum... 41

Tabel 3.2 Perbandingan tegangan dan suhu ... 44

Tabel 3.3 LM35 dan keluaran ADC ... 44

Tabel 3.4 Konektor interface J3 yang digunakan ... 51

Tabel 4.1 Hasil pengukuran suhu ... 63

(7)

xii

Tabel 4.3 Sampel hasil logging ke dalam card reader ... 67 Tabel 4.4 Perbandingan pengujian perlakuan suhu ... 77

(8)

xiii

DAFTAR GAMBAR

Halaman

Gambar 2.1 Pin ATmega8535 ... 12

Gambar 2.2 Aliran data I2C ... 18

Gambar 2.3 Kaki-kaki LM35 ... 22

Gambar 2.4 Pin real time clock DS1307 ... 23

Gambar 2.5 Openlog data logger ... 26

Gambar 2.6 Sensor gas MQ-4 ... 27

Gambar 2.7 Sensor gas MG-811 ... 28

Gambar 2.8 Modul DT Sense gas sensor ... 29

Gambar 2.9 Tata letak komponen DT Sense gas sensor ... 30

Gambar 2.10 Jumper J3 ... 31

Gambar 2.11 Jumper J7 ... 31

Gambar 2.12 Jumpert.hold select J7 ... 32

Gambar 3.1 Skema umum penelitian ... 35

Gambar 3.2 Diagram blok sistem ... 36

Gambar 3.3 Diagram blok analisis data ... 36

Gambar 3.4 Digester diletakkan pada salah satu sudut kamar ... 38

Gambar 3.5 Digester diletakkan di dalam lemari pendingin ... 38

Gambar 3.6 Tabung denganbohlam sebagai pemanas digester ... 39

Gambar 3.7 Digester ... 40

Gambar 3.8 Sistem minimum ... 41

Gambar 3.9 Rangkaian sensor suhu LM35... 42

(9)

xiv

Gambar 3.11 Rangkaian RTC DS1307 ... 46

Gambar 3.12 Konfigurasi TWI ... 46

Gambar 3.13 Rangkaian Openlog data logger ... 48

Gambar 3.14 Pengaturan CONFIG.TXT... 48

Gambar 3.15 Konfigurasi Sequential Log ... 49

Gambar 3.16 Konfigurasi USART Openlog data logger ... 50

Gambar 3.17 Konfigurasi jumper SDA SCL J1 ... 52

Gambar 3.18 Konfigurasi jumper RLOAD J7 ... 52

Gambar 3.19 Diagram alir CVAVR... 54

Gambar 3.20 Tampilan program analisis data ... 57

Gambar 4.1 Programmer Setting ... 59

Gambar 4.2 Proses Chip Signature ... 59

Gambar 4.3 Proses Chip Signature ... 60

Gambar 4.4 Proses download ... 61

Gambar 4.5 Proses download berhasil ... 61

Gambar 4.6 Isi microSD pada mode ... 65

Gambar 4.7 Tampilan file SEQLOG00.TXT ... 66

Gambar 4.8 Tampilan seleksi data metana ... 68

Gambar 4.9 Tampilan seleksi data karbon dioksida ... 69

Gambar 4.10 Tampilan seleksi data suhu ... 70

Gambar 4.11 Suhu 180 sampai 220Celsius ... 71

Gambar 4.12 Metana pada suhu 180 sampai 220 Celsius... 72

(10)

xv

Gambar 4.14 Suhu 280 sampai 320 Celsius ... 73

Gambar 4.15 Metana pada suhu 280 sampai 320Celsius ... 74

Gambar 4.16 Karbon dioksida pada suhu 280 sampai 320Celsius ... 75

Gambar 4.17 Suhu 340

sampai 440

Celsius ... 75

Gambar 4.18 Metana pada suhu 340C sampai 440 C ... 76

(11)

xvi

DAFTAR LAMPIRAN

Halaman

Lampiran 1. Kode Program Mikrokontroler ... 80

Lampiran 2. Kode Program Aplikasi Visual Basic... 87

(12)

iv ABSTRAK

Salah satu bentuk energi yang dapat dipakai dalam skala rumah tangga

adalah biogas. Prinsip utama proses pembentukan biogas adalah pengumpulan

kotoran hewan ke dalam digester yang difermentasi bakteri anaerob. Untuk dapat membentuk biogas dengan kadar gas yang baik diperlukan kestabilan suhu.

Untuk dapat mengetahui pengaruh suhu terhadap kadar gas yang

dihasilkan, dibuatlah suatu sistem yang dapat melakukan monitoring terhadap proses produksi gas. Selain proses monitoring, diperlukan juga sebuah sistem data logging agar semua data proses produksi biogas dapat terdokumentasi.

Berdasarkan hasil pengujian didapatkan bahwa rangkaian akuisisi data

sensor pada digester sudah dapat berfungsi untuk mengukur suhu, kadar gas metana dan karbon dioksida serta proses logging data dari sensor-sensor

menggunakan openlog data logger sudah dapat berfungsi. Pada percobaan suhu diketahui, kadar gas metana pada rentang suhu 340 sampai 440 Celsius memiliki

nilai bit tertinggi yaitu 440, sedangkan pada kadar gas karbon dioksida pada

rentang suhu 280 sampai 320 Celsius memiliki nilai bit tertinggi yaitu 66.

(13)

1 1.1 Latar Belakang Masalah

Indonesia merupakan salah satu negara produsen minyak dunia. Meskipun

mempunyai sumber daya minyak melimpah, Indonesia masih kesulitan untuk

memenuhi kebutuhan minyak dalam negeri, khususnya untuk kebutuhan skala

rumah tangga. Walau sudah diterapkan program konversi dari minyak tanah ke

gas, hal ini tidak banyak membantu. Masih sering kita jumpai antrean panjang

akibat dari kelangkaan persediaan gas maupun minyak tanah. Oleh karena itu,

perlu dikembangkan lagi energi alternatif yang mudah dan murah untuk

diterapkan guna memenuhi kebutuhan energi skala rumah tangga.

Salah satu bentuk energi yang murah dan pemanfaatannya mudah untuk

dipakai dalam skala rumah tangga adalah biogas. Biogas adalah gas yang dapat

terbakar dari hasil fermentasi bahan organik yang berasal dari daun-daunan,

kotoran hewan/manusia, dan lain-lain limbah organik yang berasal dari buangan

industri oleh bakteri anaerob (Wijayanti, 1993). Dengan bahan baku yang ada di

sekitar kita tersebut membuat biogas sangat mudah untuk diterapkan dalam skala

rumah tangga.

Prinsip utama proses pembentukan biogas adalah pengumpulan kotoran

ternak atau sampah organik ke dalam tanki. Tanki sebagai tempat penampungan

(14)

(CO2) 25%-45%, oksigen (O2) 0% - 2%, nitrogen 0% - 2%, amonia (NH3) 0% -

1%, hidrogen 0% - 1% dan hidrogen sulfida (H2S) 0%-1% (Al Seadi dkk, 2008). Terdapat beberapa faktor penentu keberhasilan untuk membuat biogas. Di

antaranya, jenis bahan organik, derajat keasaman, imbangan C/N, suhu, zat toksik,

pengadukan, dan starter (Wahyuni, 2011). Suhu digester yang dijaga agar tetap stabil akan berpengaruh langsung pada hasil produksi biogas (Boe, 2006).

Untuk dapat mengetahui pengaruh suhu terhadap kadar gas yang dihasilkan,

maka dibuatlah suatu sistem yang dapat melakukan monitoring terhadap proses produksi gas. Pada tugas akhir ini, juga merancang proses monitoring dan sistem

data logging yang reliable agar semua data proses produksi biogas dapat terdokumentasi.

1.2 Perumusan Masalah

Berdasarkan latar belakang maka dapat dibuat perumusan masalah sebagai

berikut :

1. Bagaimana membuat digester sebagai tempat fermentasi untuk membuat biogas.

2. Bagaimana merancang rangkaian akuisisi data sensor untuk mengukur suhu

pada digester, kadar metana dan karbon dioksida dari biogas yang dihasilkan digester.

3. Bagaimana menggunakan openlog data logger untuk melakukan logging

data dari sensor-sensor.

4. Mengetahui bagaimana pengaruh suhu pada digester terhadap kadar gas

(15)

1.3 Pembatasan Masalah

Terdapat beberapa pembatasan masalah, antara lain :

1. Bahan baku biogas yang digunakan adalah campuran kotoran sapi sebanyak

setengah liter dan air setengah liter.

2. Tipe digester yang digunakan adalah tipe bak dengan volume 3,84 liter.

3. Lama produksi biogas adalah 7 hari.

4. Hanya suhu yang menjadi tolok ukur utama untuk mengukur kadar metana

dan karbon dioksida yang dihasilkan

5. Gas hasil produksi dari biogas yang diukur hanya kadar metana dan karbon

dioksida.

6. Satuan pengukuran gas yang dipakai adalah perubahan nilai bit analog to digital converter yang dihasilkan oleh sensor gas.

7. Perlakuan suhu yang diberikan sampai diambil kesimpulan adalah sebanyak

3 jenis.

1.4 Tujuan

Dengan mengacu pada perumusan masalah maka tujuan yang hendak

dicapai adalah sebagai berikut:

1 Membuat digester sebagai tempat fermentasi untuk membuat biogas.

2 Dapat merancang rangkaian akuisisi data dari sensor untuk mengukur suhu

pada digester, kadar metana dan karbon dioksida dari biogas yang dihasilkan digester.

(16)

4 Mengetahui pengaruh suhu pada digester terhadap kadar gas metana dan

karbon dioksida yang dihasilkan.

1.5 Sistematika Penulisan

Sistematika penulisan buku tugas akhir ini terdiri dari lima bab, di mana

dalam tiap bab terdapat beberapa sub-bab. Ringkasan uraian dari masing-masing bab tersebut adalah sebagai berikut :

BAB I : Pendahuluan

Pada bab ini menjelaskan tentang latar belakang masalah,

rumusan masalah, batasan masalah, tujuan, dan sistematika

penulisan buku Tugas Akhir.

BAB II : Landasan Teori

Pada bab ini menjelaskan tentang beberapa teori tentang biogas,

komponen dan sistem yang digunakan dalam pengerjaan Tugas

Akhir ini. Diantaranya adalah tentang biogas, analog to digital converter, real time clock, komunikasi UART, komunikasi I2C,

microcontroller AVR, modul Open Log Data Logger, modul DT-Sense Gas Sensor, sensor gas MQ-4, sensor gas MG-811, dan

sensor suhu LM35.

BAB III : Metode Penelitian

Bab ini berisi tentang penjelasan penulis dalam merancang dan

membuat perangkat keras dan perangkat lunak. Dalam bab ini

(17)

rangkaian minimum sistem, rangakaian akuisisi data sensor dan

rangkaian data logging.

BAB IV : Pengujian Sistem

Bab ini berisi tentang pengujian dan evaluasi sistem. Dalam bab

ini diuraikan tentang langkah-langkah pengujian, tujuan

pengujian, prosedur pengujian, dan hasil pengujian yang disertai

dengan analis hasil pengujian sistem secara keseluruhan.

BAB V : Penutup

Pada bab ini menjelaskan tentang kesimpulan-kesimpulan dari

Tugas Akhir yang telah dikerjakan dan saran-saran yang diberikan oleh penulis untuk pengembangan penelitian

(18)

6 2.1. Biogas

Krisis energi yang terjadi menuntun manusia untuk lebih cerdas mencari

alternatif sumber energi lain. Secara umum, sumber energi alternatif tersebut

harus dapat memenuhi kebutuhan manusia dan memiliki harga terjangkau. Salah

satu sumber energi murah yang dapat menjadi alternatif adalah biogas. Biogas

merupakan teknologi pembentukan energi dengan memanfaatkan limbah, seperti

limbah pertanian, limbah peternakan, dan limbah manusia (Wahyuni, 2011).

Sumber energi biogas memiliki keunggulan dibandingkan dengan sumber

energi lainnya. Selain ramah lingkungan, biogas juga termasuk energi yang

memiliki sifat renewable. Artinya, biogas dapat diperbaharui dan mudah untuk diperbanyak. Solusi yang tepat untuk menjadi alternatif bagi sumber energi lain

yang memang tidak dapat diperbaharui. Biogas juga tidak memiliki risiko

meledak sehingga tidak berbahaya untuk digunakan.

Biogas dapat menyalakan bunga api dengan energi 6.400-6.600 kcal/m3,

sehingga dapat dijadikan sumber energi alternatif yang ramah lingkungan dan

terbarukan. Kandungan 1 m3 biogas setara dengan 0,62 kg minyak tanah, 0,46

liter elpiji, 0,52 liter minyak solar, 0,80 liter bensin, dan 3,50 kg kayu bakar

(19)

2.1.1. Proses Pembentukan Biogas

Prinsip dasar teknologi biogas adalah proses penguraian bahan-bahan

organik oleh mikroorganisme dalam kondisi tanpa oksigen (anaerob) untuk

menghasilkan campuran dari berberapa gas, seperti metana dan karbon dioksida.

Biogas dihasilkan dengan bantuan bakteri metanogen atau metanogenik. Bakteri

ini secara alami terdapat dalam limbah yang mengandung bahan organik, seperti

limbah ternak dan sampah organik. Proses tersebut dikenal dengan istilah

anaerobic digestion atau pencernaan secara anaerob. Umumnya, biogas diproduksi menggunakan alat yang disebut reaktor biogas (digester) yang dirancang agar kedap udara (anaerobik), sehingga proses penguraian

mikroorganisme dapat berjalan secara optimal (Wahyuni, 2011).

2.1.2. Parameter Proses Pembuatan Biogas

Biogas dihasilkan dengan bantuan bakteri yang menumbuhkan kondisi

lingkungan tertentu agar dapat tumbuh dan berkembang biak. Kondisi lingkungan

yang optimal dapat menunjang pertumbuhan bakteri, sehingga biogas yang

dihasilkan pun dapat maksimal. Berikut faktor dalam (dari digseter) dan faktor luar yang dapat mempengaruhi pembuatan biogas (Wahyuni, 2011).

1. Jenis bahan organik (substrat)

Jenis bahan organik yang digunakan dapat berpengaruh terhadap lama waktu

fermentasi oleh bakteri. Pasalnya, masing-masing jenis bahan organik

memiliki total padatan yang berbeda, sehingga proses pembusukan material

padatan pun akan berbeda. Secara umum, urutan kandungan bahan organik

berdasarkan lamanya waktu penguraian yaitu gula, protein, lemak,

(20)

mengandung selulosa dan lignin biasanya lebih lama diuraikan dibandingkan

dengan limbah kotoran ternak. Karena itu, bahan organik berupa kotoran

ternak harus dicampur dengan rumput kering atau limbah pertanian agar

proses fermentasi dapat berlangsung optimal.

2. Derajat kemasaman (pH)

Derajat kemasaman pada saat proses fermentasi akan mengalami penurunan

menjadi 6 atau lebih rendah akibat terbentuknya asam organik. Padahal,

kehidupan mikroorganisme selama proses fermentasi akan efektif dengan pH

6,5-7,5. Setelah dua sampai tiga minggu, pH akan naik kembali yang

menandakan perkembangan bakteri metan. Penurunan pH yang ekstrem dapat

dicegah dengan menambahkan larutan kapur, seperti Ca(OH)2 atau CaCO3.

Laju pencernaan anaerobik akan menurun jika kondisi pH lebih rendah

menyebabkan tidak seimbangnya populasi bakteri metagenik terhadap bakteri

asam sehingga dapat menggagalkan proses pencernaan anaerobik.

3. Imbangan Carbon/Nitrogen (C/N)

Aktivitas mikroorganisme yang berperan selama proses fermentasi sangat

bergantung pada imbangan C/N. Mikroorganisme perombak dapat beraktivitas

secara optimum jika imbangan C/N sebesar 25-30. Imbangan C/N tinggi pada

bahan organik akan menyebabkan produksi metan yang redah. Pasalnya,

bahan dengan imbangan C/N tinggi hanya mengandung nitrogen dengan kadar

yang rendah. Padahal, nitrogen sangat dibutuhkan sebagai sumber energi

untuk perkembangbiakan mikroorganisme pengurai. Karena itu, untuk

meningkatkan kadar nitrogen, pada bahan harus ditambahkan bahan organik

(21)

Sementara itu, jika imbangan C/N sangat rendah, nitrogen akan bebas dan

berakumulasi dalam bentuk amoniak sehingga menyebabkan bau busuk yang

berlebih. Karena itu, diperlukan tambahan bahan lain yang mengandung

karbon atau serat tinggi, seperti rumput, jerami dan dedaunan.

4. Suhu

Aktivitas bakeri penghasil biogas juga sangat dipengaruhi oleh suhu di dalam

digester. Perubahan suhu yang mendadak dalam digester biogas dapat mengakibatkan penurunan produksi biogas secara cepat. Suhu ideal untuk

produksi biogas adalah 32oC sampai 37o Celsius. Suhu yang terlalu tinggi

dapat menyebabkan digester rentan mengalami kerusakan, sedangkan yang terlalu rendah akan menghambat proses fermentasi.

5. Zat toksik

Zat toksik atau zat racun yang terkandung dalam bahan organik atau alat

produksi biogas dapat menjadi penghambat pertumbuhan mikroorganisme

sehingga menurunkan produksi biogas. Zat toksik tersebut diantaranya adalah

ion mineral dan logam berat, seperti tembaga, detergen, pestisida, kaporit, dan

antibiotik yang bersifat racun. Ion mineral dibutuhkan untuk merangsang

pertumbuhan mikroorganisme dalam digester. Namun, jika terlalu banyak

dapat menjadi racun bagi mikroorganisme tersebut. Oleh karena itu, air yang

menjadi campuran haruslah air yang tidak mengandung zat toksik seperti air

sawah yang tercampur pestisida, campuran air sabun, dan sumber air yang

(22)

6. Pengadukan

Pengadukan bertujuan untuk menghomogenkan bahan baku pembuatan

biogas. Biasanya, pengadukan dilakukan sebelum dimasukkan di dalam

digester dan setelah di dalam digester. Selain untuk mencampur bahan,

pengadukan juga berfungsi untuk mencegah terjadinya pengendapan di dasar

digester yang menghambat pembentukan biogas. Biasanya, pengendapan

terjadi jika bahan yang digunakan berasal dari kotoran kering. Setelah

ditambahkan air sampai kekentalan yang diinginkan, pengadukan mutlak

diperlukan agar kotoran tidak mengendap.

7. Starter

Untuk mempercepat proses penguraian, dapat ditambhakan starter berupa

bakteri mikroorganisme perombak. Starter yang digunakan dapat berupa

starter alami, semi buatan dan buatan. Starter alami yang berasal dari alam

yang dapat berupa lumpur aktif organik atau cairan isi rumen. Starter semi

buatan didapat dari instalasi pembentuk biogas yang masih dalam keadaaan

aktif. Sementara itu, starter buatan berupa bakteri metan yang sengaja

dibiakkan di laboratorium dan telah banyak dijual di pasaran.

2.2. Mikrokontroler AVR ATmega8535

Secara historis, mikrokontroler seri AVR pertama kali diperkenalkan ke

pasaran sekitar tahun 1997 oleh perusahaan Atmel. Mikrokontroler AVR diklaim

memiliki arsitektur dan set instruksi yang benar-benar baru dan berbeda. AVR

(23)

kecepatan kerja AVR untuk frekuensi osilator yang sama akan dua belas kali lebih

cepat dibandingkan dengan mikrokontroler seri AT89S51/52 (Susilo, 2010).

2.2.1. Fasilitas ATmega8535

Berikut ini merupakan beberapa fasilitas yang ada pada ATmega8535 :

1. Performa tinggi dengan konsumsi daya rendah.

2. Mikrokontroler dengan arsitektur RISC 8 bit.

3. EEPROM (Electrically Erasable Programming Read Only Memory) sebesar 512 bytes dengan ketahanan read-write sebanyak 100000 ribu kali.

4. Memori internal SRAM sebesar 512 byte .

5. Penguncian kode program untuk keamanan perangkat lunak agar tidak dapat

dibaca.

6. Memiliki 2 buah timer/counter 8 bit sebanyak 2 buah dan 1 timer/counter 16 bit dengan opsi Pulse Width Modulator sebanyak 4 kanal.

7. Memiliki 8 kanal Analog to Digital Converter 10 bit. 8. Mempunyai 32 pin masukan dan keluran terprogram.

9. Antar muka komunikasi serial USART.

10.Kecepatan untuk ATmega8535L mencapai 8 MHz dan untuk ATmega8535

mencapai 16 MHz.

2.2.2. Susunan Pin

Susunan pin ATmega8535 kemasan PDIP 40 pin dapat dilihat pada

(24)

Gambar 2.1 Pin ATMEGA8535 (Andrianto, 2008)

Dari Gambar 2.1 dapat dijelaskan fungsi dari masing-masing pin

Atmega8535 sebagai berikut :

1. VCC merupakan pin yang berfungsi sebagai masukan catu daya.

2. GND merupakan pin ground.

3. Port A (PA.0 .. PA.7) merupakan pin input/output dua arah serta merupakan pin untuk masukan ADC.

4. Port B (PB.0 .. PB.7) merupakan pin input/output dua arah dan pin fungsi khusus, seperti dapat dilihat pada Tabel 2.1.

Tabel 2.1 Fungsi khusus Port B (Andrianto, 2008)

Pin Fungsi Khusus

PB7 SCK (SPI Bus Serial Clock)

PB6 MISO (SPI Bus Master In Slave Out) PB5 MOSI (SPI Bus Master Out Slave In) PB4 SS (SPI Slave Select Input)

PB3 AIN1 (Analog Comparator Negative Input)

OC0 (Timer/Counter0 Output Compare Match Output) PB2 AIN0 (Analog Comparator Positive Input)

OC0 (Timer/Counter0 Output Compare Match Output) PB1 T1 (Timer/Counter1 External Counter Input)

(25)

5. Port C (PC.0 .. PC.7) merupakan pin input/output dua arah dan pin fungsi khusus, seperti dapat dilihat pada Tabel 2.2.

Tabel 2.2 Fungsi khusus Port C (Andrianto, 2008)

Pin Fungsi Khusus

PC7 TOSC2 (Timer Oscillator Pin 2) PC6 TOSC1 (Timer Oscillator Pin 1) PC5

PC4 PC3 PC2

PC1 SDA (Two-wire Serial Bus Data Input/Output Line) PC0 SCL (Two-wire Serial Bus Clock Line)

6. Port D (PD.0 .. PD.7) merupakan pin input/output dua arah dan pin fungsi khusus, seperti dapat dilihat pada Tabel 2.3.

Tabel 2.3 Fungsi khusus Port D (Andrianto, 2008)

Pin Fungsi Khusus

PD7 OC2 (Timer/Counter2 Output Compare Match Output) PD6 ICP (Timer/Counter1 Input Capture Pin)

PD5 OC1A (Timer/Counter0 Output Compare A Match Output) PD4 OC1B (Timer/Counter1 Output Compare B Match Output) PD3 INT1 (External Interrupt 1 Input)

PD2 INT0 (External Interrupt 0 Input) PD1 TXD (USART Output Pin)

PD0 RXD (USART Input Pin)

7. RESET merupakan pin yang digunakan untuk melakukan fungsi reset pada mikrokontroler.

8. XTAL1 dan XTAL2 merupakan pin masukan clock eksternal. 9. AVCC merupakan pin masukan untuk tegangan ADC.

(26)

2.3. Analog to Digital Converter

Mikrokontroler Atmega8535 memiliki ADC 10 bit dengan metode

penafsiran berulang-ulang (successive approximation). Nilai minimum adalah

ground. Sedangkan nilai maksimumnya adalah tegangan pada pin AREF dikurangi 1 LSB.

Jalur ADC dikoneksikan ke 8 kanal multipleks analog dengan 8 buah

tegangan masukan single-ended yang dibangun dari pin-pin pada Port A. Tegangan masukan single-ended adalah tegangan yang mempunyai referensi titik 0 volt atau ground.

ADC memiliki rangkaian cuplik dan genggam (sample and hold) yang memastikan bahwa tegangan masukan ke ADC ditahan pada level yang konstan

selama konversi. Fungsi ADC mempunyai pin tegangan catu yang terpisah, yaitu

AVCC. Pin AVCC harus tidak boleh berbeda kurang atau lebih dari 0.3 volt dari

VCC. Berikut ini merupakan register yang digunakan untuk setting ADC :

2.3.1. ADC Control and Status Register A (ADCSRA)

Bit-bit konfigurasi dari register ADCSRA dapat ditunjukkan seperti pada Tabel 2.4.

Tabel 2.4 Konfigurasi Register ADCSRA (Andrianto, 2008)

Bit 7 6 5 4 3 2 1 0

Name ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Keterangan :

1. ADEN : 1 = ADC enable, 0 = ADC disable

(27)

3. ADATE : 1 = auto trigger diaktifkan, trigger berasal dari sinyal yang dipilih (set pada register SFIOR bit ADTS). ADC akan start konversi pada edge positif sinyal

trigger.

4. ADIF : diset ke 1, jika konversi ADC selesai dan data register

akan diperbaharui. Namun, ADC Conversion Complete Interrupt akan dieksekusi jika bit ADIE dan bit ke-1 dalam register SREG diset.

5. ADIE : diset 1, jika bit ke-1 dalam register SREG diset. 6. ADPS[2..0] : bit pengatur clock ADC, faktor pembagi 0.. 7 yang

dapat ditunjukkan seperti pada Tabel 2.5.

Tabel 2.5 Konfigurasi clock ADC (Andrianto, 2008) ADPS[2..0] Besar clock ADC

000 – 001 fosc / 2

010 fosc / 4

011 fosc / 8

100 fosc / 16

101 fosc / 32

110 fosc / 64

111 fosc / 128

2.3.2. ADC Multiplexer (ADMUX)

Bit-bit konfigurasi dari register ADCSRA dapat ditunjukkan seperti pada Tabel 2.6.

Tabel 2.6 Register ADMUX (Andrianto, 2008)

Bit 7 6 5 4 3 2 1 0

Name REFS1 REFS2 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

(28)

Keterangan :

1. REFS0,1 : Pemilihan tegangan referensi ADC

00 : Vref = AREF

01 : Vref = AVCC dengan kapasitor eksternal pada AREF.

10 : Vref = reserved.

11 : Vref = internal 2.56 volt dengan eksternal kapasitor

pada AREF.

2. ADLAR : untuk setting format data hasil konversi ADC, default = 0. ADLAR = 0, hasil konversi bit ke-0 hingga bit ke-7

berada pada register ADCL dab bit ke-8 hingga ke-9 berada pad register ADCH. ADLAR = 1, hasil konversi

bit ke-0 hingga bit ke-1 berada pada register ADCL dab bit ke-2 hingga ke-9 berada pad register ADCH.

3. MUX[2..0] : pemilihan channel ADC yang digunakan, 0 = channel 1, 1 = channel2, dan seterusnya.

2.3.3. Special function I/O Register (SFIOR)

SFIOR merupakan register 8 bit pengatur sumber picu konversi ADC. Susunan bit ini dapat dilihat pada Tabel 2.7.

Tabel 2.7 Register SFIOR (Andrianto, 2008)

Bit 7 6 5 4 3 2 1 0

Name ADTS2 ADTS1 ADTS0 ADHSM ACME PUD PSR2 PSR10

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Keterangan :

(29)

bernilai 1. Konfigurasi bit-bit ADTS dapat dilihat pada

Tabel 2.8.

Tabel 2.8 Pemilihan trigger ADC (Andrianto, 2008) ADTS[2..0] Trigger Source

000 Mode Free Running

001 Analog Comparator

010 Interupsi Eksternal

011 Timer/Counter 0 Compare Match

100 Timer/Counter 0 Overflow

101 Timer/Counter 1 Compare Match

110 Timer/Counter 1 Overflow

111 Timer/Counter 1 Capture Event

2. ADHSM : 1 = ADC high speed mode enable.

Untuk operasi ADC, bit ACME, PUD, PSR2, PSR10

tidak diaktifkan.

2.4. Inter Integrated Circuit (I2C)

Sistem inter integrated circuit adalah jenis komunikasi yang dikembangkan oleh Philips Semiconductor. Protokol komunikasi ini semula dikembangkan untuk

menyediakan komunikasi antara integrated circuit dengan perangkat-perangkat tambahan lain. Namun, sekarang ini I2C telah menjadi metode komunikasi

standar yang banyak digunakan.

Komunikasi I2C berbeda dengan komunikasi SPI. Dua hal yang menjadi

pembeda yang paling utama adalah karena I2C mempunyai protokol tertentu yang

harus diikuti dan I2C hanya membutuhkan dua jalur untuk berkomunikasi yaitu

synchronous clock (SCL) dan synchronous data (SDA). Dengan adanya dua jalur data tersebut menyebabkan perpindahan data tidak bisa terjadi secara bersamaan

(30)

Komunikasi I2C adalah komunikasi data yang terprotokol. Artinya, ada

protokol tertentu yang digunakan dalam pertukaran data. Aliran data bermula dari

master menuju ke slave. Kemudian sesudah komunikasi master-slave selesai maka slave akan mengirim data ke master. Akan tetapi, data hanya dikirim kembali menuju master hanya jika slave bisa memenuhi permintaan data dari

master. Aliran clock terjadi satu arah, yaitu dari master ke slave sedangkan data dikirim dua arah melalui satu jalur baik dari master ke slave dan sebaliknya seperti yang ditunjukkan pada Gambar 2.2.

Gambar 2.2. Aliran data

2.5. Komunikasi Serial (Universal Synchronous and Asynchronous Receiver

and Transmitter)

Menurut Mazidi (2000) transmisi data secara serial adalah transmisi data

dimana data tersebut akan dikirimkan sebanyak satu bit dalam satu satuan waktu.

Transmisi data seri dibedakan menjadi dua macam, yaitu komunikasi data seri

sinkron dan komunikasi asinkron. Perbedaan ini tergantung pada clock pendorong data.

Dalam komunikasi data seri sinkron, clock untuk shift register ikut dikirimkan bersama data seri. Sebaliknya, dalam komunikasi data seri asinkron,

(31)

diperlukan. Bagian yang terpenting dari komunikasi seri asinkron adalah upaya

agar penerima data bisa membangkitkan clock yang bisa dipakai untuk mendorong shift register penerima. (Andrianto, 2008). Berikut ini merupakan inisialisasi USART dengan register yang digunakan.

1. USART Baud Rate Register (UBRR)

UBRR merupakan register 16 bit yang berfungsi untuk menentukan kecepatan transmisi data yang digunakan. UBBR dibagi dua yaitu UBRRH dan

UBRRL. UBRR[11..0] merupakan bit penyimpan konstanta kecepatan

komunikasi serial. UBRRH menyimpan 4 bit tertinggi dan UBRRL menyimpat 8

bit sisanya. Data yang dimasukkan ke dalam UBRRH dan UBRRL dihitung

menggunakan rumus pada Tabel 2.9. Pada rumus terdapat U2X yang

merupakanbit pada register UCSRA, yang berfungsi untuk menggandakan

[image:31.595.90.509.290.668.2]

trasnfer rate menjadi dua kalinya. Hanya berlaku untuk mode asinkron, untuk mode sinkron bit ini diset menjadi 0.

Tabel 2.9 Rumus perhitungan UBRR (Andrianto, 2008)

Mode Operasi Rumus nilai UBRR

Asinkron mode kecepatan normal (U2X=0) UBRR =

Asinkron mode kecepatan ganda (U2X=1) UBRR =

Sinkron UBRR =

2. USART Control and Status Register A (UCSRA)

(32)
[image:32.595.92.503.283.583.2]

Tabel 2.10 Register UCSRA (Ardianto 2008)

Bit 7 6 5 4 3 2 1 0

Name RXC TXC UDRE FE DOR PE U2X MPCM

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

3. USART Control and Status Register B (UCSRB)

UCSRB merupakan register 8 bit pengatur aktivasi penerima dan pengirim

USART seperti yang ditunjukkan pada Tabel 2.11.

Tabel 2.11 Register UCSRB (Andrianto, 2008)

Bit 7 6 5 4 3 2 1 0

Name RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB6

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Keterangan:

a. RXCIE : bit pengatur aktivasi interupsi penerimaan data serial.

b. TXCIE : bit pengatur aktivasi interupsi pengiriman data serial.

c. UDRIE : bit pengatur aktivasi interupsi yang berhubungan

dengan kondisi bit UDRE pada UCSRA.

d. RXEN : bit pengatur aktivasi penerima data serial ATMega8535.

e. TXEN : bit pengatur aktivasi pengirim data serial ATMega8535.

f. UCSZ2 : bersama-sama dengan bit UCSZ1 dan UCSZ0 di

register UCSZ0 menentukan ukuran karakter serial yang dikirimkan. Rumus pehitungan bit-bit UCSZ2

(33)

Tabel 2.12 Rumus perhitungan UCSZ[2..0] (Andrianto, 2008)

UCSZ[2..0] Ukuran Karakter dalam bit

000 5

001 6

010 7

011 8

100 – 110 Tidak dipergunakan

111 9

4. USART Control and Status Register C (UCSRC)

[image:33.595.94.507.302.708.2]

UCSRC merupakan register 8 bit yang digunakan untuk mengatur mode dan kecepatan komunikasi serial yang dilakukan, komposisinya ditunjukkan pada

Tabel 2.13.

Tabel 2.13 Register UCSRC (Andrianto, 2008)

Bit 7 6 5 4 3 2 1 0

Name URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Keterangan:

a. URSEL : merupakan bit pemilih akses antara UCSRC dan

UBRR

b. UMSEL : merupakan bit pemilih mode komunikasi serial

sinkron dan asinkron.

c. UPM[1..0] : merupakan bit pengatur paritas.

d. USBS : merupakan bit pemilih ukuran bit stop.

e. UCSZ1 dan UCSZ0 : merupakan bit pengarut jumlah karakter serial.

f. UCPOL : merupakan bit pengatur hubungan antara

perubahan data keluaran dan data masukan serial

(34)

2.6. Sensor Suhu LM35

Sensor suhu berfungsi untuk mengonversi besaran panas yang ditangkap

menjadi besaran tegangan. Sensor suhu yang dipakai adalah LM35. Sensor suhu

LM35 merupakan sensor yang berbentuk rangkaian terintegrasi dan mempunyai

keluaran berupa tegangan yang berubah linier dan proporsional terhadap suhu

skala Celcius yaitu 10mV/OC.

Sensor ini sangat sederhana dengan hanya memiliki 3 buah kaki seperti

yang ditunjukkan pada Gambar 2.3. Kaki pertama LM35 merupakan pin catu daya

yang dihubungkan ke sumber daya. Kaki kedua merupakan pin keluaran dari

sensor yang dapat diumpankan pada rangkaian pengondisi sinyal atau langsung

pada pin analog to digital converter pada mikrokontroler. Kaki ketiga merupakan pin yang dihubungkan ke ground.

Gambar 2.3 Kaki-kaki LM35

Sensor suhu LM35 mempunyai karakteristik khusus yang perlu diperhatikan

dalam penggunaannya.

1. Dapat dikalibrasi langsung ke dalam besaran celcius. 2. Faktor skala linier +10mV/0 C.

(35)

4. Jangkauan suhu antara -550 C sampai 1500 C.

5. Bekerja pada tegangan 4 volt hingga 30 volt.

6. Arus kerja kurang dari 60µA.

7. Impedansi keluaran rendah 0,1 beban 1 mA.

2.7. Real Time Clock

Istilah real time clock merupakan sebuah istilah untuk jam elektronik dalam bentuk sebuah cip (integrated circuit) yang memiliki fungsi sebagai penyimpan data waktu dan tanggal. Data waktu dan tanggal tersebut akan disertakan dengan

data sensor suhu dan gas guna menambah validitas proses pengambilan data. Jadi,

akan diketahui detik, menit, jam, hari, bulan, dan tahun saat sensor suhu dan gas

melakukan proses pengambilan data.

Salah satu jenis real time clock adalah DS1307 yang dapat menyimpan data-data berupa detik, menit, jam, tanggal, bulan, hari dalam seminggu, dan tahun

yang valid hingga tahun 2100. Cip DS1307 ini mempunyai NV SRAM sebesar 56-byte, General-Purpose RAM tanpa unlimited writes, antarmuka I2C, dan battery-backed sebagai sumber daya cadangan. Susunan pin DS1307 dapat dilihat pada Gambar 2.4.

Gambar 2.4 Pin real time clock DS1307

Keterangan:

(36)

dengan kristal sebagai pembangkit clock. Nilai standar

kristal yang dipakai adalah 32.768kHz.

2. X2 : berfungsi sebagai keluaran dari kristal yang digunakan.

Terhubung juga dengan X1.

3. VBAT : merupakan backup supply sumber daya untuk RTC dalam menjalankan fungsi waktu dan tanggal. Besarnya adalah

3V dengan menggunakan baterai jenis lithium cell atau sumber daya lainnya. Jika pin ini tidak di gunakan maka

harus dihubungkan dengan ground. 4. GND : berfungsi sebagai ground.

5. SDA : berfungsi sebagai masukan / keluaran untuk antarmuka

I2C. Pin ini bersifat open drain, oleh sebab itu membutuhkan eksternal pull upresistor.

6. SCL : merupakan serial clock input yang digunakan sebagai masukan clock untuk antarmuka I2Cdan melakukan sinkronisasi perpindahan data. Pin ini juga bersifat open drain, oleh sebab itu membutuhkan eksternal pull up resistor.

7. SWQ/OU : merupakan pin keluaran square wave/output driver. Jika diaktifkan, maka bit SQWE akan diubah menjadi 1.

Keluaran dari pin ini adalah gelombang kotak dengan

frekuensi antara 1 Hz, 4kHz, 8kHz, dan 32kHz. Sifat dari

(37)

8. VCC : merupakan sumber tegangan utama. Jika sumber tegangan

terhubung dengan baik, maka pengaksesan data dan

pembacaan data dapat dilakukan dengan baik.

Untuk dapat melakukan akses DS1307makadigunakan komunikasi I2C. Di

mana diperlukan dua jalur untuk keperluan transfer data. Pin SDA dan SCL pada

DS1307 dihubungkan dengan pin SDA dan SCL pada mikrokontroler dengan

diberikan pull up resistor. Pull up resistor terdiri dari resistor sebesar 10k yang diberikan sumber tegangan sebesar 5V.

2.8. Openlog Open Source Datalogger

Openlog open source datalogger merupakan modul penyimpanan

datalogger berbasiskan SD/MMC. Telah dilengkapi dengan soket SD/MMC jenis FAT16 dan FAT32 dan mampu menyimpan data sampai dengan 16 Giga Bytes. Modul ini berbasiskan mikrokontroler ATmega328. Proses penyimpanan data

cukup mudah, hanya dengan mengirimkan perintah melalui antarmuka UART,

(38)

Gambar 2.5 Openlog data logger

Adapun spesifikasi atau fitur dari OpenLog Open Source Datalogger adalah sebagai berikut:

1. Catu daya : 3.3VDC - 12VDC.

2. Berbasis mikrokontroller ATmega328.

3. Antarmuka UART.

4. ATmega328 dapat diprogram ulang dengan menggunakan Arduino IDE.

5. Media penyimpanan berupa microSD (up to 16GByte). 6. Bersifat open source.

7. Dua LED mengindikasikan menulis statusnya.

8. Dapat melakukan edit Fileconfig.txt dari komputer untuk mengubah baudrate

dan pengaturan sistem lainnya.

2.9. Sensor Gas Metana MQ-4

MQ-4 adalah sensor gas yang mempunyai tingkat sensitivitas yang tinggi

pada combustible gas (gas yang mudah terbakar) khususnya metana, juga gas lain yaitu propana dan butana. Sensor ini mempunyai material berupa SnO2 yang peka

(39)

konsentrasi combustible gas. Konsentrasi kandungan gas yang dapat dijangkau sensor adalah 300-10000 ppm (Hwsensor datasheet, 2013).

Komponen utama pembentuk sensor ini adalah material Tin Dioxide (SnO2),

micro AL2O3 ceramic tube, measuring electrode, dan pemanas sensor (heater). Semua komponen tersebut dikemas menjadi satu dalam sebuah crust yang dibuat dari plastik dan stainless steel net (Hwsensor datasheet, 2013). Sensor gas MQ-4 dan susunan masing-masing kakinya dapat dilihat pada Gambar 2.6.

Gambar 2.6 Sensor Gas MQ-4 (Hwsensor datasheet, 2013)

2.10. Sensor Gas Karbon Dioksida MG-811

MG811 merupakan sensor gas karbon dioksida (CO2) keluaran Hanwei

Electronics. Sensor ini mudah digunakan dan memiliki sensitifitas dan selektifitas

yang baik untuk mendeteksi kandungan karbon dioksida. Kadar karbon dioksida

yang dapat dideteksi oleh sensor ini adalah mulai dari 350-10000 ppm.

Selain itu, sensor ini memiliki dependency yang rendah terhadap pengaruh suhu dan kelembapan. Oleh karena itu sensor ini cocok diaplikasikan untuk

pemantauan kualitas udara, proses kontrol fermentasi, dan pendeteksian

konsentrasi CO2 (Hwsensor datasheet, 2013).

Sensor MG811 terbentuk dalam solid electrolyte layer yang terdiri atas,

(40)

(Hwsensor datasheet, 2013). Sensor gas MG-811 dan susunan masing-masing kakinya dapat dilihat pada Gambar 2.7.

Gambar 2.7 Sensor MG-811 (Hwsensor datasheet, 2013)

Untuk dapat dioperasikan, sensor ini memiliki heater internal dan membutuhkan heating voltage tersendiri. Di mana untuk mengoperasikannya dibutuhkan rangkaian tambahan tersendiri. Heater internal ini dipergunakan untuk memanaskan permukaan sensor. Ketika suhu sensor sudah merata ke seluruh

permukaan, maka pembacaan menjadi lebih stabil (Hwsensor datasheet, 2013).

2.11. DT Sense Gas Sensor

DT Sense gas sensor merupakan sebuah modul sensor cerdas yang mampu memonitor perubahan konsentrasi gas lpg, iso-butana, propana, karbon monoksida

(CO), karbon dioksida (CO2), metana (CH4), alkohol, atau kualitas udara

(tergantung dari sensor yang digunakan). Modul ini kompatibel dengan sensor gas

MQ-3 (alkohol), MQ-4 (metana), MQ-6 (LPG, iso butana, dan propana), MQ-7

(CO), MQ-135 (kualitas udara), dan MG-811 (CO2). Selain itu, modul sensor

cerdas ini dapat berfungsi sebagai kendali mandiri secara ON/OFF mengikuti set point konsentrasi gas yang kita tentukan. Modul sensor ini dilengkapi dengan antarmuka UART TTL dan Inter Integrated Circuit. (Manual rev1, 2013). Spesifikasi DT Sense gas sensor sebagai berikut :

(41)

2. Kompatibel dengan sensor gas MQ-3, MQ-4, MQ-6, MQ-7, MQ-135, dan

MG-811.

3. Menggunakan ADC dengan resolusi 10 bit.

4. Tersedia 1 jalur output kendali ON/OFF.

5. Pin Input atau output kompatibel dengan level tegangan TTL dan CMOS.

6. Dilengkapi dengan antarmuka UART TTL dan I2C.

7. Jika menggunakan I2C, DT Sense gas sensor dapat di-cascade hingga 8 modul.

[image:41.595.91.506.296.543.2]

8. Jika menggunakan protokol I2C, alamat default dari modul adalah 0xE0. Namun alamat ini dapat diganti melalui antarmuka UART. Modul DT Senses Gas Sensor seperti ditunjukkan pada Gambar 2.8.

Gambar 2.8 Modul DT sense gas sensor

2.11.1. Perangkat Keras DT Sense Gas Sensor

Tata letak modul DT sense gas sensor dapat dilihat seperti yang

(42)
[image:42.595.93.510.312.612.2]

Gambar 2.9 Tata letak komponen DT sense gas sensor (Manual rev1, 2013)

Modul DT sense gas sensor mempunyai beberapa konektor dan jumper

yang dapat diatur sesuai kebutuhan pengguna. Berikut ini merupakan pengaturan

konektor dan jumper yang dibutuhkan.

1. Konektor interface (J3) berfungsi sebagai konektor untuk catu daya modul, antarmuka UART TTL, dan antarmuka I2C. Tabel 2.14 di bawah ini

menjelaskan konektor interface J3.

Tabel 2.14 Konektor interface J3 (Manual rev1, 2013).

Pin Nam a Fungsi

1 GND Titik referensi ground untuk catu daya input 2 VCC Terhubung ke catu daya (5 Volt)

3 RX TTL Input serial level TTL ke modul DT-SENSE 4 TX TTL Output serial level TTL dari modul DT-SENSE 5 SDA I2C-bus data input / output

6 SCL I2C-bus clock input

2. Jumper SCL SDA (J1) berfungsi untuk mengaktifkan resistor pull-up untuk pin SDA dan SCL pada antarmuka I2C. Apabila lebih dari satu modul

dihubungkan pada I2C bus maka jumper J1 (SCL/SDA) maka hanya perlu memasang salah satu jumper dari dua modul. Bentuk pemngaturan modul

(43)

Gambar 2.10 Jumper J3 (Manual rev1, 2013)

3. Jumper RLOAD (J7) berfungsi untuk memilih resistor beban yang akan digunakan pada rangkaian pengkondisi sinyal modul DT-Sense. Hal ini harus

diatur karena modul ini dapat digunakan untuk lebih dari 1 macam sensor dan

karakteristik tiap sensor berbeda-beda. Pengaturan jumper RLOAD (J7) ditunjukkan seperti yang ada pada Gambar 2.11.

Gambar 2.11 Jumper J7 (Manual rev1, 2013)

4. Soket SR-5 (J4) berfungsi sebagai konektor untuk sensor gas yang digunakan.

(44)

Tabel 2.15 Soket SR-5 J4 (Manual rev1, 2013)

Pin Nama Fungsi

1 A Terhubung dengan tegangan catu daya 5 Volt 2 H Terhubung dengan tegangan catu daya 5 Volt 3 A Terhubung dengan tegangan catu daya 5 Volt 4 B Terhubung dengan rangkaian pengkondisi sinyal 5 H Terhubung dengan rangkaian pengendali heater 6 B Terhubung dengan rangkaian pengkondisi sinyal

5. Konektor output (J5) berfungsi sebagai konektor untuk output open collector. Pin konektor output (J5) dapat dilihat pada Tabel 2.16.

Tabel 2.16 Soket SR-5 J4 (Manual rev1, 2013).

Pin Nama Fungsi

1 GND Terhubung dengan titik referensi catu daya 2 VCC Terhubung dengan tegangan catu daya 5 Volt 3 OC-OUT Pin output kendali ON/OFF bersifat Open Collector

6. Jumper t.hold select (J6) berfungsi untuk memilih sumber nilai batas yang digunakan (dari variabel resistor T.HOLD ADJUST atau dari EEPROM

modul) untuk kendali ON/OFF. Pengaturan jumper t.hold select (J6) dapat dilihat pada Gambar 2.12.

(45)

2.11.2. LED indikator

Pada modul DT sense gas sensor terdapat 2 buah led indikator yaitu indikator merah dan led indikator hijau. Pada saat power-up, led merah akan

berkedip sesuai dengan alamat I2C modul. Jika alamat I2C adalah 0xE0 maka led

indikator akan berkedip 1 kali. Jika alamat I2C adalah 0xE2 maka led indikator

akan berkedip 2 kali. Jika alamat I2C adalah 0xE4 maka led indikator akan

berkedip 3 kali dan demikian seterusnya sampai alamat I2C 0xEE maka led

indikator akan berkedip 8 kali.

Pada saat power-up, led hijau akan berkedip dengan cepat sampai kondisi

pemanasan sensor dan hasil pembacaan sensor sudah stabil. Waktu yang

diperlukan untuk mencapai kondisi stabil berbeda-beda untuk tiap sensor yang

digunakan tergantung pada kecepatan respon sensor dan kondisi heater pada sensor. Jika kondisi stabil sudah tercapai, maka led hijau akan menyala tanpa

berkedip. Pada kondisi operasi normal (setelah kondisi power-up), led merah akan menyala atau padam sesuai dengan hasil pembacaan sensor dan mode operasi

yang dipilih. Sedangkan selama hasil pembacaan sensor stabil, led hijau akan

tetap menyala dan hanya berkedip pelan (tiap 1 detik) jika ada perubahan

konsentrasi gas.

2.11.3. Antarmuka I2C

Modul DT sense gas sensor memiliki antarmuka I2C. Pada antarmuka I2C ini, modul DT sense gas sensor bertindak sebagai slave dengan alamat sesuai dengan telah ditentukan sebelumnya. Alamat default DT sense gas sensor adalah

0xE0 dan dapat diganti menggunakan perintah yang dijelaskan pada bagian

(46)

sensor mendukung bit rate sampai dengan maksimum 100 KHz. Semua perintah yang dikirim melalui antarmuka I2C diawali dengan startcondition dan kemudian

diikuti dengan pengiriman 1 byte alamat modul DT sense gas sensor. Setelah pengiriman alamat, selanjutnya master harus mengirim 1 byte data yang berisi

<nomor perintah> dan (jika diperlukan) n-byte data parameter perintah.

Selanjutnya, setelah seluruh parameter perintah telah dikirim, urutan perintah

diakhiri dengan stop condition.

Sebuah data atau parameter yang memiliki range lebih besar dari 255

desimal (lebih besar dari 1 byte) dikirim secara dua tahap. Satu byte data MSB

dikirim lebih dahulu kemudian diikuti dengan data LSB. Misalnya parameter

<dataSensor> yang memiliki range 0 – 1023. Jika <dataSensor> bernilai 1000

maka byte MSB yang dikirim adalah 3 dan byte LSB yang dikirim adalah 232

(47)

35 3.1 Model Penelitian

Penelitian dilakukan berdasarkan tahapan yang telah disusun. Tahapan

umum penelitian dibuat dalam sebuah skema kerja yang menggambarkan alur

pengerjaan penelitian. Tahapan penelitian secara umum dijelaskan dalam skema

[image:47.595.95.504.302.732.2]

pada Gambar 3.1.

(48)

Pada penelitian terdapat dua tahapan utama yaitu bagian akuisisi data yang

dijelaskan oleh blok diagram pada Gambar 3.2 dan bagian analisis data yang

[image:48.595.94.506.169.533.2]

dijelaskan oleh blok diagram pada Gambar 3.3.

Gambar 3.2 Diagram blok sistem

Gambar 3.3 Diagram blok analisis data

Pada bagian akuisisi data, terdapat tiga sensor, sensor suhu LM35, sensor

gas metana dan sensor gas karbon dioksida yang ada di dalam digester. Di luar digester terdapat rangkaian real time clock yang berfungsi sebagai time generator

(49)

data gas metana dan karbon diokisda akan dikirimkan melalui komunikasi serial

ke modul data logger. Modul data logger akan membuat file .TXT yang berisi semua hasil akuisisi data sensor. Pengiriman data sensor tersebut disertai juga

dengan data tanggal dan jam untuk menambah reability data. Proses ini dilakukan setiap 15 menit sekali dengan mempertimbangkan kondisi suhu yang tidak mudah

berubah.

Bagian analisis data merupakan bagian untuk mengelola data yang sudah

ada untuk mendapatkan kesimpulan. Dengan tujuan untuk mempermudah proses

analisis data, dibuatlah aplikasi analisis data dengan Visual Basic 6.0. Aplikasi ini

bertujuan untuk membaca semua data yang tersimpan dalam file .TXT. Semua

data yang berjumlah ratusan tersebut akan diseleksi sesuai dengan jenisnya, yaitu

data suhu, data gas metana dan data karbon dioksida. Pada tahap terakhir,

dibuatlah grafik sesuai dengan jenis datanya untuk melihat pola dan

kecenderungan gas metana dan gas terhadap pengaruh suhu.

Untuk menunjang proses analisis, digester mendapat 3 jenis perlakuan suhu.

Digester akan diletakkan pada 3 tempat dengan suhu yang berbeda-beda. Digester

akan diberi pelakuan pertama yaitu suhu kamar normal dengan cara diletakkan

pada kamar yang tidak memiliki pendingin. Kamar tersebut memiliki suhu antara

(50)
[image:50.595.89.508.312.600.2]

Gambar 3.4 Digester diletakkan pada salah satu sudut kamar

Setelah itu, digester akan diberi perlakuan suhu kedua yaitu suhu yang lebih rendah dengan cara dimasukkan ke dalam lemari pendingin. Lemari pendingin

tersebut memiliki suhu antara 180 sampai 220 Celsius. Digester diletakkan di dalam lemari pendingin seperti yang dapat dilihat pada Gambar 3.5.

Gambar 3.5 Digester diletakkan di dalam lemari pendingin

(51)

tersebut terdapat bohlam 5 Watt yang berfungsi sebagai pemanas seperti yang

dapat dilihat pada Gambar 3.6.

Gambar 3.6 Tabungdengan bohlam sebagai pemanas digester

3.2. Perancangan Perangkat Keras 3.2.1. Perancangan Digester

Dalam proses pembuatan biogas diperlukan digester atau tanki pencerna. Fungsi utama digester adalah untuk menampung kotoran sapi dan melakukan proses fermentasi secara anaerob. Agar digester dapat mendukung penelitian ini,

digester dibuat dari bahan penghantar panas dan dingin yang baik. Berikut ini bahan dan spesifikasi dari digester.

Bentuk dimensi

Tabung

Ukuran dimensi

Ukuran digester : Tabung dengan jari-jari alas 7 cm dan tinggi 25 cm.

Volume = 3.14x7cmx7cm x25cm

(52)

Struktur material

Bahan material yang digunakan : alumunium

Bentuk fisik digester secara detail dapat dilihat pada Gambar 3.7.

[image:52.595.97.507.169.497.2]

Gambar 3.7 Digester

3.2.2. Perancangan Sistem Minimum

Mikrokontroler yang digunakan adalah Atmega8535. Mikrokontroler

digunakan sebagai pengolah data dari sensor-sensor dan sebagai pengontrol

sistem secara keseluruhan. Mikontroler Atmega8535 membutuhkan rangkaian

pendukung atau sistem minimum untuk dapat bekerja. Rangkaian sistem

minimum terdiri dari rangkaian clock generator, rangkaian reset, rangkaian

(53)
[image:53.595.94.502.83.659.2]

Gambar 3.8 Sistem minimum

Untuk penggunaaan masing-masing pin dari Atmega8535 dapat dilihat pada Tabel

3.1.

Tabel 3.1 Pin I/O Sistem Minimum

Pin I/O Fungsi

Vcc sumber tegangan 5V

Gnd Ground

PD0/RX disambungkan dengan pin TX OpenLog

PD1/TX disambungkan dengan pin RX OpenLog

PC62/SDA terhubung secara paralel pada jalur SCL (clock) dari 2 modul DT sense gas Sensor

PC7/SCL terhubung secara paralel pada jalur SDA (data) dari 2 modul DT sense gas Sensor

Reset pin reset Atmega8535

PA6 pin masukan ADC dari sensor suhu LM35

PC0/SCL pin masukan SCL dari TWI yang digunakan oleh RTC PC1/SDA pin masukan SDA dari TWI yang digunakan oleh RTC

3.2.3. Perancangan Sensor Suhu LM35

Untuk mengetahui suhu di dalam digester maka sensor yang digunakan

adalah LM35. Sensor suhu LM35 mempunyai 3 pin kaki yaitu, pin masukan

(54)

tegangan, pin keluaran data yang dimasukkan ke dalam pin analog to digital converter mikrokontroler dan pin ground.

Seperti kebanyakan micropower circuits lainnya, LM35 mempunyai keterbatasan dalam menangani capacitive loads yang besar. Untuk itu perlu ditambahkan damper untuk menambah kemampuan toleransi terhadap capacitive loads yang besar. Maka dari itu, keluaran dari LM35 diparalel dengan resistor yang disusun secara seri untuk mencegah beban yang berlebih. Lalu, ditambahkan

[image:54.595.90.511.306.531.2]

juga kapasitor pada pin tegangan masukan dan ground sebagai bypass capasitor. Rangkaian sensor suhu LM35 dapat dilihat pada Gambar 3.9.

Gambar 3.9 Rangkaian sensor suhu LM35

Sedangkan untuk konfigurasi analog to digital converter untuk LM35 pada CVAVR ditunjukkan seperti pada Gambar 3.10.

(55)
[image:55.595.228.398.83.308.2]

Gambar 3.10 Konfigurasi sensor suhu LM35

Volt Ref merupakan sumber pemilihan tegangan referensi ADC, tegangan referensi yang digunakan untuk pemilihan penggunaan tegangan referensi ADC,

antara AVCC dan VREF. Clock adalah banyaknya frekuensi sampling ADC. Dan

Auto Trigger Source merupakan mode ADC yang akan digunakan.

LM35 memiliki range pengukuran antara -550 sampai dengan 1500 Celsisus

dengan tingkat akurasi 0.50 Celsius. Sensor ini memiliki keluaran yang linear

sebesar 10mV/0 Celcius. Jadi, tiap kenaikkan 10mV maka suhu bertambah 10

Celsius.

Dengan menggunakan rangkaian dasar, atau yang disebut Basic Centigrade Temperature Sensor yang ada pada datasheet LM35, maka LM35 memiliki range pengukuran 0mV – 10mV/oC. Jika dibuatkan kesetaraaan antara tegangan dengan

(56)

Tabel 3.2 Perbandingan tegangan dan suhu

Tegangan Suhu 0V 0 o C 10mv 1 o C 100mV 10 o C 1000mV 100 o C 1500mV 150 oC

Dengan melihat karakteristik tersebut, maka dengan menggunakan ADC

(Analog to Digital Convertion) kita bisa melakukan konversi dari tegangan ke suhu menggunakan mikrokontroler ATmega8535 yang mempunyai ADC internal

berjumlah 8 channel 10 bit. Jarak tegangan dari 0 sampai dengan tegangan

maksimum sama dengan nilai 0 sampai dengan 1024 (n10).

Secara internal, mikrokontroler ATmega8535 menggunakan rumus

tegangan masukan dikali 1024 dibagi dengan tegangan referensi. Di mana

hasilnya adalah hasil konversi ADC. Dalam penggunaan ADC dengan LM35

sebagai masukan, maka tegangan masukan untuk ADC adalah tegangan keluaran

dari LM35. Hubungan tegangan LM35 dan keluaran ADC dijelaskan pada Tabel

[image:56.595.259.365.140.230.2]

3.3.

Tabel 3.3 LM35 dan keluaran ADC

Keluaran LM35

Rumus Perhitungan Matematis Keluaran ADC

0 V 0*1024/5000 0 0

1 mV 1*1024/5000 0.2048 0

10 mV 10*1024/5000 2.048 2

1000 mV 1000*1024/5000 204.8 205

Untuk mengubah data hasil pembacaan LM35 menjadi data suhu yang

sebenarnya maka cara pembacaan rumus dibalik. Setiap mendapatkan output

(57)

setiap satu digit LSB yang dikeluarkan oleh ADC mikrokontroler akan bernilai

sebesar :

1 LSB = Vref / (2n – 1)

Jika Vref adalah 5000 mV maka nilai 1 LSB kurang lebih = 4.9 mV

(pembulatan). Sehingga rumus konversinya adalah:

Suhu = (Keluaran ADC * Kenaikan satu LSB) / Volt per Celcius

Di mana:

1. Keluaran ADC adalah hasil pembacaan ADC mikrokontroler.

2. Kenaikan satu LSB = 4.9 (jika Vref = 5V)

3. Volt per celcius = 10 (karakteristik LM35, 10mV/oC)

Berikut ini program untuk membaca data ADC dari LM35 berikut perintah

konversi agar nilainya menunjukkan nilai suhu sebenarnya.

temp = read_adc(6);

temp = (temp * 4.8) / 10; itoa(temp,suhu);

delay_ms(10);

3.2.4. Perancangan Real Time Clock DS1307

Pada saat sensor melakukan akuisisi data diperlukan data waktu dan tanggal

(58)
[image:58.595.98.503.91.707.2]

Gambar 3.11 Rangkaian RTC DS1307

DS1307 menyediakan pin battery backup untuk dihubungkan pada baterai lithium 3V atau sumber energi lain sehingga ketika supply daya utama mati,

battery backup mengambil alih supply energi pada RTC sehingga DS1307 tetap berjalan. Protokol komunikasi yang digunakan adalah komunikasi TWI.

Konfigurasi real time clock pada CVAVR dapat dilihat pada Gambar 3.12.

Gambar 3.12 Konfigurasi TWI untuk RTC DS1307

(59)

Selanjutnya untuk konfigurasi akses data pada real time clock dengan TWI sudah bisa memanfaatkan library dari ds1307_twi.h. Dari library tersebut sudah disediakan fungsi-fungsi yang dibutuhkan untuk membaca data dari real time clock.

Agar dapat dipakai, terlebih dahulu harus dilakukan inisialaisi awal berupa

pengaturan jam dan tanggal yang sesuai, lalu download program ke mikrokontroler. Setelah sudah diberikan inisialisasi awal maka baris program

pengaturan jam dan tanggal dapat dihilangkan kemudian download program lagi ke mikrontroler. Berikut baris program untuk melakukan inisialisasi awal.

rtc_set_time(17,07,07); //set time 17:07:07 rtc_set_date(0,13,07,13); //set date 13:07:2013

Jika inisialisasi awal sudah dilakukan, maka untuk membaca data dapat

dilakukan dengan fungsi yang sudah disediakan oleh library TWI. Berikut menunjukkan baris perintah untuk membaca dari RTC.

rtc_get_time(&h,&m,&s); rtc_get_date(0,&dd,&mm,&yy);

3.2.5. Konfigurasi Openlog Data Logger

Untuk keperluan data logging maka digunakan Openlog data logger. Modul ini mempunyai 6 buah pin yaitu pin RX, TX, VCC, GND, GRN, dan BLK.

Namun untuk penggunaan pada Atmega 8535 hanya 4 buah pin yang dipakai.

Komunikasi dengan modul ini menggunakan komunikasi serial USART.

Untuk itu pin RX pada modul ini disambungkan dengan pin TX mikrokontroler

dan pin TX pada modul disambungkan dengan pin RX pada mikrokontroler. Dan

(60)

dipakai mikrokontroler guna mendukung komunikasi serial. Skematik dari

konfigurasi modul Openlog data logger dapat dilihat pada Gambar 3.13.

Gambar 3.13 Rangkaian Openlog data logger

Modul Openlog dapat diatur konfigurasinya dengan mengubah isi file CONFIG.TXT yang terdapat pada memory card yang sebelumnya sudah dimasukkan ke dalam modul Openlog yang sudah diberi catu daya. Konfigurasi yang diubah disesuaikan dengan kebutuhan pengerjaan Tugas Akhir. Konfigurasi

yang diubah adalah adalah penggunaan mode Sequential Log.

[image:60.595.231.421.144.243.2]

Untuk dapat mengubah konfigurasi ke mode Sequential Log maka masukkan memory card pada computer dan buka file CONFIG.TXT yang ada pada memory card dengan notepad. Setelah itu akan muncul serangkaian baris kode perintah seperti yang ditunjukkan pada Gambar 3.14.

Gambar 3.14 Pengaturan CONFIG.TXT

PD.1

OpenLoggerDataLogger

2

4 3

5

6 1

RXI

VCC TXO

GND

BLK GRN

(61)

Setiap 1 jenis konfigurasi dibatasi dengan tanda “ , ” (koma). Konfigurasi

Sequential Log didapatkan dengan cara mengubah angka secara manual dengan keyboard pada konfigurasi keempat atau setelah tanda koma ketiga. Ubah angka 0

(nol) menjadi 1 (satu) seperti yang ditunjukkan pada Gambar 3.15. Setelah

konfigurasi selesai, tekan CTRL+S untuk menyimpan perubahan. Setelah itu

[image:61.595.91.504.251.493.2]

keluar dari program notepad dan lakukan safely remove pada memory card.

Gambar 3.15 Konfigurasi Sequential Log

Jika proses tersebut sudah dilakukan, maka masukkan lagi memory card

pada OpenLog dan berikan catu daya. Setelah itu, led pada Openlog akan berkedip selama beberapa kali, yang menandakan proses konfigurasi berhasil dilakukan.

Kemudian, untuk memeriksa apakah konfigurasi berhasil maka matikan lagi catu

daya OpenLog. Ambil memory card dan masukkan lagi ke dalam komputer. Jika proses konfigurasi berhasil, maka akan ada dua file .TXT yaitu SEQLOG00.TXT

dan CONFIG.TXT.

Kemudian, untuk melakukan pengiriman data maka diperlukan konfigurasi

(62)
[image:62.595.233.395.83.330.2]

Gambar 3.16 Konfigurasi USART Openlog data logger

Jika konfigurasi pada CVAVR sudah selesai, maka untuk mengirimkan data hasil pembacaan sensor digunakan perintah printf(); yang ada pada librarystdio.h. Berikut ini barisan program yang mengirimkan data pembacaan sensor-sensor,

serta data jam dan tanggal.

printf("**"); delay_ms(10);

printf("Jam: %02i:%02i:%02i",h,m,s); delay_ms(10);

printf("--"); delay_ms(10);

printf("Tgl: %02i:%02i:%02i",dd,mm,yy); delay_ms(10);

printf("--");

delay_ms(10);

printf("Suhu: %02d",temp); delay_ms(10);

printf("--");

delay_ms(10); printf("CO2: %i",sensor); delay_ms(10);

printf("--"); delay_ms(10);

printf("CH4: %i",sensor4); delay_ms(10);

(63)

Setiap awal dan akhir satu paket data diberikan karakter ** guna menandai

sepaket data yang satu dengan sepaket data yang lain. Sedangkan untuk antar data

diberikan karakter -- untuk membedakan jenis data yang satu dengan yang lain.

Pemberiaan karakter khusus ini juga untuk memudahkan proses analisa data

dengan program Visual Basic 6.0.

Kemudian, untuk pengiriman antar data memerlukan delay sebesar 10 ms. Hal ini merupakan pengaturan yang disarankan oleh pabrikan modul jika mode

Sequential Log digunakan.

3.2.6. Konfigurasi DT Sense Gas Sensor

Modul DT sense gas sensor digunakan guna mendapatkan hasil pembacaan data sensor yang lebih akurat. Pada Tugas Akhir ini digunakan dua modul DT sense gas sensor. Modul DT sense gas sensor digunakan untuk masing-masing sensor MQ-4 (metana) dan MG-811 (karbon dioksida). Kedua modul tersebut

mempunyai pin SDA dan SCL. Pin SDA dari satu modul diparalel dengan pin

SDA lalu disambungkan dengan pin SDA mikrokontroler. Hal yang sama juga

berlaku pada pin SCL. Konfigurasi konektor J3 yang dipakai untuk modul DT sense gas sensor dapat dilihat pada Tabel 3.4.

Tabel 3.4 Konektor interface J3 (Manual rev1, 2013) Pin Nama Fungsi

1 GND Titik referensi ground untuk catu daya input 2 VCC Terhubung ke catu daya (5 Volt)

3 SDA I2C-bus data input / output 4 SCL I2C-bus clock input

Pada tiap modul terdapat jumper untuk mengaktifkan pull up resistor untuk pin SDA dan SCL. Karena ada dua modul yang dihubungkan pada satu jalur I2C,

(64)

jumper terpasang, dan modul yang lain dengan jumper yang dilepas. Konfigurasi untuk jumper J1 ditunjukkan pada Gambar 3.17.

Gambar 3.17 Konfigurasi jumper SDA SCL J1

[image:64.595.90.508.296.531.2]

Tiap sensor memiliki konfigurasi jumper RLOAD atau jumper yang mengatur nilai resistor beban masing-masing. Pengaturan jumper pada modul sesuai dengan jenis sensor (MQ-4 atau MG-811) yang dipakai dapat dilih

Gambar

Tabel 2.9 Rumus perhitungan UBRR (Andrianto, 2008)
Tabel 2.10 Register UCSRA (Ardianto 2008)
Tabel 2.13.
Gambar 2.8 Modul DT sense gas sensor
+7

Referensi

Dokumen terkait