Analisis Iklim dan Dinamika Populasi Hama Penggerek Batang Padi Kuning di Indramayu dengan Menggunakan Model Simulasi Dymex 3.0

38  11  Download (2)

Teks penuh

(1)

ANALISIS IKLIM DAN DINAMIKA POPULASI HAMA

PENGGEREK BATANG PADI KUNING DI INDRAMAYU

DENGAN MENGGUNAKAN MODEL SIMULASI DYMEX 3.0

ATHINK RIKSON KRISTIAN BANJARNAHOR

GEOFISIKA DAN METEOROLOGI

MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA*

Dengan ini saya menyatakan bahwa skripsi berjudul Analisis Iklim dan Dinamika Populasi Hama Penggerek Batang Padi Kuning di Indramayu dengan Menggunakan Model Simulasi Dymex 3.0 adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor.

(4)

ABSTRAK

ATHINK RIKSON KRISTIAN BANJARNAHOR. Analisis Iklim dan Dinamika Populasi Hama Penggerek Batang Padi Kuning di Indramayu dengan Menggunakan Model Simulasi Dymex 3.0. Dibimbing oleh YONNY KOESMARYONO.

Scirpophaga incertulas yang dikenal dengan nama hama Penggerek batang padi kuning (PBK) adalah salah satu hama yang paling banyak menyerang tanaman padi di wilayah Indramayu. Salah satu faktor yang mempengaruhi keberadaan hama ini adalah faktor iklim, yaitu curah hujan, suhu minimum dan maksimum, RH maksimum dan minimum. Tujuan penelitian ini adalah menganalisis pengaruh iklim terhadap dinamika populasi Penggerek batang padi kuning di wilayah Kabupaten Indramayu. Model siklus hidup dan pendugaan populasi hama menggunakan model simulasi Dymex 3.0. Simulasi dilakukan selama empat tahun mulai dari tahun 2009-2012. Hasil simulasi model telah dapat memberikan prediksi yang cukup baik. Model simulasi juga menunjukkan bahwa puncak populasi hama terjadi pada bulan-bulan kering dengan intensitas curah hujan yang rendah dan populasi hama menurun pada saat curah hujan tinggi akibat tercuci oleh hujan. Hal tersebut juga didukung dengan nilai koefisien determinasi (R2) hasil validasi antara populasi model hasil luaran Dymex dan populasi hasil observasi sebesar 64%. Pengaruh iklim berbeda-beda terhadap perkembangan dan keberadaan hama PBK. Suhu dan curah hujan menjadi faktor yang paling utama dalam perkembangan dan mortalitas hama PBK.

(5)

ABSTRACT

ATHINK RIKSON KRISTIAN BANJARNAHOR. Climate Analysis and Population Dynamics of Yellow Rice Stem Borer Pests in Indramayu with Using Simulation Model Dymex 3.0. Supervised by YONNY KOESMARYONO.

Scirpophaga incertulas known as the Yellow rice stem borer (PBK) is one of the most attacking pests of rice plants in Indramayu region. One of the factors that influence the presence of this pest is the climatic factor, that were rainfall, maximum and minimum temperature, maximum and minimum Relative humadity. The purpose of this study was to analyze the influence of climate on the population dynamics of Yellow rice stem borer in the district of Indramayu. Life cycle model and estimation of pest populations using simulation models Dymex 3.0. Simulations were performed for four years from 2009-2012. Results of simulation models have been able to give a fairly good prediction. Model simulations also indicate that the pest population peaks occurred in the dry months with low rainfall intensity and pest population decreases as a result of high rainfall washed away by rain. This is also supported by the value of the coefficient of determination (R2) between the validation results of outcomes population of model Dymex and observations by 64%. Different climatic influences on the development and the presence of pests PBK. Temperature and rainfall are the most important factor in the progression and mortality of pest PBK

Keyword: Climate, Dymex, Scirpophaga incertulas

(6)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains

pada

Departemen Geofisika dan Meteorologi

ANALISIS IKLIM DAN DINAMIKA POPULASI HAMA

PENGGEREK BATANG PADI KUNING DI INDRAMAYU

DENGAN MENGGUNAKAN MODEL SIMULASI DYMEX 3.0

ATHINK RIKSON KRISTIAN BANJARNAHOR

GEOFISIKA DAN METEOROLOGI

MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

(7)
(8)
(9)

Judul Skripsi : Analisis Iklim dan Dinamika Populasi Hama Penggerek Batang Padi Kuning di Indramayu dengan Menggunakan Model Simulasi Dymex 3.0

Nama : Athink Rikson Kristian Banjarnahor NIM : G240090005

Disetujui oleh

Diketahui oleh

Dr Ir Rini Hidayati, MS Ketua Departemen

Tanggal Lulus:

(10)

PRAKATA

Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Kuasa atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan sejak bulan Februari 2013 ini ialah Organisme Pengganggu Tanaman, dengan judul Analisis Iklim dan Dinamika Populasi Hama Penggerek Batang Padi Kuning di Indramayu dengan Menggunakan Model Simulasi Dymex 3.0

Terima kasih penulis ucapkan kepada:

1. Bapak Prof. Dr. Ir. Yonny Koesmaryono, MS selaku pembimbing. 2. Bapak Syahrizal Koem yang telah banyak memberi bantuan dan saran. 3. Bapak Kohar dari BPTPH Bandung, Ibu Heni Haryawati selaku staf

Instalasi PPOPT indramayu yang telah membantu selama pengumpulan data.

4. Ungkapan terima kasih juga disampaikan kepada Ayah, Ibu, serta seluruh keluarga, atas segala doa dan kasih sayangnya.

5. Teman-teman seperjuangan “GFM 46” yang telah banyak memberikan masukan dan saran

6. Eka Fibriantika, Rini, Risna, Enda, dan teman kost Qyu-Qyu (May, Dani, Bagindo, Andika, Yan Parta, Chriss yang selalu menemani dalam pembuatan skripsi ini.

Semoga karya ilmiah ini bermanfaat.

(11)

DAFTAR ISI

DAFTAR TABEL vi

DAFTAR GAMBAR vi

DAFTAR LAMPIRAN vi

PENDAHULUAN 1

Latar Belakang 1

Tujuan Penelitian 2

TINJAUAN PUSTAKA 2

Tanaman Padi 2

Hama Penggerek Batang Padi Kuning 2

Dymex 4

METODE 4

Bahan 4

Alat 4

Prosedur Analisis Data 4

HASIL DAN PEMBAHASAN 8

Syarat Ambang Batas Suhu Perkembangan 8

Model Kalibrasi 8

Karakteristik Daerah Kajian 10

Model Simulasi 11

Pengaruh Curah Hujan Terhadap Populasi Imago 14

Pengaruh Suhu Terhadap Populasi Imago 14

Pengaruh Kelembaban Udara Terhadap Populasi Imago 15

Model Validasi 16

SIMPULAN DAN SARAN 17

Simpulan 17

Saran 17

DAFTAR PUSTAKA 17

LAMPIRAN 19

(12)

DAFTAR GAMBAR

1 Siklus hidup hama Penggerek batang padi kuning (Scirpophaga

incertulas) 3

2 Modul lifecycle penelitian 6

3 Model buiilder penelitan 7

4 Model simulator penelitian 8

5 Kalibrasi model Dymex pada tanggal 1 Januari 2008 sampai 31

Desember 2008 pada wilayah Cirebon 9

6 Hubungan populasi imago hasil luaran model dan hasil observasi pada tanggal 1 Januari 2008 sampai 31 Desember 2008 10 7 Kondisi iklim wilayah Indramayu pada tanggal 1 Januari 2009 sampai

31 Desember 2012 11

8 Hasil luaran model populasi telur, larva, pupa dan imago Penggerek

batang padi kuning pada tahun 2009-2010 12

9 Hasil luaran model populasi telur, larva, pupa dan imago Penggerek

batang padi kuning pada tahun 2011-2012 12

10 Hubungan curah hujan dengan populasi imago di wilayah Indramayu

pada tahun 2009-2012 14

11 Hubungan suhu minimum dengan populasi imago di wilayah

Indramayu pada tahun 2009-2012 14

12 Hubungan suhu maksimum dengan populasi imago di wilayah

Indramayu pada tahun 2009-2012 14

13 Hubungan RH maksimum dengan populasi imago di wilayah

Indramayu pada tahun 2009-2012 15

14 Hubungan RH minimum dengan populasi imago di wilayah Indramayu

pada tahun 2009-2012 16

15 Validasi model Dymex pada wilyah Indramayu pada tanggal 1 Januari

2008 sampai 31 Desember 2008 16

DAFTAR LAMPIRAN

(13)
(14)

PENDAHULUAN

Latar Belakang

Padi (Oryza sativa) merupakan tanaman yang paling banyak dibudidayakan di Indonesia. Permintaan konsumsi padi di Indonesia sangat tinggi. Selain itu padi merupakan sumber energi pokok bagi penduduk Indonesia yang mampu menyediakan karbohidrat, protein, mineral, vitamin dan serat. Konsumsi beras di Indonesia juga menjadi yang tertinggi di dunia yang mencapai 90 kilogram per tahun per orang (Deptan 2013). Jumlah ini sangat jauh jika dibandingkan dengan orang Asia yang hanya mengonsumsi beras sebanyak 65-70 kilogram per tahun per orang.

Indramayu adalah salah satu sentra pertanian di Jawa Barat. Dalam enam tahun terakhir, Indramayu masih nomor satu dalam produksi padi di Jawa Barat. Luas lahan persawahan di Kabupaten Indramayu terbagi dua yaitu sawah irigasi seluas 121355 ha dan sawah tadah hujan seluas 12420 ha. Luas kedua jenis lahan persawahan tersebut sekitar 63.82% dari luas wilayah Indramayu (Bappeda Kabupaten Indramayu 2009). Produksi padi Indramayu semakin meningkat, pada tahun 2007 sebesar 1060545 ton, dan pada tahun 2011 produksinya telah mencapai 1324618 ton.

Dalam produksi padi, faktor lingkungan sangat mempengaruhi hasil produksi. Faktor-faktor lingkungan yang mempengaruhi produksi padi adalah kesuburan tanah, faktor iklim (musim hujan dan kemarau, radiasi matahari, suhu udara, kelembaban) dan pengelolaan tanaman (pemupukan dan jarak tanam). Faktor iklim merupakan salah satu faktor lingkungan yang utama yang mempengaruhi produksi padi.

Selain dipengaruhi oleh kondisi iklim, produktivitas padi juga dipengaruhi oleh Organisme Pengganggu Tanaman (OPT). OPT merupakan salah satu ancaman dan faktor penghambat biologis bagi budidaya Padi sehingga menyebabkan rendahnya produktivitas padi. Tanaman padi merupakan inang yang ideal bagi banyak spesies hama. Seluruh bagian tanaman Padi tersebut sangat rentan terhadap serangan hama mulai dari fase persemaian sampai fase pemanenan. Saat ini terdapat lebih dari 800 spesies hama yang dapat merusak padi tetapi sebagian besar dari spesies tersebut hanya menimbulkan kerusakan ringan ( Dale 1994)

(15)

2

Software Dymex adalah salah satu software yang dapat digunakan untuk melakukan analisis hubungan antara iklim dengan hama tanaman khususnya dinamika populasi hama. Sampai saat ini kebanyakan penelitian menggunakan Dymex masih dilakukan di daerah subtropis seperti Australia (Yonow et al. 2004) sehingga perlu dilakukan penelitian ini di daerah tropis khususnya di Indonesia.

Tujuan Penelitian

Tujuan dari penelitian ini adalah menganalisis pengaruh iklim terhadap dinamika populasi Penggerek batang padi kuning (Scirpophaga incertulas) di wilayah Kabupaten Indramayu menggunakan model simulasi Dymex 3.0.

TINJAUAN PUSTAKA

Tanaman Padi

Padi merupakan sumber makanan pokok bagi lebih dari setengah dari penduduk dunia. Luas lahan yang ditanami padi di dunia mencapai 145 juta ha yang berada pada lebih dari 110 negara. Luas lahan tersebut menempati hampir seperlima dari total luas lahan pertanian dunia. Tanaman padi diklasifikasikan sebagai tanaman tropis dan subtropis. Menurut Grist (1960), tanaman padi (Oryza sativa L) termasuk ke dalam divisi Spermatophyta, kelas Monocotyledoneae, ordo Poales, family Gramineae, genus Oryza. Tanaman padi dunia diserang oleh lebih dari 100 spesies serangga, 20 dari spesies hama tersebut dapat menyebabkan kerugian ekonomi. Asia merupakan wilayah yang menghasilkan 90% beras dunia. Dari jumlah produksi beras tersebut, kerugian rata-rata akibat serangan hama di wilayah ini mencapai 20% (Pathak dan khan 1994).

Hama Penggerek Batang Padi

Di seluruh dunia terdapat 21 jenis hama penggerek batang padi. Beberapa hama Penggerek batang padi yang ditemukan di kawasan Indonesia diantaranya Penggerek batang padi kuning (Scirpophaga incertulas), Penggerek batang padi putih (Scirpophaga innotata), Penggerek batang padi bergaris (Chilo suppressalis), Penggerek batang padi kepala hitam (Chilo polychrysus), penggerek batang padi berkilat (Chilo auricilius), Penggerek batang padi merah jambu (Sesamia infers) (Hattori dan Siwi 1986). Pada kawasan Asia, Scirpophaga incertulas dan Chilo suppressalis mengakibatkan kerusakan tahunan sekitar 5-10% pada tanaman padi, bahkan jika terjadi wabah lokal kerusakan yang ditimbulkan dapat mencapai 60%.

Penggerek batang padi kuning banyak terdistribusi di daerah tropis dengan suhu udara lebih dari 10 oC dan curah hujan tahunan lebih dari 1000 mm. Spesies ini dominan di beberapa Negara seperti Bangladesh, India, Malaysia, Pakistan, Filipina, Sri Lanka, Thailand, Vietnam, dan Indonesia (Pathak dan khan 1994)

(16)

3 pada lahan persawahan. Hama ini dapat terbang sejauh 5-10 mil, namun jarak yang ditempuh dapat lebih jauh lagi jika terbawa oleh angin. Waktu perkawinan hama ini biasanya terjadi pada pukul 19.00 sampai 21.00.

Gambar 1 Siklus hidup hama Penggerek batang padi kuning (Scirpophaga incertulas) Sumber: rkmp.co.in.

Selama hidupnya, hama ini hanya melakukan perkawinan sekali. Scirpophaga incertulas betina bertelur antara pukul 19.00 sampai 22.00 pada musim panas dan pukul 18.00 sampai 20.00 pada musim semi dan musim gugur. Lama hama ini bertelur sekitar 10 sampai 35 menit. Telur-telur hama ini diletakkan di dekat ujung daun. Ambang batas suhu untuk pengembangan telur adalah 13 0C dan untuk penetasan terjadi pada suhu 16 0C atau lebih. Masa inkubasi menurun dengan kenaikan temperatur, mulai pada suhu 30 0C sampai 35 0

C. Suhu optimum penetasan telur untuk hama ini adalah 24 0C sampai 29 0C dengan kelembaban udara (RH) 90-100% dan penetasan sangat berkurang pada RH di bawah 70%.

Telur yang menetas menjadi larva akan merangkak ke atas menuju ujung tanaman dimana mereka akan tinggal dalam waktu yang singkat. Larva hama ini terbungkus benang sutra, dan larva ini dapat berenang dalam air karena terdapat lapisan udara pada tubuh mereka. Biasanya 75% larva melahirkan namun hanya 10% yang mencapai dewasa. Ambang batas suhu untuk pengembangan larva adalah minimal 16 0C, pada suhu 12 0C larva tidak bisa ganti kulit dan akan mati. Tingkat perkembangan larva berkorelasi positif dengan suhu antara 17 0C sampai 35 0C.

(17)

4 Dymex

Dymex merupakan software yang dapat digunakan untuk membuat dan menjalankan model-model perubahan populasi suatu organisme saat terjadi perubahan lingkungan dan menggambarkan lingkungan yang sesuai untuk tinggalnya spesies hama tertentu. Software ini mempermudah para ekologis dalam membuat model populasi organisme tanpa harus mengetahui bahasa pemrograman. Dymex terdiri atas dua bagian yaitu Dymex Model Builder dan Dymex Model Simulator. Dymex Model Builder merupakan bagian Dymex yang

digunakan untuk membuat model, sedangkan Dymex Model Simulator merupakan

bagian dymex yang digunakan untuk menjalankan model. Pada model simulator hasil yang disajikan dalam bentuk tabel, grafik, dan peta (Maywald 2007).

METODE

Bahan

Bahan yang diperlukan untuk penelitian ini adalah data iklim Kabupaten Indramayu dan Cirebon pada tanggal 1 Januari 2008 sampai 31 Desember 2012 seperti curah hujan, suhu udara minimum, suhu udara maksimum, kelembaban udara pada pukul 09.00 dan pukul 15.00 yang diperoleh dari ogimet.com dan tutiempo.com, data light trap populasi bulanan hama Scirpophaga incertulas pada wilayah Cirebon dan Indramayu tahun 2008-2012 yang diperoleh dari Instalasi PPOPT Indramayu.

Alat

Alat yang digunakan dalam penelitian ini adalah seperangkat komputer dengan sistem operasi windows untuk aplikasi Microsoftoffice 2007danSoftware Dymex 3.0.

Prosedur Analisis Data Model Dymex a. Model Builder

Membangun model simulasi populsi hama Penggerek batang padi kuning dengan menggunakan dymex builder dengan komposisi modul yang terdiri dari

timer module, lifecycle module, input modules, data manipulation modules, dan specialized modules.

(18)

5 The meteorological data file reader module atau yang biasa disebut Metbase merupakan salah satu modul yang terdapat dalam kelompok input modules. Metbase digunakan untuk membaca sebuah file yang berisi kumpulan data meteorologi. Modul ini memiliki enam variabel output yang telah ditentukan diantaranya suhu udara minimum, suhu udara maksimum, curah hujan, kelembaban udara pada pukul 09.00, kelembaban udara pada pukul 15.00, dan evaporasi. Namun dalam penelitian ini variabel evaporasi tidak digunakan. Variabel input yang biasa digunakan adalah simulation date.

Circadian adalah salah satu bagian dari Specialised Modules. Modul circadian ini dirancang untuk menghasilkan variabel yang menggambarkan perubahan diurnal. Hal ini sangat berguna dalam perkembangan spesies yang akan diteliti karena modul ini berbasis suhu rata-rata setiap jamnya selama 24 jam atau harian. Dalam modul ini yang menjadi file input adalah suhu harian minimum dan maksimum.

Modul Query User merupakan salah satu bagian dari model input modules. Modul ini memungkinkan pengguna untuk mengatur nilai pada awal simulasi untuk sejumlah variabel luaran yang nilainya tidak berubah selama simulasi. Dalam penelitian ini adalah letak lintang wilayah kajian. Dalam modul ini tidak ada variabel masukan.

Modul Daylength merupakan salah satu modul yang termasuk dalam kelompok Specialised Modules. Modul ini menghitung lama waktu dalam jam antara matahari terbit hingga terbenam berdasarkan kondisi lintang, jumlah hari dalam satu tahun, dan tanggal simulasi. Modul QueryUser akan menyediakan lintang atau latitude yang akan digunakan sebagai variabel masukan dalam model Daylength.

Modul evaporation merupakan salah satu modul dalam kelompok Specialised Modules. Modul evaporasi ini menghitung nilai evaporasi panci (mm) dengan menggunakan rumus dari Fitzpatrick (1963). Variabel masukan yang digunakan dalam modul ini diantaranya suhu udara minimum dan maksimum, kelembaban relatif pada pukul 09.00 dan 15.00, dan panjang hari.

Modul soil moisture adalah salah satu bagian dari Specialised Modules. Modul ini mensimulasikan keseimbangan air dalam satu lapisan tanah. Nilai output dalam modul ini adalah antara 0 sampai 1, dengan nilai 0 berarti tanah kering dan nilai 1 adalah tanah menjadi jenuh. Variabel input adalah nilai curah hujan dan evaporasi panci. Modul ini bisa diatur untuk menggunakan struktur sub-populasi model, sehingga memungkinkan simulasi pada beberapa bidang tanah dengan karakteristik yang berbeda.

Modul lifecycle adalah modul yang digunakan untuk mensimulasikan siklus hidup berbagai spesies. Siklus hidup hama Penggerek batang padi kuning memiliki 4 siklus hidup mulai dari telur, larva, pupa, hama dewasa. Siklus hidup tersebut memiliki fungsi dan persamaan yang bervariasi dan berbeda-beda untuk setiap fasenya. Dalam modul ini akan dibahas faktor-faktor intrinsik dan ekstrinsik mempengaruhi dinamika populasi dari hama Penggerek batang padi kuning, seperti karakteristik perkembangan dari satu tahap ke tahap berikutnya, bagaimana dan kapan faktor kematian dan waktu reproduksi.

(19)

6

Setiap fase siklus hidup memiliki syarat yang mempengaruhi perkembangan dan mortalitas hama Penggerek batang padi kuning. Suhu adalah salah satu faktor utama yang mempengaruhi perkembangan dan mortalitas hama. Periode perkembangan (hari) digunakan untuk melihat ambang batas suhu terendah (T0) (Rahman et al. 2004). Untuk menentukan T0 digunakan persamaan linier biasa yaitu y = a + bx, dengan y adalah laju perkembangan (hari), x adalah suhu (0C), a dan b adalah konstanta. Persamaan linier tersebut digunakan untuk menentukan T0 pada fase telur, larva dan pupa (Rahman et al. 2004). Fase dewasa (imago) menggunakan persamaan DD = d (T - T0) (Nahrung HF et al. 2008), dengan DD adalah derajat hari (0C), d adalah rata-rata umur hama pada fase imago (hari), T adalah suhu rata-rata, T0 adalah suhu dasar. Nilai T0 menunjukkan nilai batas minimum yang menyebabkan tidak adanya lagi perkembangan. Mortalitas terkait dengan faktor biotik, abiotik dan akibat usia. Mortalitas konstan imago 0.15 per hari (Yonow et al. 2004)

2. Tahapan Transfer, fekunditas dan Reproduksi

Tahapan transfer adalah tahapan dimana setiap fase akan berkembang ke fase selanjutnya. Seluruh fase akan berkembang ke fase selanjutnya setelah mencapai usia fisiologisnya. Dalam hal ini usia fisioligis adalah 1. Perubahan usia fisiologis setara dengan akumulasi degree days.

Fekunditas dimodelkan berdasarkan potensial telur yang dihasilkan hama Penggerek batang padi kuning (PBK). Setiap hama betina mampu bertelur 100-600 butir (Pathak dan khan 1994). Dalam model ini paramater potensial telur adalah 400 butir dari setiap hama betina.

Fase reproduksi dalam model ini diasumsikan dipengaruhi oleh siklus suhu harian dan curah hujan. Nilai siklus suhu harian diperoleh berdasarkan suhu minimun. Nilai suhu minimum rata-rata wilayah kajian adalah 23 0C. Nilai curah hujan optimum untuk kemunculan imago betina melakukan reproduksi adalah 5-20 mm (Yonow et al. 5-2004).

Sebuah diagram skematik dari siklus hidup hama Penggerek batang padi kuning ditunjukkan pada gambar dibawah ini.

(20)

7

Gambar 3 Model builder penelitian

b. Model simulator

Model simulator adalah model yang digunakan untuk menjalankan model yang telah dibangun pada dymex builder. Model simulator ini membutuhkan beberapa data seperti data meteorologi harian (suhu udara minimum, suhu udara maksimum, kelembaban udara, dan curah hujan) mulai dari tanggal 1 Januari 2009 sampai 31 Desember 2012, data lintang, panjang hari dan kelembaban tanah Kabupaten Indramayu. Data-data tersebut akan diinput di model simulator sesuai dengan permintaan komponen model dari modul masing-masing. Nilai-nilai yang dibutuhkan oleh model akan disajikan ke dalam tabel di bawah ini.

Tabel 1 Nilai yang digunakan dalam model

Setelah data diinput ke dalam model simulator, model djalankan dan data yang dihasilkan dari model simulator akan disajikan dalam bentuk grafik dan tabel. Data hasil model akan dibandingkan dengan data hasil observasi yang dijadikan sebagai kalibrasi dan validasi model. Parameter dan variabel yang digunakan dalam model kalibrasi akan digunakan untuk simulasi di wilayah yang berbeda. Berikut ini adalah gambar dari model simulator.

Variabel model Nilai

Lintang -6.45

Kelembaban tanah 0.6 Produksi telur

Populasi awal telur Populasi awal larva Populasi awal pupa Populasi awal imago

(21)

8

Gambar 4 Model simulator penelitian

Karakteristik Daerah Kajian

Data iklim yang digunakan untuk model simulasi akan ditampilkan ke dalam grafik. Data iklim yang ditampilkan adalah curah hujan, suhu minimum dan maksimum, kelembaban udara pada pukul 09.00 dan pukul 15.00 pada tanggal 1 Januari 2009 sampai 31 Desember 2012

Hubungan Faktor Iklim dengan Hasil Model Simulasi

Metode yang digunakan dalam analisis adalah dengan membandingkan data populasi imago berdasarkan luaran model dengan data iklim. Data iklim yang digunakan adalah data pada tanggal 1 Januari 2009 sampai 31 Desember 2012 pada daerah Indramayu. Hubungan iklim dengan populasi imago disajikan dalam bentuk grafik.

HASIL DAN PEMBAHASAN

Syarat Ambang Batas Suhu Perkembangan

Nilai laju perkembangan setiap fase digunakan untuk menentukan ambang batas suhu. Persamaan linier yang digunakan pada fase telur, larva, dan pupa adalah y = 0.54054x + 18.1640, y = 3.2396x + 15.6272, dan y = 0.97785x + 17.0403 (Rahman et al 2004). Dari persamaan tersebut diperoleh nilai ambang batas suhu pada fase telur, larva, dan pupa adalah 12.5 0C, 9.8 0C, dan 8.1 0C. Fase imago memiliki nilai thermal constant sebesar 75.6 0C, suhu udara rata-rata adalah 29 oC dan usia rata-rata adalah 4.76 hari (Nahrung HF et al. 2008), sehingga diperoleh nilai ambang batas suhu sebesar 13.1 0C. Nilai tersebut menjadi syarat utama yang digunakan dalam model untuk melihat perkembangan dan mortalitas hama.

Model kalibrasi

(22)

mengubah-9 ubah parameter yang digunakan dalam model sehingga hasil luaran model mendekati atau sama dengan data observasi. Pada model kalibrasi, data yang digunakan adalah data hasil tangkapan imago dan data hasil prediksi model. Model kalibrasi yang dibuat berdasarkan data pada tanggal 1 Januari 2008 sampai 31 Desember 2008 pada wilayah Cirebon. Data hasil tangkapan imago adalah data bulanan selama satu tahun sedangkan data luaran model adalah data dalam tujuh harian. Karena data observasi di lapangan hanya data bulanan, sedangkan data luaran model berdasarkan data tujuh harian maka data hasil model dikonversi menjadi data bulanan. Nilai-nilai yang didapat pada model memiliki nilai yang cukup tinggi sehingga untuk memperkecil nilai luaran model digunakan nilai ln x + 1, dengan x adalah nilai populasi imago hasil tangkapan dan hasil luaran model.

Gambar 5 Kalibrasi model Dymex pada tanggal 1 Januari 2008 sampai 31 Desember 2008 pada wilayah Cirebon

(23)

10

Gambar 6 Hubungan populasi imago hasil luaran model dan hasil observasi pada tanggal 1 Januari 2009 sampai 31 Desember 2009 di wilayah Cirebon

Gambar 6 menunjukkan bahwa populasi hasil luaran model dan populasi hasil observasi memiliki korelasi yang positif. Nilai koefsien determinasi (R2) antara populasi imago hasil prediksi dan hasil observasi memiliki hubungan yang baik dan berkorelasi dengan nilai R2 sebesar 72%. Artinya sebesar 72% populasi Imago hasil observasi dapat diijelaskan dengan hasil luaran model simulasi Dymex. Nilai kalibrasi yang cukup tinggi dinilai sudah cukup baik untuk dilakukan simulasi di daerah lain.

Karakteristik Daerah Kajian

Kabupaten Indramayu terletak pada 6° 15’ - 6° 40’ Lintang Selatan dan

107° 52’- 108° 36’ Bujur Timur. Daerah Indramayu memiliki ketinggian sekitar 3

m di atas permukaan laut. Kondisi iklim wilayah Indramayu pada tahun 2009-2012 ditunjukkan oleh Gambar 7. Data iklim tersebut adalah data hasil observasi dari stasiun BMKG Jatiwangi dengan kode stasiun 96791 yang diakses dari website tutiempo.com dan ogimet.com.

(24)

11

Gambar 7 Kondisi iklim wilayah Indramayu pada tanggal 1 Januari 2009 sampai 31 Desember 2012. Panel 1: curah hujan, panel 2: garis penuh (suhu maksimum), garis putus-putus (suhu minimum), panel 3: garis tebal (RH maksimum), garis penuh (RH minimum)

Secara umum suhu bulanan di wilayah Indramayu tidak terlalu berfluktuasi. Hal tersebut disebabkan karena iklim di wilayah ini adalah iklim tropis. Secara umum suhu harian rata-rata iklim tropis lebih dari 18 oC. Gambar 7 panel 2 menunjukkan suhu bulanan maksimum pada tahun 2009 sampai 2012 berkisar antara 30oC dan 36 oC. Suhu bulanan minimum rata-rata untuk wilayah ini berkisar antara 22 oC dan 25oC, sedangkan suhu udara rata-rata pada wilayah ini adalah 27 oC sampai 29 oC.

Nilai kelembaban udara pada wilayah Indramayu cukup berfluktuasi. Nilai kelembaban udara dipengaruhi oleh suhu udara dan curah hujan. Nilai RH maksimum bulanan pada tahun 2009 sampai 2012 berkisar antara 61% sampai 89% sedangkan nilai RH minimum bulanan berkisar antara 51% sampai 76%. Tingginya nilai RH terjadi pada bulan-bulan dengan curah hujan tinggi yaitu pada bulan Oktober sampai Maret, sedangkan nlai RH rendah terjadi pada saat musim kemarau yaitu pada bulan Juni hingga September.

Model Simulasi

(25)

12

Gambar 8 Hasil luaran model populasi telur, larva, pupa dan imago Penggerek batang padi kuning pada tahun 2009 dan 2010

(26)

13 fase telur, larva, pupa dan imago memiliki fluktuasi yang berbeda-beda setiap tahunnya mulai dari tahun 2009 sampai 2012. Berdasarkan hasil simulasi model, terlihat bahwa jumlah populasi hama mulai dari fase telur sampai fase imago semakin berkurang. Jumlah populasi telur menjadi yang terbanyak diantara semua fase, hal ini disebabkan oleh fase reproduksi imago yang mampu bertelur sampai 600 butir per betina (Pathak dan khan 1994), selain itu perbandingan jumlah hama jantan dan betina juga menujukkan bahwa populasi hama betina yang lebih banyak dari jantan yaitu 2:1 (Krishnaiah et al. 2004) sehingga menyebabkan hama betina yang dapat bertlelur lebih banyak.

Fluktuasi populasi larva lebih tinggi dibandingkan populasi lainnya. Pada fase larva terjadi beberapa kali penurunan jumlah populasi larva yang sangat drastis hingga mencapai 0. Hal ini disebabkan oleh faktor iklim yang menyebabkan mortalitas larva tinggi seperti suhu udara yang cukup tinggi, curah hujan yang tinggi, dan kelembaban udara yang rendah. Hal tersebut juga sesuai dengan pendapat Pathak dan Khan (1994) yang menyatakan bahwa biasanya 75% telur yang menetas menjadi larva hanya 10% saja yang berhasil mencapai dewasa karena faktor iklim. Usia larva yang lebih panjang yaitu berkisar antara 38-42 hari juga menjadi faktor yang menyebabkan tingkat mortalitas yang lebih tinggi diantara fase yang lainnya.

Populasi pupa lebih sedikit dari populasi larva. Hal tersebut dipengaruhi oleh tingkat mortalitas yang tinggi pada larva. Mortalitas pupa dipengaruhi oleh faktor iklim seperti curah hujan tinggi, kelembaban tanah yang terlalu rendah, dan suhu yang tinggi.

Berdasarkan hasil simulasi model, populasi imago selalu ada pada tahun 2009 sampai 2012. Pada tahun 2009 puncak populasi imago terjadi pada bulan April dan September, sedangkan puncak populasi pada tahun 2010 terjadi pada bulan Januari, Juni, dan November. Pada bulan tersebut merupakan bulan-bulan yang memiliki kondisi iklim yang paling ideal untuk perkembangan hama Penggerek batang padi. Suhu yang tidak terlalu tinggi dan curah hujan yang cukup mendorong laju perkembangan tinggi, sementara tingkat mortalitas rendah dan akan secara langsung dapat mempengaruhi umur fisiologis setiap fase menjadi lebih singkat sehingga fase imago cepat bereproduksi sampai pada peletakan telur.

Penurunan populasi imago yang tinggi pada tahun 2009 terjadi pada akhir Juli dan akhir November, sedangkan tahun 2010 terjadi pada akhir April, akhir Agustus dan Desember. Hal tersebut terjadi karena pada bulan-bulan tersebut suhu udara tinggi yang mengakibatkan hama mengalami stress panas dan kelembaban udara yang terlalu rendah yang menyebabkan populasi pada fase larva dan pupa mengalami mortalitas sehingga akan dikuti oleh penurunan jumlah populasi pada fase imago. Hal tersebut sesuai dengan pendapat (Pathak dan Khan 1994) yang menyatakan populasi imago akan menurun apabila kelembaban udara dibawah 70%.

(27)

14

Pengaruh Curah Hujan Terhadap Populasi Imago

Gambar 10 Hubungan curah hujan dengan populasi imago luaran model simulasi di wilayah Indramayu pada tahun 2009-2012

Grafik pada Gambar 10 adalah model pendekatan untuk melihat hubungan curah hujan dengan populasi imago. Gambar 10 menunjukkan bahwa curah hujan memiliki hubungan yang negatif terhadap hasil simulasi populasi imago hama Penggerek batang padi. Hal tersebut sesuai dengan pendapat Kaushik dan Parthak (2009) yang menyatakan bahwa curah hujan yang tinggi berkorelasi negatif terhadap populasi hama Penggerek batang. Artinya populasi imago pada saat musim hujan relatif rendah. Pada tahun 2009-2012, curah hujan antara 0 sampai 30 mm/minggu menjadi curah hujan yang ideal untuk perkembangan hama Penggerek batang padi kuning sehingga populasi hama imago cenderung tinggi. Kondisi tersebut juga menjadi yang paling ideal untuk hama imago untuk meletakkan telurnya (Krishnaiah et al.2004). Hal tersebut biasanya terjadi pada bulan-bulan kering seperti Juni sampai Agustus. Hal tersebut juga sesuai dengan pendapat Krishnaiah et al. (2004) yang menyatakan perkembangan larva akan lebih cepat pada musim kemarau sehingga populasi imago akan lebih cepat berkembang. Terlihat pada Gambar 10 bahwa populasi imago yang dapat mencapai lebih dari 8000 imago. Pada saat curah hujan lebih besar dari 100 mm/minggu populasi imago mengalami penurunan yang sangat drastis.

Pengaruh Suhu Terhadap Populasi Imago

(28)

15

Gambar 12 Hubungan suhu maksimum dengan populasi imago luaran model simulasi di wilayah Indramayu pada tahun 2009-2012

Suhu merupakan salah satu syarat utama yang mempengaruhi perkembangan hama Penggerek batang padi kuning. Suhu berperan dalam menentukan jumlah generasi hama per tahun. Grafik yang terdapat pada Gambar 11 dan 12 juga merupakan model pendekatan untuk melihat hubungan suhu dengan populasi imago. Gambar 11 menunjukkan bahwa suhu minimum yang cocok untuk perkembangan imago adalah 20 oC sampai 26 oC. Populasi imago mencapai maksimum pada saat suhu minimum 24 oC. Populasi pada suhu tersebut dapat mencapai 8000 imago. Suhu minimum yang lebih besar dari 25 oC dapat menyebabkan penurunan jumlah populasi imago. Menurut Dale (1994) suhu minimum yang terlalu tinggi dapat menyebabkan mortalitas yang tinggi pada telur dan larva sehingga menyebabkan populasi imago juga rendah. Gambar 12 menunjukkan bahwa suhu maksimum yang cocok untuk perkembangan imago adalah 28 oC sampai 37 oC. Populasi imago hasil simulasi menujukkan bahwa kebanyakan imago berkembang pada suhu 33 oC, dan pada suhu lebih dari 35 oC jumlah imago sudah mengalami penurunan populasi akibat cekaman panas. Rahman dan Khalequzzaman (2004) menyatakan bahwa tidak ada perkembangan telur, larva, pupa dan imago dibawah suhu 10 oC dan diatas suhu 35 oC.

Pengaruh Kelembaban Udara Terhadap Populasi Imago

(29)

16

Gambar 14 Hubungan RH minimum dengan populasi imago luaran model simulasi di wilayah Indramayu pada tahun 2009-2012

Kelembaban udara juga merupakan salah satu faktor yang mempengaruhi populasi imago. Berdasarkan Gambar 13 kisaran RH maksimum yang masih cocok untuk perkembangan imago adalah 50% sampai 92%. Gambar 14 menunjukkan kisaran RH minimum yang masih cocok untuk perkembangan imago adalah 44% sampai 77%. Hasil luaran model menujukkan bahwa kebanyakan populasi imago pada kisaran RH yang tinggi yaitu lebih besar dari 80% dan RH minimum lebih besar dari 65%. RH yang rendah menyebabkan populasi imago yang rendah pula. Hal tersebut disebabkan oleh pada saat RH rendah banyak populasi larva yang mengalami mortalitas sehingga akan berpengaruh terhadap populasi pupa dan imago yang rendah pula. Hal tersebut sesuai dengan pernyataan Dale (1994) yang menyatakan bahwa RH yang tinggi (90%-100%) baik untuk perkembangan telur, sedangkan RH dibawah 70% tidak cocok untuk peletakan telur imago.

Model validasi

(30)

17 tersebut sudah cukup membuktikan bahwa iklim berpengaruh terhadap keberadaan hama di suatu wilayah. Hal tersebut juga sesuai dengan pendapat Pathak dan Khan (1994) yang menyatakan bahwa faktor iklim mempengaruhi perkembangan dan keberadaan populasi hama Penggerek batang padi kuning

SIMPULAN DAN SARAN

Simpulan

Faktor iklim yaitu curah hujan, suhu dan kelembaban udara berpengaruh terhadap populasi hama Penggerek batang padi kuning. Hasil luaran model simulasi Dymex 3.0 dapat memprediksi populasi hama penggerek batang padi kuning dengan baik yang ditunjukkan oleh koefisien determinasi (R2) hasil validasi antara populasi hasil luaran model dan populasi hasil observasi sebesar 64%. Hasil model menujukkan bahwa kondisi yang ideal untuk perkembangan hama adalah pada saat suhu minimum sebesar 24 oC dan suhu udara maksimum 33 oC dengan intensitas hujan yang cukup dengan kisaran 0-30 mm/minggu yang terjadi pada bulan April, Juni dan September, dan populasi hama menurun drastis pada kondisi suhu yang lebih besar dari 35 oC dengan intensitas hujan yang lebih besar dari 100 mm/minggu dan curah hujan yang tinggi yaitu bulan Juli, Agustus dan Desember. Setiap unsur iklim memiliki pengaruh yang berbeda-beda terhadap populasi imago. Faktor suhu dan curah hujan merupakan faktor yang paling menentukan dalam perkembangan dan mortalitas hama Penggerek batang.

Saran

Diperlukan data iklim yang lebih panjang dan variabel iklim lain yang berpengaruh terhadap perkembangan dan keberadaan hama sehingga model menjadi lebih akurat. Perlu kajian tambahan dalam penyusunan model terutama pada fase imago. Perlu juga dilakukan pengamatan langsung terhadap hama Penggerek batang padi kuning untuk mengetahui interaksi hama dengan tanaman inangnya.

DAFTAR PUSTAKA

Bappeda Kabupaten Indramayu. 2009. Luas lahan sawah Indramayu [internet].

[diacu 2013 Februari 23]. Tersedia dari:

http://www.Bappedaindramayu.madebychocaholic.com/geografis.

(31)

18

Deptan. 2013. Konsumsi beras Indonesia [internet]. [diacu 2013 Agustus 10].

Tersedia dari:

http://www.deptan.go.id%2FIndikator%2Ftabe/15b/konsumsi/rata.pdf Grist DH. 1960. Rice. Formerly Agricultural Economist, Colonial Agricultural

Service, Malaya. Longmans, Green and Co Ltd. London

Hattori I, Siwi SS. 1986. “Rice Stem Borers in Indonesia”. Tropical Agricultural Research Center, 20(1): 25–26

Kaushik C, Partha SN. 2011. Incidence of paddy yellow stem borer (Scirpophaga incertulas, WALKER) in relation to the agro climatic region of hemtabad, uttar. Dinajpur, West Bengal, India. International Referred Research Journal April 2009. issn-0975-3486 RNI: Rajbil 2009/30097 vol-II*issue 19

Krishnaiah NV, Prasad ASR, Reddy CS, Pasalu IC, Mishra B, Krishna YSR, Prasad YG, Prabhakar M. 2004. Forewarning and management of rice yellow stem borer Scirpophaga incertulas (walker). Technical Bulletin. 7:1-39

Listinger JA, Alviola AL, Cruz CGD, canapi BL, Batay-An EH, Barrion AT. 2006. Rice white stem borer Scirpophaga innoata (walker) in Southern Mindanao, Philippines I. Susplantation of yellow stem borer Scirpophaga incertulas (walker)and pest status. International Journal of Pest management. 255:3515-3523

Maclean J. 1997. Rice Almanac. Second Edition: International Rice Research Institute. Los Banos. Filipina

Maywald GF, Kriticos DJ, Sutherst RW, Bottomley W. 2007. Dymex model Builder version 3. Melbourne: CSIRO Publising

Nahrung HF, Schutze MK, Clarke AR, Duffy MP, Dunlop EA, Lawson SA. 2008. Thermal Requirements, Field Mortality and Population Phenology Modelling of Paropsis Atomaria Olivier, an Emergent Pest in Subtropical hardwood Plantations. Forest Ecology and Management. 255: 3515-3523 Pathak MD, Khan ZR. 1994. Insect Pest Of Rice. International Rice Research

Institute. Manila. Filipina

Rahman MT, Khalequzzaman. 2004. Temperature requirements for the development and survival of rice stem borer in laboratory conditions. Entomologia Sinica. 11 (1): 47-60.

Suharto H, Usyati N. 2008. Pengendalian hama Penggerek batang padi. Di dalam: Padi inovasi teknologi produksi. BBPTP. Jakarta. LIPI Press. P 327-349. Yonow T, Zalucki MP, Sutherst RW, Dominiak BC, Maywald GF, Maelzer DA,

(32)

19 Lampiran 1 Hasil kalibrasi model pada wilayah Cirebon tahun 2008

Tanggal populasi imago Ln

prediksi observasi (prediksi+1) (observasi+1) 01/01/2008 425 124 6.05443935 4.82831374 01/02/2008 493 255 6.20253552 5.54517744 01/03/2008 691 143 6.53958596 4.9698133 01/04/2008 966 430 6.8741985 6.06610809 01/05/2008 1373 761 7.22548147 6.63594656 01/06/2008 3105 1868 8.041091 7.53315881 01/07/2008 4529 1153 8.41847722 7.05098945 01/08/2008 2449 643 7.8038433 6.46769873 01/09/2008 1260 173 7.13966034 5.1590553 01/10/2008 446 104 6.10255859 4.65396035 01/11/2008 116 44 4.76217393 3.80666249 01/12/2008 957 69 6.86484778 4.24849524 Lampiran 2 Hasil validasi model pada wilayah Indramayu tahun 2008

Tanggal populasi imago Ln

prediksi observasi (prediksi+1) (observasi+1) 01/01/2008 425 339 6.05443935 5.82894562 01/02/2008 493 565 6.20253552 6.33859408 01/03/2008 691 670 6.53958596 6.50876914 01/04/2008 800 132 6.68586095 4.89034913 01/05/2008 1308 749 7.17701877 6.62007321 01/06/2008 2776 1739 7.92912649 7.46164039 01/07/2008 4544 1492 8.42178301 7.3085428 01/08/2008 2374 1247 7.77275272 7.12929755 01/09/2008 1239 111 7.12286666 4.71849887 01/10/2008 546 50 6.3044488 3.93182563 01/11/2008 163 34 5.09986643 3.55534806 01/12/2008 100 39 4.61512052 3.68887945

Lampiran 3 Hasil simulasi model pada wilayah Indramayu tahun 2009-2012

(33)
(34)

21 3/12/2009 2168.17 9607.29 0 171.63

(35)

22

(36)
(37)

24

3/5/2012 3814.49 17650.85 324.22 3235.02 10/5/2012 13680.42 3894.86 674.62 3025.36 17/5/2012 32116.63 4533.52 0 3144.98 24/5/2012 39292.61 17082.07 493.21 2673.24 31/5/2012 37211.89 7864.08 473.02 2689.92 7/6/2012 22911.95 22219.29 384.78 2687.14 14/6/2012 19261.41 0 110.11 2609.93 21/6/2012 28071.08 5917.81 0 2310.85 28/6/2012 28262.47 19261.41 0 1962.75 5/7/2012 24330.13 2510.4 0 1665.14 12/7/2012 20310.23 16045.38 0 1415.37 19/7/2012 18209.51 10614.4 0 1203.06 26/7/2012 15569.07 18730.51 172.85 1022.6 2/8/2012 12352.89 3435.14 365.8 1016.14 9/8/2012 11357.32 10258.54 51.25 1174.65 16/8/2012 13430.39 14708.65 637.76 1042.02 23/8/2012 13207.97 10631.49 495.51 1427.81 30/8/2012 15039.39 16487.09 584.38 1634.82 6/9/2012 15333.46 7591.66 533.01 1886.32 13/9/2012 19424.43 15808.18 1166.21 2056.42 20/9/2012 28750 8302.24 1953.12 2739.24 27/9/2012 30610.66 0 1041.75 3564.76 4/10/2012 43343.19 15276.3 0 3915.53

11/10/2012 46800.11 0 0 2738.45

(38)

25

RIWAYAT HIDUP

Figur

Gambar 1  Siklus hidup hama Penggerek batang

Gambar 1

Siklus hidup hama Penggerek batang p.16
Gambar 2  Modul lifecycle penelitian

Gambar 2

Modul lifecycle penelitian p.19
Gambar 3  Model builder penelitian

Gambar 3

Model builder penelitian p.20
Gambar 4  Model simulator penelitian

Gambar 4

Model simulator penelitian p.21
Gambar 6  Hubungan populasi imago hasil luaran model dan

Gambar 6

Hubungan populasi imago hasil luaran model dan p.23
Gambar 7  Kondisi iklim wilayah Indramayu pada tanggal 1 Januari 2009

Gambar 7

Kondisi iklim wilayah Indramayu pada tanggal 1 Januari 2009 p.24
Grafik pada Gambar 10 adalah model pendekatan untuk melihat hubungan  curah hujan dengan populasi imago

Grafik pada

Gambar 10 adalah model pendekatan untuk melihat hubungan curah hujan dengan populasi imago p.27
Gambar 11 Hubungan suhu minimum dengan populasi imago luaran model simulasi di wilayah Indramayu  pada tahun 2009-2012

Gambar 11

Hubungan suhu minimum dengan populasi imago luaran model simulasi di wilayah Indramayu pada tahun 2009-2012 p.27
Gambar 13  Hubungan RH Maksimum dengan populasi imago

Gambar 13

Hubungan RH Maksimum dengan populasi imago p.28
Gambar 14 Hubungan RH minimum dengan populasi

Gambar 14

Hubungan RH minimum dengan populasi p.29
Gambar 15  Validasi model Dymex pada wilayah Indramayu pada  tanggal 1 Januari 2008 sampai 31 Desember 2008

Gambar 15

Validasi model Dymex pada wilayah Indramayu pada tanggal 1 Januari 2008 sampai 31 Desember 2008 p.29

Referensi

Pindai kode QR dengan aplikasi 1PDF
untuk diunduh sekarang

Instal aplikasi 1PDF di