i
PENGGUNAAN TEMPORAL DATA MINING PADA DATA
ELECTROENCEPHALOGRAPHY (EEG) UNTUK KLASIFIKASI PENYAKIT
EPILEPSI DENGAN BACKPROPAGATION
TUGAS AKHIR
Diajukan untuk Memenuhi Sebagian Persyaratan Mencapai
Derajat Sarjana Teknik Informatika
Disusun oleh :
Stephanus Deo Aquino
12 07 07091
PROGRAM STUDI TEKNIK INFORMATIKA
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
ii
HALAMAN PENGESAHAN
PENGGUNAAN TEMPORAL DATA MINING PADA DATA
ELECTROENCEPHALOGRAPHY (EEG) UNTUK KLASIFIKASI PENYAKIT
EPILEPSI DENGAN BACKPROPAGATION
Laporan ini telah diperiksa dan disetujui
pada tanggal __ ____________ _____
Oleh:
Ir. Djoko Budiyanto, M.Eng
Dra. Ernawati, M.T.
Dosen Pembimbing 1
Dosen Pembimbing 2
iii
Kata Pengantar
Puji syukur kepada Tuhan atas semua karunia dan
berkat-Nya yang telah dilimpahkan kepada penulis sehingga
penulis dapat menyelesaikan laporan skripsi ini dengan
baik. Tugas akhir merupakan tugas yang diwajibkan pada
mahasiswa Program Studi Teknik Informatika Fakultas
Teknologi Industri Universitas Atma Jaya Yogyakarta setelah
lulus mata kuliah teori, praktikum, dan kerja praktek.
Tujuan dari pembuatan skripsi ini adalah sebagai salah satu
syarat untuk mencapai derajat sarjana Teknik Informatika
dari Program Studi Teknik Informatika Fakultas Teknologi
Industri Universitas Atma Jaya Yogyakarta.
Penulis menyadari bahwa dalam pembuatan skripsi
ini tidak terlepas dari bantuan berbagai pihak yang telah
menyumbangkan pikiran, tenaga, dukungan, bimbingan, dan doa
kepada penulis baik secara langsung maupun tidak langsung.
Oleh sebab itu, penulis mengucapkan terimakasih kepada :
1. Tuhan Yesus Kristus yang telah memberikan petunjuk,
arahan dan harapan, serta melimpahkan karunia dan
berkat-Nya kepada penulis.
2. Bapak Dr. A. Teguh Siswantoro selaku Dekan Fakultas
Teknologi Industri Universitas Atma Jaya Yogyakarta.
3. Bapak B. Yudi Dwiandiyanta, S.T., M.T., selaku Ketua
Program Studi Teknik Informatika Fakultas Teknologi
Industri Universitas Atma Jaya Yogyakarta.
4. Bapak Dr. Ir. Djoko Budiyanto, M.Eng., selaku Dosen
Pembimbing I yang telah meluangkan waktu dan pikiran
untuk memberi bimbingan, petunjuk dan pengarahan kepada
penulis sehingga skripsi ini dapat diselesaikan dengan
baik.
5. Ibu Dra. Ernawati, M.T., selaku Dosen Pembimbing II
yang telah meluangkan waktu dan pikiran untuk memberi
bimbingan, petunjuk dan pengarahan kepada penulis
sehingga skripsi ini dapat diselesaikan dengan baik. baik. Tugas akhir meruruppakkan tutugas yang diwajibkan pada
mahasiswa Prograamm Studi Teknik InI formatika Fakultas Teknologi Indudustri Universitas Atma Jaya YoYogyakarta setelah lulus matata kuliah teoro i, prpraktiikuk m, dan kekerja praktek. Tujuan ddari pembm uauatat n skskriripspsii innii adadalalaha sebagaii salah satu syarraat untuuk mmenencacapai derajat sarjajanana Tekknik Infformatika daarri Progograram m Studii TTeknik Informatikika a Fakulultatas s Tekknon logi I
Industtriri Univveersitas Atma Jaya Yogyakartaa.
Pe
Penulilis menyadari bahwa dalam pembub atanan skrippsi inii ttidaakk terlepas dari bantuan berbagai pihakak yanang g telaah h me
menynyumbabangkan pikiran, tenaga, dukungan, bimbingaan, dadann doa a ke
kepadaa penulis baik secara langsung maupun tidak lanngsgsunu g.
Oleh sebab itu, penulis mengucapkan terimakasih keppada :
1. TTuhan Yesus Kristus yang telah memberikan ppetunjuuk,, arahan dan harapan, serta melimpahkan karuunia dann b
berkat-Nya kekepapadada ppenulis.
2. Bapak Dr. A. Teguhuh SSiswawantntoro selaku Dekan Fakultltasas Teknologi Industri Univeversitas Atma Jaya Yogyakartaa. 3.
3. BaBapap k B. Yudi Dwiandiyanta, S.T., M.T., selalakku KKetetua Pr
Progograramm StStududii TeTeknknikik IInfnforormamatitikaka FFakakulultatass TeTeknknolologi In
Industrtrii Unniviverrsisitas Atmaa JaJayaya YYogogyayakartta.a.
4. BaBapapakk DrDr. Ir. Djokoo Budiyyanto, M.Eng., seselalaku Dosen Pembimbing I yang ttelah meeluangkan waktu dan pikiran untuk memberi bimbinngan, pettunjuk dan pengarahan kepada penulis sehingga skrripsi iini dapat diselesaikan dengan baik.
5. Ibu Dra. Ernawati, M.T.T., selaku Dosen Pembimbing II
iv
6. Teman-teman Research Group Data Engineering and
Information System Universitas Atmajaya Yogyakarta yang
telah membantu penulis dalam memberikan saran dan
pengalamannya.
7. Seluruh Dosen dan Staf Pengajar Fakultas Teknologi
Industri Universitas Atma Jaya Yogyakarta yang telah
membantu penulis selama masa kuliah di Program Studi
Teknik Informatika Fakultas Teknologi Industri
Universitas Atma Jaya Yogyakarta.
8. Seluruh keluarga Papa, Mama, Mas Rio, Mas Rio, Dek Esa,
Dek Lili, Debora sekeluarga dan keluarga besar terkasih
yang selalu mendoakan serta memberikan dorongan, dan
motivasi kepada penulis agar dapat menyelesaikan kuliah
dengan baik.
9. Semua teman dan sahabat angkatan 2012 Teknik
Informatika Atma Jaya Yogyakarta Willy, Pandhu, Ganang,
Rika, Reni, Titi, Deta, Yoris, Adit, Tanta, Ian,
anggota KKN SiDeKa, anggota KSM (Amoobee). Terima kasih
sudah menjadi sahabat sekaligus keluarga yang baik dan
selalu memberi dukungan dan masukkan bagi penulis
selama penulis melaksanakan studi S1 di Universitas
Atma Jaya Yogyakarta.
10. Teman-teman dan pihak lain yang tidak mungkin
disebutkan satu per satu yang telah membantu selama
pengerjaan Tugas Akhir ini.
Penulis menyadari bahwa skripsi ini masih jauh dari
sempurna karena keterbatasan waktu dan pengetahuan yang
dimiliki penulis. Oleh karena itu segala kritik dan saran
yang bersifat membangun sangat diharapkan. Akhir kata,
semoga skripsi ini dapat berguna dan bermanfaat bagi semua
pihak.
Yogyakarta, April 2016
Penulis 7. Seluruh Dosen dan Sttafaf Pengajar Fakultas Teknologi Industri Univeersrsitas Atma Jayaa Yogyakarta yang telah membantu ppeenulis selama masa kuliahah di Program Studi Teknik Informatiikka Fakultas Teknolologi Industri Univversitass AtAtmam Jayaya a YoY gygyakakarartaa..
8. SSeluruh keluluarargag Papa, Mama, Mas s RiRioo, Mas Rio, Dek Esa,
Dek LiLilili, Deboraa ssekeluarga dak dann keluargaga bbesar ttere kasih
yaangng sselalluu mendoakan serta memberriki an dodoror ngan, dan
mo
motitivasisi kepada penulis agar dapat menyeyelesaaikikanan kulliah d
dengaan baik.
9. Semumua teman dan sahabat angkatan 22010 22 TeTeknikk Innformatika Atma Jaya Yogyakarta Willy, Pandhhu, GaGananang, R
Rika, Reni, Titi, Deta, Yoris, Adit, Tannta, IIan,n, a
anggota KKN SiDeKa, anggota KSM (Amoobee). Teriima kassihh sudah menjadi sahabat sekaligus keluarga yang baikk danan s
selalu memberi dukungan dan masukkan bagi ppenuliliss selamaa ppenenululisis mmelelakaksanakakann ststududii S1S1 ddi Universiitatass Atma Jaya Yogyakarta.
10
10. Teman-teman dan pihak lain yang tidak mumungngkkin di
disebutktkan ssatatuu peperr satu yyanangg tetelalahh membanantutu sselelaama pe
p ngerjaanan TTugas Akhirir iinini. Pe
Penunulilis menyadari bbahwa skripsi ini mamasisihh jjauh dari sempurna karena keterbbaatasan wwaktu dan pengetahuan yang dimiliki penulis. Oleh karena iitu segala kritik dan saran yang bersifat membangunn sanggat diharapkan. Akhir kata,
semoga skripsi ini dapat bbergguna dan bermanfaat bagi semua
v
DAFTAR ISI
HALAMAN PENGESAHAN ...
ii
Kata Pengantar ...
iii
DAFTAR ISI
...v
DAFTAR TABEL
...
vii
DAFTAR GAMBAR
...
viii
INTISARI
...
xvii
BAB 1 PENDAHULUAN ...1
1.1 Latar Belakang
...1
1.2 Rumusan Masalah
...4
1.3 Batasan Masalah
...4
1.4 Tujuan
...5
1.5 Sistematika Penulisan
...5
BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI ...7
2.1 Tinjauan Pustaka
...7
2.2 Dasar Teori
...
12
2.2.1. Data Mining
...
12
2.2.2. Artificial Neuron Network (ANN) ...
15
2.2.3. Temporal Data Mining
...
18
2.2.4. Electroencephalography (EEG)
...
21
2.2.5. Principle Component Analysis dan Independent
Component Analysis ...
23
BAB 3 METODOLOGI PENELITIAN ...
31
3.1. Data Electroencephalograph (EEG). ...
31
3.2. Pemotongan Data (Data Windowing) ...
33
3.3. Ektraksi
Parameter
...
34
3.4. Klasifikasi
Data
...
36
3.5. Evaluasi
...
40
DAFTAR ISI
...
...
.
...v
DAFTAR TABEL
.
...
... vii
DAFTAR GAM
AMBAR
...
.
..
.
..
..
..
.
....
.
...
...
viii
INTISA
A
R
RI
...
.
..
...
.
...
...
.
..
.
..
...
..
.
...
xvii
BAB
B 1 PEND
D
AH
AH
ULUAN ..
.
..
....
..
..
..
...
...
...1
1.1
L
L
at
at
ar
a
B
Be
lakang ...
...
....
...
..
.
.1
1.
.
2
2
Rum
mu
us
an M
as
alah ...
..
....
..
...
.
..
...
.4
1.
1
3
B
Ba
at
asan Mas
al
ah ....
..
...
..
.
....
..
..
.
...
4
4
1.
1.
4
Tujuan...
..
..
..
....
..
...
...
..
....5
1
1.5
Sistematika Pen
ul
is
an
..
..
...
..
...
...
.
5
5
BAB
2
TINJAUAN PUS
TA
KA
DAN LAN
DA
SAN
TEORI ....
..
...
..7
7
2.
2
1
1
Tinjauan
Pustak
a ...
....
...
...
.
7
7
2.2 Das
ar
ar T
Teo
eori
ri
..
....
..
.
....
..
..
...
.
12
12
2.2.1. Data Mining ....
..
...
..
.
1
12
2.
2 2.
2.
2. Artificial Neuron Network (ANN) ...
...
...
.
15
2.2.
2
3
3.
T
Tem
mpo
po
ra
ral Da
ta
ta
M
M
in
inin
in
g ...
..
..
.
...
..
..
.. 18
2.
2.2
2.
4
4.
E
Ele
le
ct
roence
ph
p
alogra
raphy (EEG
G)
)
...
.
... 21
2.2.5. Principle C
o
omponent
t Analysis dan Independent
Component Analysis
...
... 23
BAB 3 METODOLOGI PENEL
I
ITIAN
.
... 31
3.1. Data
Electroencep
phal
lograph (EEG). ... 31
vi
BAB 4 HASIL DAN PEMBAHASAN ...
42
4.1 Kelas Pada Data EEG (Raw Data)
...
42
4.2 Pemotongan Data dan Ekstraksi Parameter ...
44
4.3 Klasifikasi dan Hasil Klasifikasi
...
88
BAB 5 KESIMPULAN DAN SARAN ...
152
5.1. Kesimpulan
...
152
5.2. Saran
...
153
DAFTAR PUSTAKA ...
154
BAB 5 KESIMPULAN D
DA
AN SARAN ...
... 152
5.1. Kesim
mpulan ...
... 152
5.2.
S
Saran ...
.
..
.
..
. ..
.
..
....
.
...
... 153
vii
DAFTAR TABEL
Tabel 4.1. Jumlah Segmen Hasil dari Pemotongan ... 45
Tabel 4.2. Kelompok Data ... 89
Tabel 4.3. Hasil Eksperimen Kelas Data 1 Pemotongan 1 detik ... 91
Tabel 4.4. Hasil Eksperimen Kelas Data 1 Pemotongan 2 detik ... 95
Tabel 4.5. Hasil Eksperimen Kelas Data 1 Pemotongan 5 detik ... 99
Tabel 4.6. Hasil Eksperimen Kelas Data 1 Pemotongan 10 detik ... 102
Tabel 4.7. Hasil Eksperimen Kelas Data 2 Pemotongan 2 detik ... 106
Tabel 4.8. Hasil Eksperimen Kelas Data 2 Pemotongan 2 detik ... 110
Tabel 4.9. Hasil Eksperimen Kelas Data 2 Pemotongan 5 detik ... 114
Tabel 4.10. Hasil Eksperimen Kelas Data 2 Pemotongan 10 detik ... 117
Tabel 4.11. Hasil Eksperimen Kelas Data 3 Pemotongan 1 detik ... 121
Tabel 4.12. Hasil Eksperimen Kelas Data 3 Pemotongan 2 detik ... 125
Tabel 4.13. Hasil Eksperimen Kelas Data 3 Pemotongan 5 detik ... 128
Tabel 4.14. Hasil Eksperimen Kelas Data 3 Pemotongan 10 detik ... 132
Tabel 4.15. Perbandingan Hasil dengan Penelitian yang
Sebelumnya ... 132
7 Tabel 4.3. Hasil Eksperirimemen Kelalass Data 1 Pemotongan 1 detik ... 91Tabel 4.4. Hasasil Eksperimen Kelas Data 1 PePemom tongan 2 detik ... 95
Tabel 44.5. Hasilil EEksksperiimemenn KeKelalas DaDataa 11 Pemotongagan 5 detik ... ... 99
Taabel 4..6.6. HHasil EEkksperimen Kelas Dataa 1 Pemom totongngan 100 detik
... ... 102
Tabeell 44.7.. Hasil Eksperimen Kelas Data 2 Pemottono gann 22 detiik ... 1006 Ta
Tabebel 44.8. Hasil Eksperimen Kelas Data 2 Pemotongaan 22 dedetit k .
... 110
Tabell 4.9. Hasil Eksperimen Kelas Data 2 Pemotongan 5 detiik
... 1144
Taabeb ll 4.10. Hasil Eksperimen Kelas Data 2 Pemotongann 1100 detikk ... ... 111717
Ta
T bel 4.11. Hasil Eksperimenen KKelas Data 3 Pemotongan 1 ddetetikik ... 11221
Ta
Tabebell 4.1212. HHasilil EkEkspspererimi en Kelelasas DDatata 33 PPemotongganan 22 ddetetik ... 125
Tabebel 44.1313. HaHassil Eksperriimen Kellas Data 33 PePemototonngann 5 detik ... 128
Tabel 4.14. Hasil Eksperrimen Kellas Data 3 Pemotongan 10 detik ... 132
viii
DAFTAR GAMBAR
Gambar 2.1. Arsitektur Multi Layer Precepton (Haselstainer & Pfurtscheller, 2000). ...
Gambar 2.2. External Temporal Processing (Haselstainer & Pfurtscheller, 2000). ...
Gambar 2.3. Internal Temporal Processing (Haselstainer & Pfurtscheller, 2000). ... Gambar 2.4. Penempatan Elektrode dengan Sistem Internasional 10-20. (Song, 2011)...
Gambar 2.5. Parameter Skewness... Gambar 2.6. Parameter Kurtosis...
Gambar 2.7. Tampilan Awal WEKA ...
Gambar 3.1. grafik data pada dataset Z segmen Z001... Gambar 3.2. grafik data pada dataset Z segmen Z001 pada 1 detik pertama ...
Gambar 3.3. Pengaturan Pembuatan Jaringan pada Weka. ...
Gambar 3.4. Hasil Jaringan yang Dibuat Menggunakan Weka...
Gambar 4.1. Dataset Z ...
Gambar 4.2. Dataset O ...
Gambar 4.3. Dataset N ...
Gambar 4.4. Dataset F ...
Gambar 4.5. Dataset S ...
Gambar 4.6. Hasil ekstraksi parameter mean pada dataset Z dengan interval pemotongan 1 detik... Gambar 4.7. Hasil ekstraksi parameter mean pada dataset Z dengan interval pemotongan 2 detik...
Gambar 4.8. Hasil ekstraksi parameter mean pada dataset Z dengan interval pemotongan 5 detik... Pfurtscheller, 2000)...
Gambar 2.2. Exteerrnal Temporal Processingg (Haselstainer & Pfurtscheller,r, 2000)...
Gambar 22.3. Internal Temempoporar ll PrPrococesessis ng (Haselslstainer & Pfurtsscheller, 2200000)0)...
Gammbar 2.4.4. PeP nempatatanan Elektrode ddenengagan Sisttemem Internanasional 10
10-20. ((SoSong, 202011)... Gambbarar 22.5.. Parameter Skewness...
Gaammbar 22.6. Parameter Kurtosis...
Ga
Gambm arr 2.7. Tampilan Awal WEKA...
Gambaar 3.1. grafik data pada dataset Z segmen Z001...
Gambaar 3.2. grafik data pada dataset Z segmen Z001 ppada 11
de
detikk pertama... Gambar 3.3. PePengngatatururanan Pemembuatanan Jarariningagann papadada Weka... G
Gambar 3.4. Hasil Jaringan yyana g Dibuat Menggunakan Wekaa...
Ga
Gambmbar 44.1.1.. DaDatatasesett ZZ...
Ga
Gambmbara 4.2. DaDatataset OO...
Gambarar 44.3. 3 DDataset N...
Gambar 4.4. Dataset F...
Gambar 4.5. Dataset S...
ix
Gambar 4.9 Hasil ekstraksi parameter mean pada dataset Z dengan interval pemotongan 10 detik. ...
Gambar 4.10. Hasil ekstraksi parameter standard deviation pada dataset Z dengan interval pemotongan 1 detik... Gambar 4.11. Hasil ekstraksi parameter standard deviation pada dataset Z dengan interval pemotongan 2 detik...
Gambar 4.12. Hasil ekstraksi parameter standard deviation pada dataset Z dengan interval pemotongan 5 detik...
Gambar 4.13. Hasil ekstraksi parameter standard deviation pada dataset Z dengan interval pemotongan 10 detik. ...
Gambar 4.14. Hasil ekstraksi parameter skewness pada dataset Z dengan interval pemotongan 1 detik. ... Gambar 4.15. Hasil ekstraksi parameter skewness pada dataset Z dengan interval pemotongan 2 detik. ...
Gambar 4.16. Hasil ekstraksi parameter skewness pada dataset Z dengan interval pemotongan 5 detik. ...
Gambar 4.17. Hasil ekstraksi parameter skewness pada dataset Z dengan interval pemotongan 10 detik. ...
Gambar 4.18. Hasil ekstraksi parameter kurtosis pada dataset Z dengan interval pemotongan 1 detik. ... Gambar 4.19. Hasil ekstraksi parameter kurtosis pada dataset Z dengan interval pemotongan 2 detik. ...
Gambar 4.20. Hasil ekstraksi parameter kurtosis pada dataset Z dengan interval pemotongan 5 detik. ...
Gambar 4.21. Hasil ekstraksi parameter kurtosis pada dataset Z dengan interval pemotongan 10 detik. ...
Gambar 4.22. Hasil ekstraksi parameter mean pada dataset O dengan interval pemotongan 1 detik... Gambar 4.23. Hasil ekstraksi parameter mean pada dataset O dengan interval pemotongan 2 detik...
Gambar 4.24. Hasil ekstraksi parameter mean pada dataset O dengan interval pemotongan 5 detik...
Gambar 4.25 Hasil ekstraksi parameter mean pada dataset O dengan interval pemotongan 10 detik. ... Gambar 4.11. Hasil ekstrtrakaksi pari arama eter standard deviation pada dataset Z dengagan interval pemottonongag n 2 detik... Gambar 4.12. HHasil ekstraksi parameter standndard deviation pada datasseet Z dengan inintervr ala ppemoto ongan 5 dedetit k... Gambarr 4.13. Hasasilil eekstrrakaksisi ppararammeteterer sstat ndard deeviation padaa datasetet Z ddenengan interval pemotongagan 10 detik...
Ga
Gambar 44.1.14.4. Hassilil ekstraksi parameter sskek wnessss papada datataset Z deengnganan intererval pemotongan 1 detik...
Gambmbaar 4.115. Hasil ekstraksi parameter skewnesss padada ddatasete
Z ddengann interval pemotongan 2 detik...
Ga
Gambm arr 4.16. Hasil ekstraksi parameter skewness paada ddatataset Z
Z dengngan interval pemotongan 5 detik...
Gambaar 4.17. Hasil ekstraksi parameter skewness padaa datassett
Z denngan interval pemotongan 10 detik... Gambbaar 4.18. Hasasilil ekskstrtraksi paramameteterr kkururtosis padada datassetet Z dengan inttervall pemoototongngan 11 ddetetikik...
Ga
Gambar 4.19. Hasil ekstraksii parameter kurtosis pada ddatatasaseet Z
Z dedengngan interval pemotongan 2 detik...
Ga
Gambm ar 44.2020. HHasasilil ekstrtrakaksisi ppararameterer kkururttosisiss pada ddatataset Z dedengnganan iintnterervaall pemoototonganan 5 detetiik...
Gambar 4.21. Hasil ekstrakaksi pararameter kurtosis pada dataset Z dengan interval pemotoongan 10 detik...
Gambar 4.22. Hasil ekstraka si parrameter mean pada dataset O dengan interval pemotonganan 1 deetik...
x
Gambar 4.26. Hasil ekstraksi parameter standard deviation pada dataset O dengan interval pemotongan 1 detik...
Gambar 4.27. Hasil ekstraksi parameter standard deviation pada dataset O dengan interval pemotongan 2 detik... Gambar 4.28. Hasil ekstraksi parameter standard deviation pada dataset O dengan interval pemotongan 5 detik...
Gambar 4.29. Hasil ekstraksi parameter standard deviation pada dataset O dengan interval pemotongan 10 detik. ...
Gambar 4.30. Hasil ekstraksi parameter skewness pada dataset O dengan interval pemotongan 1 detik. ...
Gambar 4.31. Hasil ekstraksi parameter skewness pada dataset O dengan interval pemotongan 2 detik. ... Gambar 4.32. Hasil ekstraksi parameter skewness pada dataset O dengan interval pemotongan 5 detik. ...
Gambar 4.33. Hasil ekstraksi parameter skewness pada dataset O dengan interval pemotongan 10 detik. ...
Gambar 4.34. Hasil ekstraksi parameter kurtosis pada dataset O dengan interval pemotongan 1 detik. ...
Gambar 4.35. Hasil ekstraksi parameter kurtosis pada dataset O dengan interval pemotongan 2 detik. ... Gambar 4.36. Hasil ekstraksi parameter kurtosis pada dataset O dengan interval pemotongan 5 detik. ...
Gambar 4.37. Hasil ekstraksi parameter kurtosis pada dataset O dengan interval pemotongan 10 detik. ...
Gambar 4.38. Hasil ekstraksi parameter mean pada dataset n dengan interval pemotongan 1 detik...
Gambar 4.39. Hasil ekstraksi parameter mean pada dataset n dengan interval pemotongan 2 detik... Gambar 4.40. Hasil ekstraksi parameter mean pada dataset n dengan interval pemotongan 5 detik...
Gambar 4.41. Hasil ekstraksi parameter mean pada dataset n dengan interval pemotongan 10 detik. ...
Gambar 4.42. Hasil ekstraksi parameter standard deviation pada dataset n dengan interval pemotongan 1 detik... Gambar 4.28. Hasil ekstrtrakaksi pari arama eter standard deviation pada dataset O dengagan interval pemottonongag n 5 detik... Gambar 4.29. HHasil ekstraksi parameter standndard deviation pada datasseet O dengan inintervr ala ppemoto ongan 10 ddete ik... Gambarr 4.30. Hasasilil eekstrrakaksisi ppararammeteterer sskek wness paadad dataset O deenngan intntervaall pemotonggan 1 detik...
Ga
Gambar 44.3.31.1. Hassilil ekstraksi parameter sskek wnessss papada datataset O deengnganan intererval pemotongan 2 detik...
Gambmbaar 4.332. Hasil ekstraksi parameter skewnesss padada ddatasete
O ddengann interval pemotongan 5 detik...
Ga
Gambm arr 4.33. Hasil ekstraksi parameter skewness paada ddatataset O
O dengngan interval pemotongan 10 detik...
Gambaar 4.34. Hasil ekstraksi parameter kurtosis padaa datassett
O
O denngan interval pemotongan 1 detik...
Gambbaar 4.35. Hasasilil ekskstrtraksi paramameteterr kkururtosis padada datassetet O dengan inttervall pemoototongngan 22 ddetetikik...
Ga
Gambar 4.36. Hasil ekstraksii parameter kurtosis pada ddatatasaseet O
O dedengngan interval pemotongan 5 detik...
Ga
Gambm ar 44.3737. HHasasilil ekstrtrakaksisi ppararameterer kkururttosisiss pada ddatataset O dedengnganan iintnterervaall pemoototonganan 10 dedettik...
Gambar 4.38. Hasil ekstrakaksi pararameter mean pada dataset n dengan interval pemotonggan 1 dettik...
Gambar 4.39. Hasil ekstraka si parrameter mean pada dataset n dengan interval pemotonganan 2 deetik...
xi
Gambar 4.43. Hasil ekstraksi parameter standard deviation pada dataset n dengan interval pemotongan 2 detik...
Gambar 4.44. Hasil ekstraksi parameter standard deviation pada dataset n dengan interval pemotongan 5 detik... Gambar 4.45. Hasil ekstraksi parameter standard deviation pada dataset n dengan interval pemotongan 10 detik. ...
Gambar 4.46. Hasil ekstraksi parameter skewness pada dataset n dengan interval pemotongan 1 detik. ...
Gambar 4.47. Hasil ekstraksi parameter skewness pada dataset n dengan interval pemotongan 2 detik. ...
Gambar 4.48. Hasil ekstraksi parameter skewness pada dataset n dengan interval pemotongan 5 detik. ... Gambar 4.49. Hasil ekstraksi parameter skewness pada dataset n dengan interval pemotongan 10 detik. ...
Gambar 4.50. Hasil ekstraksi parameter kurtosis pada dataset n dengan interval pemotongan 1 detik. ...
Gambar 4.51. Hasil ekstraksi parameter kurtosis pada dataset n dengan interval pemotongan 2 detik. ...
Gambar 4.52. Hasil ekstraksi parameter kurtosis pada dataset n dengan interval pemotongan 5 detik. ... Gambar 4.53. Hasil ekstraksi parameter kurtosis pada dataset n dengan interval pemotongan 10 detik. ...
Gambar 4.54. Hasil ekstraksi parameter mean pada dataset f dengan interval pemotongan 1 detik...
Gambar 4.55. Hasil ekstraksi parameter mean pada dataset f dengan interval pemotongan 2 detik...
Gambar 4.56. Hasil ekstraksi parameter mean pada dataset f dengan interval pemotongan 5 detik... Gambar 4.57 Hasil ekstraksi parameter mean pada dataset f dengan interval pemotongan 10 detik. ...
Gambar 4.58. Hasil ekstraksi parameter standard deviation pada dataset f dengan interval pemotongan 1 detik...
Gambar 4.59. Hasil ekstraksi parameter standard deviation pada dataset f dengan interval pemotongan 2 detik... Gambar 4.45. Hasil ekstrtrakaksi pari arama eter standard deviation pada dataset n dengagan interval pemottonongag n 10 detik... Gambar 4.46. HHasil ekstraksi parameter skewnwness pada dataset n dengan iinnterval pemototonggana 1 detiki ...
Gambarr 4.47. Hasasilil eekstrrakaksisi ppararammeteterer sskek wness paadad dataset n deenngan intntervaall pemotonggan 2 detik...
Ga
Gambar 44.4.48.8. Hassilil ekstraksi parameter sskek wnessss papada datataset n deengnganan intererval pemotongan 5 detik...
Gambmbaar 4.449. Hasil ekstraksi parameter skewnesss padada ddatasete
n ddengann interval pemotongan 10 detik...
Ga
Gambm arr 4.50. Hasil ekstraksi parameter kurtosis paada ddatataset n
n dengngan interval pemotongan 1 detik...
Gambaar 4.51. Hasil ekstraksi parameter kurtosis padaa datassett
n
n denngan interval pemotongan 2 detik...
Gambbaar 4.52. Hasasilil ekskstrtraksi paramameteterr kkururtosis padada datassetet n dengan inttervall pemoototongngan 55 ddetetikik...
Ga
Gambar 4.53. Hasil ekstraksii parameter kurtosis pada ddatatasaseet n
n dedengngan interval pemotongan 10 detik...
Ga
Gambm ar 44.5454. HHasasilil ekstrtrakaksisi ppararameterer mmeaean papadada ddatasasetet f de
dengnganan iintnterervaval pepemotoongngan 1 detik1 ik...
Gambar 4.55. Hasil ekstrakaksi pararameter mean pada dataset f dengan interval pemotonggan 2 dettik...
Gambar 4.56. Hasil ekstraka si parrameter mean pada dataset f dengan interval pemotonganan 5 deetik...
xii
Gambar 4.60. Hasil ekstraksi parameter standard deviation pada dataset f dengan interval pemotongan 5 detik...
Gambar 4.61. Hasil ekstraksi parameter standard deviation pada dataset f dengan interval pemotongan 10 detik. ... Gambar 4.62. Hasil ekstraksi parameter skewness pada dataset f dengan interval pemotongan 1 detik. ...
Gambar 4.63. Hasil ekstraksi parameter skewness pada dataset f dengan interval pemotongan 2 detik. ...
Gambar 4.64. Hasil ekstraksi parameter skewness pada dataset f dengan interval pemotongan 5 detik. ...
Gambar 4.65. Hasil ekstraksi parameter skewness pada dataset f dengan interval pemotongan 10 detik. ... Gambar 4.66. Hasil ekstraksi parameter kurtosis pada dataset f dengan interval pemotongan 1 detik. ...
Gambar 4.67. Hasil ekstraksi parameter kurtosis pada dataset f dengan interval pemotongan 2 detik. ...
Gambar 4.68. Hasil ekstraksi parameter kurtosis pada dataset f dengan interval pemotongan 5 detik. ...
Gambar 4.69. Hasil ekstraksi parameter kurtosis pada dataset f dengan interval pemotongan 10 detik. ... Gambar 4.70. Hasil ekstraksi parameter mean pada dataset s dengan interval pemotongan 1 detik...
Gambar 4.71. Hasil ekstraksi parameter mean pada dataset s dengan interval pemotongan 2 detik...
Gambar 4.72. Hasil ekstraksi parameter mean pada dataset s dengan interval pemotongan 5 detik...
Gambar 4.73 Hasil ekstraksi parameter mean pada dataset s dengan interval pemotongan 10 detik. ... Gambar 4.74. Hasil ekstraksi parameter standard deviation pada dataset s dengan interval pemotongan 1 detik...
Gambar 4.75. Hasil ekstraksi parameter standard deviation pada dataset s dengan interval pemotongan 2 detik...
Gambar 4.76. Hasil ekstraksi parameter standard deviation pada dataset s dengan interval pemotongan 5 detik... Gambar 4.62. Hasil ekstrtrakaksi pari arama eter skewness pada dataset f dengan interval pepemotongan 1 detikk...
Gambar 4.63. HHasil ekstraksi parameter skewnwness pada dataset f dengan iinnterval pemototonggana 2 detiki ...
Gambarr 4.64. Hasasilil eekstrrakaksisi ppararammeteterer sskek wness paadad dataset f deenngan intntervaall pemotonggan 5 detik...
Ga
Gambar 44.6.65.5. Hassilil ekstraksi parameter sskek wnessss papada datataset f deengnganan intererval pemotongan 10 detik...
Gambmbaar 4.666. Hasil ekstraksi parameter kurtosiss padada ddatasete
f ddengann interval pemotongan 1 detik...
Ga
Gambm arr 4.67. Hasil ekstraksi parameter kurtosis paada ddatataset f
f dengngan interval pemotongan 2 detik...
Gambaar 4.68. Hasil ekstraksi parameter kurtosis padada datassett
f denngan interval pemotongan 5 detik...
Gambbaar 4.69. Hasasilil ekskstrtraksi paramameteterr kkururtosis padada datassetet f dengan inttervall pemoototongngan 1100 dedetitikk...
Ga
Gambar 4.70. Hasil ekstraksii parameter mean pada datasetet ss de
dengganan interval pemotongan 1 detik...
Ga
Gambm ar 44.7171. HHasasilil ekstrtrakaksisi ppararameterer mmeaean papadada ddatasasetet s de
dengnganan iintnterervaval pepemotoongngan 2 detik2 ik...
Gambar 4.72. Hasil ekstrakaksi pararameter mean pada dataset s dengan interval pemotonggan 5 dettik...
Gambar 4.73 Hasil ekstraksk i paraameter mean pada dataset s dengan interval pemotonganan 10 ddetik...
xiii
Gambar 4.77. Hasil ekstraksi parameter standard deviation pada dataset s dengan interval pemotongan 10 detik. ...
Gambar 4.78. Hasil ekstraksi parameter skewness pada dataset s dengan interval pemotongan 1 detik. ... Gambar 4.79. Hasil ekstraksi parameter skewness pada dataset s dengan interval pemotongan 2 detik. ...
Gambar 4.80. Hasil ekstraksi parameter skewness pada dataset s dengan interval pemotongan 5 detik. ...
Gambar 4.81. Hasil ekstraksi parameter skewness pada dataset s dengan interval pemotongan 10 detik. ...
Gambar 4.82. Hasil ekstraksi parameter kurtosis pada dataset s dengan interval pemotongan 1 detik. ... Gambar 4.83. Hasil ekstraksi parameter kurtosis pada dataset s dengan interval pemotongan 2 detik. ...
Gambar 4.84. Hasil ekstraksi parameter kurtosis pada dataset s dengan interval pemotongan 5 detik. ...
Gambar 4.85. Hasil ekstraksi parameter kurtosis pada dataset s dengan interval pemotongan 10 detik. ...
Gambar 4.86. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan... Gambar 4.87. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.88. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.89.Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.90. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ... ...
Gambar 4.91. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ... Tabel 4.5. Hasil Eksperimen Kelas Data 1 Pemotongan 5 detik ... Gambar 4.79. Hasil ekstrtrakaksi pari arama eter skewness pada dataset s dengan interval pepemotongan 2 detikk...
Gambar 4.80. HHasil ekstraksi parameter skewnwness pada dataset s dengan iinnterval pemototonggana 5 detiki ...
Gambarr 4.81. Hasasilil eekstrrakaksisi ppararammeteterer sskek wness paadad dataset s deenngan intntervaall pemotonggan 10 detik... ...
Ga
Gambar 44.8.82.2. Hassilil ekstraksi parameter kkuru tosiiss papada datataset s deengnganan intererval pemotongan 1 detik...
Gambmbaar 4.883. Hasil ekstraksi parameter kurtosiss padada ddatasete
s ddengann interval pemotongan 2 detik...
Ga
Gambm arr 4.84. Hasil ekstraksi parameter kurtosis paada ddatataset s
s dengngan interval pemotongan 5 detik...
Gambaar 4.85. Hasil ekstraksi parameter kurtosis padaa datassett
s denngan interval pemotongan 10 detik... Gambbaar 4.86. Grarafifikk PePerbrbandingan NNililaiai LLeaearning Ratete dan Kombinasi NoN dde Terhhadadapp WaWaktu PePelalatitihhan...
Ga
Gambar 4.87. Grafik Perbandiinngan Nilai Learning Rate ddaan Ko
Kombmbininasi Node Terhadap MAE...
G
Gamambar 44.8888. GrGrafafikik Perbabandndiningagann Nilal ii LeLearniningng RRate dadann Koombmbininasasii NoNodede Tererhhadaapp Akururaasi...
Gambar 4.89.Grafik Perbandndingann Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Peelatihan...
Gambar 4.90. Grafik Perbana dingann Nilai Learning Rate dan Kombinasi Node Terhadap MAMAE...
xiv
Gambar 4.92. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu pelatihan...
Gambar 4.93. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ... Gambar 4.94. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.95. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.96. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.97. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ... Gambar 4.98. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.99. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.100. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.101. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan... Gambar 4.102. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.103. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.104. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.105. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ... Gambar 4.106. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.107. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.108. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ... Gambar 4.94. Grafik Perbrbanandidinganan Nilai Learning Rate dan Kombinasi Node Terhahaddap Akurasi...
Gambar 4.95. GGrafik Perbandingan Nilai Learnrning Rate dan Kombinasi NNode Terhadapp Akuru asa i... Gambarr 4.96. Grarafifikk Perbbanndidingnganan NNililaiai LLeearning Raatet dan Kombbiinasi NoNode TTererhadap Akurasi...
Ga
Gambar 44.9.97.7. Graafifik Perbandingan Nilai LLeae rninngg RaRate danan Kombbinnasasii Nodede Terhadap Akurasi...
Gambmbaar 4.998. Grafik Perbandingan Nilai Learningg Ratete ddan
Koommbinassi Node Terhadap Waktu Pelatihan...
Ga
Gambm arr 4.99. Grafik Perbandingan Nilai Learning Raate ddanan Ko
Kombinnasi Node Terhadap MAE...
Gambaar 4.100. Grafik Perbandingan Nilai Learning Ratte dan
Ko
K mbiinasi Node Terhadap Akurasi...
Gambbaar 4.101. GrGrafafikik PerPerbandingan n NiNilalaii LeLearning Raatete dan Kombinasi NoN dde Terhhadadapp WaWaktu PePelalatitihhan...
Ga
Gambar 4.102. Grafik Perbanddini gan Nilai Learning Rate dadann Ko
Kombmbininasi Node Terhadap MAE...
Ga
Gambm ar 44.103103. GrGrafafikik Perrbabandndiningagann Niilalaii LeLearniningng RRate e dadan Koombmbininasasii NoNodede Tererhhadaapp Akururaasi...
Gambar 4.104. Grafik Perbabandingagan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Peelatihan...
Gambar 4.105. Grafik Perbab ndingaan Nilai Learning Rate dan Kombinasi Node Terhadap MAMAE...
xv
Gambar 4.109. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.110. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan... Gambar 4.111. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.112. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.113. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.114. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ... Gambar 4.115. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.116. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.117. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.118. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ... Gambar 4.119. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Waktu Pelatihan...
Gambar 4.120. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap MAE. ...
Gambar 4.121. Grafik Perbandingan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi. ...
Gambar 4.122. Grafik Perbandingan Akurasi, MAE, dan Waktu Pelatihan di Setiap Pemotongan Waktu pada Kelas Data 1... Gambar 4.123. Confusion Matrix dari Jaringan dengan Learning Rate 0,2 dengan Kombinasi Hidden Layer 10 dan 15 pada Kelas Data 1 dengan pemotongan 2 detik. ... Gambar 4.124. Grafik Perbandingan Akurasi, MAE, dan Waktu Pelatihan di Setiap Pemotongan Waktu pada Kelas Data 2... Gambar 4.111. Grafik Pererbabandidingagan n Nilai Learning Rate dan Kombinasi Node Terhahaddap MAE...
Gambar 4.112.. Grafik Perbandingan Nilai Leararning Rate dan Kombinasi NNode Terhadapp Akuru asa i... Gambarr 4.113. GrGrafafikik Perrbabandndiningagan NiNilalaii LeL arning RRata e dan Kombbiinasi NoNode TTererhadap Waktu Pelatihan.n...
Ga
Gambar 44.1.11414. Grrafafik Perbandingan Nilai i LeL arniingng RRate dadan Kombbinnasasii Nodede Terhadap MAE...
Gambmbaar 4.1115. Grafik Perbandingan Nilai Learningn Ratate e dan
Koommbinassi Node Terhadap Akurasi... Ga
Gambm arr 4.116. Grafik Perbandingan Nilai Learning RRate dadan Ko
Kombinnasi Node Terhadap Waktu Pelatihan...
Gambaar 4.117. Grafik Perbandingan Nilai Learning Ratte dan
Ko
K mbiinasi Node Terhadap MAE...
Gambbaar 4.118. GrGrafafikik PPererbandingan n NiNilalaii LeLearning Ratate dan Kombinasi NoN dde Terhhadadapp AkAkurassi.i...
Ga
Gambar 4.119. Grafik Perbanddini gan Nilai Learning Rate dadann Ko
Kombmbininasi Node Terhadap Waktu Pelatihan...
Ga
Gambm ar 44.120120. GrGrafafikik Perrbabandndiningagann Niilalaii LeLearniningng RRate e dadan Koombmbininasasii NoNodede TTererhhadaapp MAE.E ...
Gambar 4.121. Grafik Perbabandingagan Nilai Learning Rate dan Kombinasi Node Terhadap Akurasi...
Gambar 4.122. Grafik Perbab ndingaan Akurasi, MAE, dan Waktu Pelatihan di Setiap Pemototongan Waktu pada Kelas Data 1...
xvi
Gambar 4.125. Confusion Matrix dari Jaringan dengan Learning Rate 0.1 dengan Kombinasi Hidden Layer 15 dan 5 pada Kelas Data 2 dengan pemotongan 10 detik. ...
Gambar 4.126. Grafik Perbandingan Akurasi, MAE, dan Waktu Pelatihan di Setiap Pemotongan Waktu pada Kelas Data 3...
Gambar 4.127. Confusion Matrix dari Jaringan dengan Learning Rate 0,3 dengan Kombinasi Hidden Layer 15 dan 15 pada Kelas Data 3 dengan pemotongan 5 detik. ...
Gambar 4.133. Grafik Optimal Akurasi (kiri) dan MAE(kanan) pada Kelompok Data 1. ...
Gambar 4.134. Grafik Optimal Akurasi (kiri) dan MAE(kanan) pada Kelompok Data 2. ...
Gambar 4.135. Grafik Optimal Akurasi (kiri) dan MAE(kanan) pada Kelompok Data 3. ... Gambar 4.127. Confususiion Matrix dari JaJaringan dengan Learning Rate 0,3 dengan n KKombinasi Hidden Layer 1155 dan 15 pada Kelas Data 3 dengaann pemotonganan 5 detik...
Gambar 44.133. GrG afafiki Optptimimala AAkukurarasisi ((kiri) dan MAM E(kanan) pada KKelompok DaDatata 11... Gaammbar 4.1.13434. Grafikik Optimal AkurasiO si ((kiri) dadann MAE(kakanan) p
xvii
Penggunaan Temporal Data Mining pada Data
Electroencephalography (EEG) untuk Klasifikasi Penyakit
Epilepsi dengan Backpropagation
INTISARI
Stephanus Deo Aquino (12 07 07091)
Electroencephalography (EEG) adalah sebuah teknik pemeriksaan menggunakan alat elektromedis yang digunakan untuk merekam aktivitas listrik dari otak manusia. Salah satu kegunaannya dari EEG adalah untuk mendeteksi penyakit epilepsi yang ada pada manusia. Proses penggalian informasi untuk mengetahui hasil pada data EEG membutuhkan perhatian pada unsur waktu yang terkandung dalam data agar informasi didapatkan secara maksimal.
Pada penelitian ini, dibahas bagaimana cara menggunakan Temporal Data Mining untuk melakukan klasifikasi penyakit epilepsi berdasarkan data hasil perekaman EEG serta bagaimana menganalisis hasil klasifikasi menggunakan Backpropagation. Ekstraksi parameter yang digunakan adalah mean, standard deviasi, variance, skewness dan kurtosis yang akan digunakan sebagai inputan kedalam jaringan. Parameter yang digunakan adalah parameter yang terdapat pada Principle Component Analysis (PCA) dan Independent Component Analysis (ICA). Dalam penelitian ini dilakukan digunakan metode Eksternal Temporal Data Mining dengan cara memotong data kedalam 1 detik, 2 detik, 5 detik, dan 10 detik.
Unsur waktu yang terkandung dalam data sangat berpengaruh dalam tingkat keberhasilan klasifikasi. Dari hasil penelitian ini, diketahui bahwa semakin besar waktu pemotongan maka akan semakin baik kualitas data. Hasil klasifikasi memberikan akurasi terbaik sebesar 100% dalam menangani kondisi epilepsi saat kejang dan kondisi sehat, 86,4979% dalam menangani kondisi sehat, epilepsi kejang dan epilepsi tidak kejang, serta 65,1477% dalam menangani kondisi sehat, kondisi epilepsi kejang, kondisi epilepsi tidak kejang, dan kondisi pada saat pembentukan hippocampus.
Kata Kunci: Temporal Data Mining, Klssifikasi , Epilepsi, Electrocephalography, Backpropagation.
Dosen Pembimbing 1: Ir. A. Djoko Budiyanto, M.Eng., Ph.D.
Dosen Pembimbing 2: Dra. Ernawati, M.T.
p q ( )
Electroencepphahalography (EEG) aadalah sebuah teknik pemeriksaan meennggunakan alat elektromeedid s yang digunakan untuk merekakamm aktivitaas listrik dari otaakk manusia. Salah satu kegunnaaannya dari EEEG addalah uuntuk mendedetet ksi penyakit epilepsii yang ada pap da mmananususia. Pria Prososese penggaliaian informasi untuk mengetahuiui hhaasil padada dadatat EEEGEG mmeembutuhkann perhatian padaa unsur waktutu yyang terkandung dallamam dataa agar iinformasi didadapatkanan ssece ara maaksksiimal.
Paadada peneleliitian ini, dibahhasas bbagagaiaimana cara m
menggguunanakakan TeTemporal Data Mining untuk melm elaka ukkanan kklaasifiikasi penyyakakitit epipilepsi berdasarkan data hasil perreke amanan EEEGEG sererta
bagagaimimaana menganalisis hasil klasifikasii mmenenggggunakkan
Backckprproppaagation. Ekstraksi parameter yang diguunakaan n adalaah meeanan, ststandard deviasi, variance, skewness dan kkuru totosisis s yangg ak
akanan ddiigunakan sebagai inputan kedalam jaringan.. Pararamamete err ya
yang ddigunakan adalah parameter yang terdapat padaa Pririnccipi le
Co
Compononent Analysis (PCA) dan Independent Componentt Ananalylysiiss (ICA)). Dalam penelitian ini dilakukan digunakaan metoodede Eksteernal Temporal Data Mining dengan cara memottong ddaataa kedallam 1 detik, 2 detik, 5 detik, dan 10 detik.
Unsur waktu yang terkandung dalam dataa ssangagatt
berprpeengaruh dalalamm titingngkat keberhrhasasililanan klasifikaasisi. Daariri hasil peneelilititianan iinini,, didikek tahuhui babahwhwaa sesemamakikin besar waaktktuu pemotongan maka akan sememaka inin baik kualitas data. HHasasilil k
klasifikasi memberikan akurarasi terbaik sebesar 100% dadalalam me
m nanangani kondisi epilepsi saat kejang dan kondisii ssehehatat, 86
86,4,497979%9% ddala aam mmenenanangagani kondisi sehehatat,, epepilepepsisi kkejejanang g ddan ep
epililepepsisi ttididakak kkejejanang,g, serrtata 665,5,14147777% % dadalalamm memenanangngani ko
kondndisi sehat,t, kkondisi eepipileleppsi kejajangng,, kondisi epepililepsi tiidadakk kekejajangng, dadann konddisisi padda saaat pembmbene tutukakann hihippppoccampus.
Kata Kunci: Temporal Daatta Minini g, Klssifikasi , Epilepsi, Electrocephalography, Baackpropaggation.
Dosen Pembimbing 1: Ir. A.A. Djokko Budiyanto, M.Eng., Ph.D.