• Tidak ada hasil yang ditemukan

Further exploration of the klee-minty problem

N/A
N/A
Protected

Academic year: 2017

Membagikan "Further exploration of the klee-minty problem"

Copied!
16
0
0

Teks penuh

(1)

DEPARTEMEN

MATEMATIKA

FMIPA

- INSTITUT

PERTANIAN

BOGaR

ISSN:

1412-677X

jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C o m p a rfn g O p tim is m o t E rro r R a te E s tIm a to fS In D is c rim in a n t A n a ly s is b y M o n te c a rto S im u la tio n

o n M u ltlv a rfa te N o rm a l D a ta 1

I W a y a n M a n g k uNMLKJIHGFEDCBA

A la m a t R e d a k s f:

D e p a rte m e n M a te m a tik a B ffu rk a s i H o p t p a d a M o d e l S ik lu s B is n ls K a ld o r-F M IP A -/n s titu t P e rta n ia n B o g o r

K a le c k l T a n p a W a k tu T u n d a

N u rra c h m a w a ti d a nihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA K u s n a n to . 13

JJn. M e ra llti, K a m p u s IP S

D ra m a g a -

Bogor

P e n d u g a a n K o m p o n e n P e rfo d ik F u n g s lln te n s lta s

B e rb e n tu k F u n g s i P e rto d ik K a li T re n K u a d ra tik

S u a tu P ro se s P o isso n N o n -H o m o g e n

P h o n e jF a x :(0 2 6 1 ) 8 6 2 5 2 7 6

R a m d a n l, P ., IvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW.M a n g k u , o e n R . B u d ia rti 19

I

f-m a rt: m a th @ lp b .a c J d M a s a la h D lrfc h le t u n tu k P e tS a m a a n B e d a d a la m H I

iI/)

G m t T e rb o b o ti lll<\'H

Iff.

G a m a d l, A D . d a n E.K h a tJ z a 31 )!l"

F u rth e r E x p lO ra tio n ofth e K le e -M in ty P ro b le m

~ i

I
(2)

Vol. 9, No.2, Desernbcr 2010 ISSN : 1412-677X

Journal of Mathematics

and Its Applications

Jurnal Matematika dan Aplikasinya

PIMPINAN REDAKSI

Dr. Jaharuddin, MS.

EDITOR

Dr. Ir. Sri Nurdiati, MSc. Dr. Ir. Hadi Sumarno, MS. Dr. Ir. I Wayan Mangku, MSc. Dr. Ir. Endar H. Nugrahani, MS.

Dr. Paian Sianturi

ALAMA T REDAKSI:

Departemen Matematika FM[PA - Institut Pertanian Bogor Jln. Meranti, Kampus IPB Dramaga

Bogor

Phone.lFax: (0251) 8625276

Email:math@ipb.ac.idihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

IjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i'

3T.ffl1!l merupakan media yang mernuat inforrnasi hasil penelitian matematika baik murni maupun

terapan, bagi para matematikawan atau para pengguna matematika. 3TJill\!l diterbitkan dua kali (dua

nomor) setiap tahun (periode Juli dan Desember).

Harga langganan per volume, termasuk biaya pos, Vo1.9, No, I dan 2:

Institusi/Perpustakaan Rp. 350.000,- (dalam IPB), Rp. 500.000,- (luar IPB)

Staf/Perorangan Rp. 200,000,- (dalam IPB), Rp.250.000,- (luar IPB)

Mahasiswa Rp.

75.000,-Penulis makalah yang diterima dikenai biaya administrasi Rp.25.000,- per lernbar

Semua pembayaran biaya dapat ditransfer mclalui:

Retno Budiarti BNI Cabang Bogor No. Rek. 000291007-5

(3)

3f:ffl£l,vutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVol. 9, No.2, Desember 2010 ISS : 1412-677X

Journal of Mathematics

and Its Applications

Jurnal Matematika dan Aplikasinya

1:1ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA D A F T A R IS I

(I

III,

1 '

C o m p a rin g O p tim is m o fE rro r R a te E s tim a to rs in D is c rim in a n t A n a ly s is b y M o n te C a rlo S im u la tio n

o n M u ltiv a ria te N o rm a l D a ta

1

I W a ya n M a n g k u

B ifu rk a s i H o p f p a d a M o d e l S ik lu s B is n is K a ld o

r-K a /e c k i T a n p a W a k tu T u n d a

N u rra c h m a w a ti d a n A.K u s n a n to .

13

P e n d u g a a n K o m p o n e n P e rio d ik F u n g s i In te n s ita s

B e rb e n tu k F u n g s i P e rio d ik K a li T re n K u a d ra tik

S u a tu P ro s e s P o is s o n N o n -H o m o g e n

R a m d a n i, P ., IW. M a n g k u , d a n R . B u d ia rti 19

I':

M a s a la h D iric h le t u n tu k P e rsa m a a n B e d a d a /a m

G ra fT e rb o b o ti

!

I G a rn a d i, A .D . d a n E. K h a tiz a

31

.i. \

F u rth e r E x p lo ra tio n o fth e K le e -M in ty P ro b le m

(4)

ABSTRACT. The Klee-Minty problem is explored in this paper. The coordinates formulas of all vertices of the Klee-Minty cube are presented. The subset representation of the vertices of the Klee-Minty cube is discussed. How to construct the Klee-Minty path is showed. It turns out that there are rich structures in the

Klee-Minty path. We explore these structures.edcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K e y w o r d s : Klee-Minty cube, Klee-Minty path, Klee-Minty prob-lem.ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

\'

FURTHER EXPLORATION OF

THE KLEE-MINTY PROBLEM.

a m PARUHUM SILALAHI

Department of Mathematics,

Faculty of Mathematics and Natural Sciences, Bogar Agricultural University

Jl. Meranti, Kampus IPB Darmaga, Bogar, 16680 Indonesia

1 . INTRODUCTION

The Klee-Minty (KM) problem is a problem that had been presented by Klee and Minty in [3J. The n-dimensional KM problem is given by:

mm Y n

(1) subject to P Y k - l ~ Y k ~ 1 - P Y k - l , k

=

1, ... ,n ,

wherejihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is small positive number by which the unit cube

[O,lJn

is squashed, and Y o = O. The domain (we denote as e n ), which is called KM-cube, is a perturbation of the unit cube in R". If p = 0 then the domain is the unit cube and for p E (O,~) it is a perturbation of the unit cube which is contained in the unit cube itself. Since the perturbation is small, the domain has the same number of vertices as the unit cube, i.e. 2 n .

The KM-problem has become famous because Klee and Minty found a pivoting rule such that the simplex method requires 2n - 1 iterations to sol ve the problem (1).

Y k - l ~ Y k ~ 1 - Y k - l

In this paper, we explore the KM problem further. We provides for-mulas for the coordinates of all vertices of the KM cube, and discuss the subset representation of the vertices of the KM cube. Then we

(5)

42ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB lB P A I1 U H U d S fL A L A fllvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

describe the KM path.jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV.,Te show that when using the subset represen-tation, the KM path can easily be constructed by using the so-called

flip p in g operation. It, turns out that there are rich structures in the KM path. We explore these structures.

2 . VERTICES OF THE KLEE-MINTY CUBE

With the n-dimensional EM problem as defined in (1), we define the slack vectors 2.. andedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS according to

2 ..k = Y k - P Y k - l , k = l , ,n , (2)

s k = l - Y k - P Y k - l , k = l , , n . (3)

For any vertex of the KM cube we have either Q .k

=

0 or S k

=

0, for each

k . As a consequence, each vertex can be characterized by the subset

of the index set J= {I, 2, ... ,n } consisting of the indices k for which

S k vanishes (and hence 2 ..kis positive). Therefore, given a vertex v we

define

S ; = { k : S k = O} == { k : 2 ..k> O} .

Note that the KM cube has 2n vertices. Since 2n is also the number of subsets of the index set J, each subset S of the index set uniquely determines a vertex. We denote this vertex as vS. Given S , the

co-ordinates of vS in the y-space can easily be solved from (2) and (3), because we then have S k = 0 if k E Sand Q .k = 0 if k ~ S , which yields

n equations in the entries of the vector y. When defining Y o

=

0 and

y = vS, one easily deduces that.

{

l -P Y k -l, k E S ,

Y k =

P Yk - L, k d'F S .

Since Y o = 0, we have Y 1 E {O,I}. This together with (4) implies that

Y k is a polynomial in P whose degree is at most k - 1. Moreover, the

coefficients of this polynomial take only the values 0, 1 and -1 , and the nonzero coefficients alternate between 1 and -1. Finally ifY k = 1 = 0 then the lowest degree t.erm has coefficient I.

'vVecan be more specific. Let

(4 )

S = {81' 82, ... , 8m }, 80 = 0 < 81 < 82 < ... < 8m < 8m+1 :=n + l.

Then the entries of yare given by the following lemma. In this lemma we define an empty sum to be equal to zero.

Lemma 1. O n e h a s

Y S ;

=

L ( - l ) , + J p - " - s ) ,

0:::; i:::;

m,

j= 1

(5)

and

(6)

JMA, VOL. 9.jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN O .2 , DESEMJ3ER, 201.0, 41-53 43

P ro o]. If k

tt

S then the definition of S implies thatedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS iihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< k < S i + 1 for

some i, with 0 ~ i ~m. It follows from (4) that in that case

Y S i + l = 1 - P Y S i + l - l . At this stage we need to distinguish two cases: and S i + l - 1

tt

S (case II).

In case I we must have S i + l -1

=

s . . Since (5) holds forY S i it follows from (7) that

(7)

S i + l - 1 E S (case I) _ _ _ k - s i - 1 _ k = s ;

Y k - P Y k - l - .t • - P Y si+ l - P Y Sil proving (6).

So it remains to prove (5). The proof uses induction with respect to the index i in (5). Before entering this proof it may be worth noting that (5) expresses Y Si as a polynomial in P of degree s , - S l . The lowest degree term occurs for j = i , and hence this term equals (-1

)2i

p O = 1.

For i = 0 the sum in (5) becomes empty, whence we obtain Y o

=

0,

as it should. This proves that (5) holds if i = O. Now assume that (5) holds for some i, with 0 ~ i < m. Since S i + l E S , according to (4) we have

Y.S,+I = 1 - p ys ,, = 1 - r -f),\,i,L ....J = 1 ( _ l ) i + j p S i - S j

= 1 - L ~ = l ( - l ) i + j p S i + l - s j

=

1

+

L ~ = 1 (-1)i+l+j p S i + I - S j .

In case II we may use (6), which gives

Y,8,+1_1

=

p S i + l - l - s iy s ,,

=

p S i + I - 1 - s i ,\,i,L....J=l( _ l ) i + j p s i - S j

=

,\,i, ( _ l ) i + j S i + l - l - S j L ....J = 1 P ,

whence (7) yields that

I I

i i+l

Y S i - j - 1

=

1

+

I)

_ 1 ) i + 1 + j p S i + I - S j

=

I)

_ 1 ) i + 1 + j p S i + I - S j ,

j= 1 j= l

which completes the proof.

o

Y S i + 1

=

1- P 2 ~ ) _ 1 ) i + j p S i + l - l - S j = 1

+

I ) _ l ) i + l +jp s i + I - S j .

j = 1 j = 1

We conclude that in both cases we have

3 . THE KLEE-MINTY PATH

(7)

is well known in which order the vertices are visited. This can be easily described by using the subset representation of the vertices introduced in the previous section. The. path starts at vertex (0, ... ,0,1) whose

subset is the subsetjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 1ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= {n }. Thesubsequent subsets are obtained by an operation which we call flip p in g · an index with respect to a subset

S [4]. Given a subset S and an index i, flipping i (with respect to S )

means that we add i to S if i t/:. S , and remove i from S if i E S . Now let S k denote the subset corresponding to the k-th vertex on the KM path. Then S k+ l is obtained from S k as follows:

• if

ISkl

is odd, then flip 1;

• if

ISkl

is even, then flip the element. following the smallest ele-ment inedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS i :

Denoting the resulting sequence as Pn , we can now easily construct the KM path for small values of n :

P1 :

{I}

- t

0

P

2 :

{2}

- t

{1,2}

-7

{I}

- t

0

P3 :

{3}

- t

{I, 3}

-7

{I, 2, 3}

- t

{2, 3}

-7 P2

P

4:

{4}

-t

{1,4}

-t

{I,2,4}

-7

{2,4}

-7

{2,3,4}

-t

{1,2,3,4}

-t

{1,3,4}

-t

{3,4}

-t P

3 .

Table 1 shows the subsets and the corresponding vectors y for the KM path for n = 4. The corresponding tables for n = 2 and n = 3 are subtables, as indicated. Note that if subsets S a n d S ' differ only in n ,

and y

=

v s and y '

=

V S ' , then we have

Y i

=

y ~ , 1 ~ i

<

n , u «

+

Y : l

=

L

Obviously, the subsets of two subsequent vertices differ only in one element. For the corresponding subsets, S k and S k+ l say, we denote this element by ik . Then we have S ik

=

0 in one of these vertices, and in the other vertex S ik > 0, or equivalently § . i k

=

O. On the interior of

the edge connecting these two vertices we will have § . i k > 0 and S ik > O. If n

=

4 then, when following the KM path, the flipping index ik runs through the following sequence:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

So if n

=

4 then the flipping index 8 times equals 1, 4 times 2, 2 times

3, and once 4.

Table 2 shows the slack vector §. and Table 3 the slack vector S [or each of the vertices. For a graphical illustration (with n

=

3) we refer to Figure 1.

4. S E Q U E N C E O F V E R T IC E S IN T H E K L E E -M IN T Y P A T H

(8)

r - - .edcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYi Y 2 Y 3

Y4

{4} 0 0 0 1

{1,4}

1

,p p 2

1 _

p 3

{1,2,4}

1

I - p p _ p 2

1 -

p 2

+

p 3

{2,4}

0

1

P

1 _

p 2

{2,3,4}

0 1 1 - p 1 _ P

+

p 2

{1,2,3,4}

1 1 - p ] _ p

+

p 2 1 _ p

+

p 2 _ p 3

{1,3,4}

1jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp

1 _

p 2 1 - (J

+

p 3

{3,4}

0 0

1

I - p

{3}

0 0

1

P

{1,3}

1

p

1 _

p 2 P _ p 3

{1,2,3}

1

I - p 1 _ p

+

p 2 P _ p 2

+

p 3

{2,3}

0

1

1 - P P _ p 2

{2}

0

1

p p 2

{1,2}

1

1 - p p _ p 2 p 2 _ p 3

{I}

1

p p 2 P3

0

0 0 0 0

,,

JMA, VOL. 9, NO.2, DESEtvIBER, 2010, 41-53 45

TABLE L The KM path (in the v-space) for n

=

4.

sequence. Hence, when denoting the first half of Pn as

P::-l

we have

for n E {2, 3, 4} that Pn =

P ::-

1 ---t Pn -1 . Indeed, when defining P o =

0

then this pattern holds for each n ~ 1, as stated in the following lemma.

Lemma 2. fO T ' n ~ 1, o n e h a s

(8)

P r o o f . The proof uses induction with respect to n . We already know

that the lemma holds if n ~ 4. Therefore, (8) holds if n = 1. Suppose

that n ~ 2. Let S k denote the k - t h subset in the sequence Pn -1 . By

the induction hypothesis we have S 1

=

{ n - I} and S 2n-J

=

0. The

first set in Pn is the set {n}

=

{n} U S2n-J. For 2 ~ k ~ 2n-t, we

consider the set S

=

S k U {n } and we show below that its successor

is the set S k-l U {n }. This will imply that the 2n-l_th set in Pn is

S 1 U { n } = { n - 1,n } , whose successor is the set { n - I}, the first set

of Pn -1. This makes clear that it suffices for the proof of the lemma if

we show that for each set S k in Pn -1 the successor of S k U {n } is the

set S k-1 U {n}. This can be shown as follows.

If

ISI

is even then the successor of

S

in Pn arises by flipping the

element following the smallest element in S . If this smallest element

(9)

B IB l'A IW H U I\l S IL 1 \L A H IjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ 1 S 2 ~ ~

{4}

vutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 0

1

{1,4}

1

0 0 ] - 2 p3

{l,2,4}

1

1 -

2 p

-

0

1 -

2 p 2

+

2 p3

{2,4}

0

1

0 1 - 2 p 2

{2,3,4}

0

1

1 - 2 p 1 - 2 p

+

2 p 2

{1,2,3,4}

1

1 - 2 p

1 -

2 p

+

2 p 2

1 -

2 p

+

2 p 2 - 2 p3

{1,3,4}

1

0

1 -

2 p 2 1 - 2 p

+

2 p3

{3,4}

0 0 1 1 - 2 p

{3}

0

a

1 0

{1,3}

1

a

1 - 2 p 2 0

{1,2,3}

1

1 -

2 p 1 - 2 p

+

2 p 2 0

{2,3}

0 1 1 - 2 p 0

{2}

0 1 0 0

{l,2}

1 1 - 2 p 0 0

{I}

1 0 0 0 [image:9.613.185.518.69.362.2]

0 0 0 0 0

TABLE 2. The KM path (in the s-space) for n

=

4.

of S is the set { n - 1}

=

S l, which is the first element of Pn -1 .

Other-wise the smallest element is at most n - 2, and then, since

ISkl

is odd,

the successor of S is equal to S k -l U {n }. The latter follows since S

and S k -1 have the same smallest element and

ISk-ll

is even.

If

ISI

is odd then the successor of S in P ; arises by flipping l. Since

ISkl

is even flipping 1yields the predecessor of S k in Pn -1, which is S k -1 ' Hence we find again that the successor of S is Sk - l U {n }. This

completes the proof. 0

According to this lemma, the index i that occurs K times as flipping

index in Pn -1 will occur 2 K times in Pn , i.e. K times in

P::-1

and K times in Pn -1 . The index n flips only at the last set in

P ::-

1, which gives

the first set in Pn -1 . These sets are { n -l,n} \ {OJ and { n -I} \ {O}

respectively. The complement operation of

{OJ

is applied to adjust for the case where n

=

l. As an immediate consequence we have the following corollary.

Corollary 1. T h e i n d e x i, 1 ~ i ~T L , n e v e r f l i p s i n P i , f o r 0 S;k < i.

I t f l i p s f o r t h e f i r s t t i m e i n P i w h e n a p p l i e d t o t h e s e t

{i - 1, i} \ {O}

J

w h i c h y i e l d s t h e s e t

{i - I} \ {O} .

From Lemma 2, for 0 ~ i < n , we can obtain

- n - n - l - i + 1

(10)

JMA, VOL. 9, NO.2, DESEMBER, 2010, 41-53 47jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S .5ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 82 83

.5

4

{4}

1

1

1

0

{l,4}

0 I -edcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p 1 - 2 p 2 0

{1,2,4}

0 0 1 - 2 p

+

2 p 2 0

{2,4}

1

0 1 - 2 p

a

{2,3,4}

1

a

a

a

{1,2,3,4}

a

a

a

a

{1,3,4}

a

1 - 2 p

a

0

{3,4}

1

1

a

a

{3}

1

1

a

1 - 2 p

{1,3}

0 1 - 2 p

a

1 - 2 p

+

2 p3

{1,2,3}

a

a

a

1 - 2 p

+

2 p 2 - 2 p3

{2,3}

1

0

a

1 -

2 p

+

2 p 2

{2}

1

0 1 - 2 p 1 - 2 p 2

{1,2}

0 0

1 -

2 p

+

2 p 2

1 -

2 p 2

+

2 p3

{I}

a

1 - 2 p

1 -

2 p 2

1 -

2 p3

(/)

1

1 1 1

TABLE 3. The KM path (in the s-space) for n

=

4.

According to Corollary 1, index i is flipped for the first time in P i ,

hence we have the next corollary.

Corollary 2. T h e i n d e x i f l i p s f o r t h e l a s t t i m e i n Pn a t t h e s e t

{i -

l,i} \ {a }, w h i c h y i e l d s t h e s e t {i - I} \ {O}.

The sequence

P::-1

is equal to the sequence which is obtained by reversing the sequence

P- n - 1n - 2 --t ... --t p - H 1i --t pi

and by adding the element n to each sets in the resulting sequence. Thus the next corollary follows.

Corollary 3. T h e i n d e x i f l i p s J O T t h e firs t t i m e i n Pn a t t h e s e t

{i

- 1 , n } \

{a},

w h i c h y i e l d s t h e s e t

{i

- 1 , i , n } \

{a}.

Moreover, by letting J , be any subset of

J\

{I, ... ,i}, we have the following corollary.

Corollary 4. T h e i n d e x i f l i p s i n Pn w h e n i t i s a p p l i e d t o e i t h e r

{i-l,i}\{O}UJ

i o r

{i-l}\{O}UJ

i.

P r o o f . Let us consider Pn as in (9). The flipping indexes of two sets that

connecting two sequences of sets consecutively aren , n-1 , ... , i

+

1 .In [image:10.613.129.465.67.360.2]
(11)

{3}

48 BIB PARUHUM SILALAHIedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y 3

• 1

---~~-ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/

" I

/" ,- ,." 1 /~~ ~ ,.:t'<1 .,J'. / - - - -.a.::- - - _""::::0...,.,- '"'"_ I

.'

~SL---:"~1{2,3}

.. / /

~t / / / /

;/// /

'/ • 1 • / " "

.- / 1 / " ,,"

1jihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr> J

--'-:--y - - - - 1 - - - '/ " '- 1 ' /

1 - p 2 ~-H.-3-} 1 / I /

1 y ~ ' 1 /" 1 ,/

2 1 / 1 1 /

I - p + p ( ;r - - - - ~ - - - - T - - - -

tl,2,3}'/

I-p f . : . . - - - - T - - - - ; A 1 - ~ ---;

{2}

1 1 / 1 1 1 _ --- 1

1 " 1 I 1 -- /'/ I

1 I"1 ,,1 I --I - "1 1 I" 1

0

_ -,..1 .-- 1 ,," 1

1 r/ -- 1 1 / 1

1 / I 1 I " " • Y 2

1 / " I I / "

I / I // I // //

1 "/ 1 " 1 I /

,-I / I / I 1 //

P

~ - - - - r -

- - - 1 - - '- - 1 '

2 / I

P - P v _ - - 7 ~ r - - - I "

1 /" / ' ./

'{1 2}

I "

I " •.. 1 ' / I' I /

p 2 ~ "'/-'-{1 } I I //

"'0

;Z- - - _,_- - - -

-1 /

/ 0

p I-p 1

Yl

FIGURE 1. Unit cube (red dashed), KM cube (blue

dashed) and KM path (blue solid) for n = 3.

·1

this case there is no index which is equal to i . In P i , flipping an index i

is only applied to the set

{i -

1,

i} \

{O} which yield the set

{i -

1} \ {O}. Let us call the pair of two sets, where an index iis flipped with respect to one of the sets and another one is its successor, as pair of sets with flipping index i. Generally, the pairs of sets with flipping index i that appear in p ;+ 1 , k ~ i, definitely equal to pairs of sets which is resulted

from the union of each set of pair of sets with flipping index i in Pk by

{k

+

1}. By taking J , as any subset of

:1\

{1, ... ,

i},

we obtain that the pairs of sets with flipping index iin Pn are

{i -

1,

i} \

{O}UJ , and

{i -

1} \ {O}U J ; This implies the corollary. 0 The following corollary expresses how many times the index i is Ripped in P

n. \Ve have discussed this number for small value of n previously.

III

Lemma 3. T h e i n d e x i, 1 ~ i ~n , i s f l i p p e d i n Pn e x a c t l y

2n

(12)

.JMA, VOL. 9, NO.2, I)J:;SCMDEH, 20JO, -11-5:3 49edcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P r o o f . The index n is Hipped only 1 time injihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn . By using the recursive pattern of Pn as in Lemma.2 and Coronary 1, in Pn , the index

n - 1 , is flipped 2 times,

n - 2, is flipped 4 times,

n - k , is flipped 2k times,

1 , is flipped 211-1 times.

The lemma follows by takingihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi

=

ti - k , 0 When n is given, the set S k is uniquely determined by k , and vice

versa. Moreover, for each k (2 ~ k : ~ 211), the sets S k - l and S k

differ only in one element. This means that the sequence Pn defines a so-called G r a y c o d e . Such codes have been studied thoroughly, also

because of their many applications. 1

It may be worth mentioning some results from the literature that make the one-to-one correspondence between k and S k more explicit. The next proposition is the main

result (Theorem 6(ii)) in

[1].2

Proposition 1 . O n e h a s i E S k i f a n d o n l y i f

l

2

n

- k

1J

2i

+

2

mod 2 = 1. (10)

Given k , by computing the left-hand side expression in

(10)

for i=

1,2, ... , n we get the set S k . Conversely, when S k is given we can

find k (also in ti iterations) by using Corollary 24 in [1]. This goes as

follows. V \T e first form the binary representation b .; ... b2bl of S k , with b ,

=

1 if i E S k and b ,

=

a

otherwise. We then replace b , by

a

if the number of 1's in b ., ... b2b1 to the left ofb , (including b , itself) is even, and by 1 if this number is odd. The resulting binary n-word a n · . . a 2 a l

is the binary representation of some natural number, let it be K. Then

k

=

2n - K. For example, let S k

=

{2,3} and n

=

4. Then

S k == bn · . . b2b1

=

0110 - t a n . . . a 2 a l = 0100 == 4 - t k

=

24 - 4

=

12, Jl

which is in accordance with Table 1.

lCray codes were first designed to speed up telegraphy, but now have numerous applications such as in addressing microprocessors, hashing algorithms, distributed systems, detecting/correcting channel noise and in solving problems such as the Towers of Hanoi, Chinese Ring and Brain and Spinout.

(13)

50 13IB P;\ RU HedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU l'v [ SlLA LAHIihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 . EDGES OF T H E K L E E -M IN T Y P A T H

An edge of the KM path in e n is a line segment connecting tw o

consecutive vertices of the KM path. As before, we represent the k-th

vertex on the KM path by the set S i : The edge connectingjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS k and

S k+ 1 is denoted a s e

k.

The set of all edges of the n-dimensional K M

path, denoted by E n , is therefore given by

,

I'

M

{

y E

en :

}

e k

=

5 j

=

0 ifj E S k nS k+ l, . § 'j

=

0 ifj

tJ.

S k U S k+ 1

Further elaborating (iii) we get the following lemma.

Lemma 4. L e t il,; b e t h e f l i p p i n g e le m e n t /0 1 ' S k I t h e n o n e r . [ o r 1 <

j < ik O T I-e h a s

(12) 2"-1

E n

=

U

ek · ( 1 1 )

k= l

Remember that S k and S k+ 1 differ only in one element, which we denote as ik . On the interior of the edge connecting these two vertices we have

§ . i k > 0 and 5 ik > O. For any j = 1 = ik , we have s ,

=

0 if j E S k n S k+ 1 and § 'j

=

0 otherwise. So it follows that if j = 1 = ik then either § 'j

=

0 on

e

k

or 5 j

=

0 on e

k .

For ik = 1 = 1, we have either § .1

=

0 or 5 1

=

0, which implies either

Y 1

=

0 or Y 1

=

1 on ek . Since for any j < ik we have either § 'j

=

0 or

5 j

=

0 on e

k,

we may conclude that Y j is constant on e

Summarizing,

we may state that on ek we have the following properties:

(i)

u ,

> 0 or s . , > 0,

(ii)

j = 1 = ik : 5 j = 0 or § 'j

=

0,

(iii)

1 ~ j < ik : Y j is constant.

Table 4 and Table 5 shows the slack vector § . and 5 on e

k

for n

=

4.

The subtables show § . and 5 for n

=

1,n

=

2 and n = 3.

We therefore can describe the edge e

k

as follows

ek

=

{y E

en :

for any j = 1 = ik , S j

=

0 ifj E S knS k+ 1, § 'j

=

0 otherwise}.

Or, in other words, since

s ,

U S k+ 1 = (S I,;n S k+ 1) U {id , we may write

{

I, j

=

ik - I,
(14)

EdgeihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA§ .l § .2 § .J

~

{4} - {1,4} (0, 1) 0 0edcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 - 2 p 3 ,1 )

{1,4} - {1,2,4} 1 (0,1 - 2 p ) 0 (1 - 2 p 2

+

2 p 3 , 1 - 2 p 3 )

{1,2,4} - {2,4} (0, 1) ( 1 - 2 p ,1 ) 0 (1 - 2 p 2 , 1 - 2 p 2

+

2 p 3 )

{2,4} - {2,3,4} 0 1 (0,1 - 2 p ) (1 - 2 p

+

2 p 2 , 1 - 2 p 2 )

{2,3,4} - {1,2,3,4} (0, 1) ( 1 - 2 p ,1 ) (1 - 2 p , 1 - 2 p

+

2 p 2 ) (1 - 2 p

+

2 p 2 - 2 p 3 , 1 - 2 p

+

2 p 2 )

{1,2,3,4} - {1,3,4} 1 ( 0 ,1 - 2 p ) (1 - 2 p

+

2 p 2 , 1 - 2 p 2 ) (1 - 2 p

+

2 p 3 , 1 - 2 p

+

2 p 2 - 2 p 3 )

{1,3,4} - {3,4} (0, 1) 0 ( 1 - 2 p 2 , 1) (1 - 2 p , 1 - 2 p

+

2 p 3 )

{3, 4} - {3} 0 0 1 ( 0 ,1 - 2 p )

{3} - {1,3} (0, 1) 0 ( 1 - 2 p 2 ,1 ) 0

{1,3} - {I, 2, 3} 1 (0,1-2p) ( 1 - 2 p + 2 p 2 ,1 - 2 p 2 ) 0

{l,2,3} - {2,3} (0,1) ( 1 - 2 p ,1 ) (1 - 2 p , 1 - 2 p

+

2 p 2 ) 0

{2, 3} - {2} 0 1 ( 0 ,1 - 2 p ) 0

{2} - {I, 2} (0, 1) ( 1 - 2 p ,1 ) 0 0

{1,2}-{1} 1 (0,1 - 2 p ) 0 0

{I} -

0

(0, 1) 0 0 0

'-:s:

::t>

<

o

r.-e :

z

o

tv

G

l':

u :

L-J

'7

-w

t! r : ,,,,;, o c

"'"",

G'

c ...:

T A B L E 4. Edges of the KM path (in s-space) for n = 4.

[image:14.843.180.756.138.462.2]
(15)

I ,vutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Edge 81 82 83 84

{4} - {1,4}

(0,1)

edcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 - 2 p ,l)

11 -

2 p 2 ,

1)

0

{1,4} - {1,2,4}

0

( O ,l- 2 p )

(1 -

2 p

+

2 p 2 ,l- 2 p 2 )

0

{1,2,4} - {2,4}

(0,1)

0

(1 -

2 p ,

1 -

2 p

+

2 p 2 )

0

{2,4} - {2,3,4}

1

0

( O ,l- 2 p )

0

{2,3,4} - {1,2,3,4}

(0,1)

0

0

0

{1,2,3,4} - {1,3,4}

0

( O ,l- 2 p )

0

0

{1,3,4} - {3,4}

(0,1)

( 1 - 2 p ,l)

0

0

{3,4} - {3}

1

1

0

( O ,l- 2 p )

{3} - {1,3}

(0,1)

( 1 - 2 p ,l)

0

(1 -

2 p ,

1 -

2 p

+

2 p3 )

{1,3} - {1,2,3}

0

( O ,l- 2 p )

0

(1 -

2 p

+

2 p3 ,

1 -

2 p

+

2 p 2 - 2p3 )

{1,2,3} - {2,3}

(0,1)

0

0

(1 -

2 p

+

2 p 2 - 2 p3 ,

1 -

2 p

+

2 p 2 )

{2,3} - {2}

1

0

( 0 ,1 - 2 p )

(1 -

2 p

+

2 p 2 ,

1 -

2 p 2 )

{2} - {1,2}

(0,1)

0

(1 -

2 p ,

1 -

2 p

+

2 p 2 )

(1 -

2 p 2 ,

1 -

2 p 2

+

2 p3 )

{1,2} - {I}

0

( O ,l- 2 p )

(1 -

2 p 2 p 2 ,l- 2 p 2 ) ( 1 - 2 p 2

+

2 p3 ,

1 -

2 p3 )

{l}-0

(0,1)

( 1 - 2 p ,l)

(1 -

2 p 2 ,l)

(1 -

2 p3 ,

1)

[image:15.842.194.761.165.451.2]
(16)

J1\'lA, VOL. 9, NO.2, DESEI'vfBER, 2010, 41-53 53edcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P r o o f . The only different element injihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS k and S k+ 1definitely is the index

ik that we flip in the set,sk' According to Corollary 4, the only different

element ik happens in pair of sets { ik - 1,

id \

{O}

U

s .;

and { ik - I} \

{O}

ihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU Jik , where Jik is any subset of

:1\

{I, ... ,

id .

This means that

on the edge connecting S k and S k + l we have

.§.l

=

0, .§.2

=

0, ... ,. § . i

k- 2

=

0, S i k - l

=

O.

From s,

=

0 we get YI

=

O. Then subsequently we get Y 2

=

0, ... , Y ik- 2 = 0 , Y i k - l

=

1 from .§.2

=

0, ... ,. § . i k - 2

=

0, S i k - l

=

0, which proves the

lemma. 0

One may use Table 1 to verify Lemma 4 for n ~ 4.

REFERENCES

[1] M.W. Bunder, K.P. Tognetti, and G.E. Wheeler. On binary reflected Gray codes and functions. D i s c r e t e M a t h e m a t i c s , 308: 1690-1700, 2008.

[2] M. Conder. Explicit definition of the binary reflected Gray codes. D i s c r e t e M a i h -e m a t i c s , 195:245-249, 1999.

[3] V. Klee and G.J. Minty. How good is the simplex algorithm? In I n e q u a l i t i e s ,

III{ P r o c . T h i r d S y m p o s . , U n i v . C a l i f o r n i a , L o s A n g e l e s , C a l i f . , 1969; d e d i c a t e d t o t h e m e m o r y o f T h e o d o r e S. M o t z k i n ) , pages 159-175. Academic Press, New York, 1972.

Gambar

TABLE 2. The KM path
TABLE3. The KM path (in the s-space) forAccording to Corollary
TABLE4. Edges of the KM path(in s-space) for n = 4.~
TABLE5.Edges of the KivI path(in 8-space)for n = 4.

Referensi

Dokumen terkait

[r]

Pada dasarnya Undang-Undang Nomor 4 Tahun 2004 tentang Kekuasaan Kehakiman telah sesuai dengan perubahan Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 di atas,

Satu di atas tendon Achilles (calcaneal bursa) dan bursa lain yang letaknya lebih dalam (retrocalcaneal bursa). Peradangan salah satu atau kedua bursa dapat menyebabkan

Berdasarkan observasi yang dilakukan peneliti ketika proses pembelajaran akidah akhlak di dalam kelas IX-C ketika kegiatan belajar berlangsung dalam penyampaian materi,

Dari ketigapuluh data untuk setiap kombinasi diambil nilai rata-ratanya, sehingga data yang akan diolah tinggal 27 data seperti pada tabel 1.” Fuzzy logic dipergunakan

Sehubungan dengan pelaksanaan Pengadaan Langsung Jasa Konsultansi di lingkungan Dinas Pekerjaan Umum Kabupaten Pesawaran Tahun Anggaran 2016 Pada Kegiatan

Catatan : Agar membawa dokumen perusahaan asli sesuai dalam isian kualifikasi serta menyerahkan rekaman/copy-nyaM. Demikian undangan dari kami dan atas perhatiannya

Untuk informasi Pembelian, Pemotongan atau Pemesanan kambing Qurban hubungi :.. 0822 6565 2222