• Tidak ada hasil yang ditemukan

Pemetaan Potensi Pembangkit Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pemetaan Potensi Pembangkit Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis."

Copied!
45
0
0

Teks penuh

(1)

PEMETAAN POTENSI PEMBANGKIT LISTRIK TENAGA

MIKROHIDRO DI PULAU JAWA MENGGUNAKAN

SISTEM INFORMASI GEOGRAFIS

DANANG ARIA PRANEDYA BASKORO

DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(2)
(3)

PERNYATAAN MENGENAI SKRIPSI DAN

SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA

Dengan ini saya menyatakan bahwa skripsi berjudul Pemetaan Potensi Pembangkit Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis adalah benar karya saya dengan arahan dari Dr Liyantono dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini.

Dengan ini saya melimpahkan hak cipta dari skripsi saya kepada Institut Pertanian Bogor.

(4)

ABSTRAK

DANANG ARIA PRANEDYA BASKORO.Pemetaan Potensi Pembangkit Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis. dibimbing oleh LIYANTONO.

Pulau Jawa merupakan pulau dengan penduduk terpadat di Indonesia, dengan kepadatan 883 jiwa/km2 dan jumlah penduduknya mencapai 58% dari total penduduk Indonesia. Pertumbuhan penduduk dan ekonomi juga mengakibatkan konsumsi listrik setiap tahun meningkat 9% yang dapat mengakibatkan krisis energi. Tujuan penelitian ini adalah memetakan lokasi yang mempunyai potensi untuk pembangunan pembangkit listrik tenaga mikrohidro berdasarkan kriteria yang telah ditentukan. Kriteria ditentukan berdasarkan literatur yang telah ada yaitu kemiringan minimal 45° dan beda ketinggian 2 meter yang berada pada aliran sungai yang mempunyai debit minimal 0.25 m³/s. Beda tinggi dan kemiringan dianalisis menggunakan data DEM (Digital Elevation Model) 30 dari ASTER (Aster Spaceborne Thermal Emission and Reflection Radiometer). Debit diestimasi menggunakan data PDA (pos duga air) dan data tutupan lahan dengan persamaan keseimbangan debit dan pembobotan koefisien runoff. Hasil dari penelitian ini dapat mengidentifikasi total 90 titik potensi mikrohidro dengan daya 2.04 MW dan total daya dari semua kategori pembangkit listrik tenaga air sebesar 20.26 MW. Kata kunci: DEM, koefisien runoff, mikrohidro

ABSTRACT

DANANG ARIA PRANEDYA BASKORO. Mapping Potential Microhydro Power Plant in Java Island Using Geographic Information S ystem. Supervised by LIYANTONO.

Java Island is the most populous island in Indonesia, which is 833 people/km2 and the population reach about 58% of Indonesia total polulation. Population and economic growth also resulted in annual electricity consumption increased by 9%, which can lead to energy crisis. The objective of this research is to mapping out the locations that have potential for build the microhydro power plant based on predetermined criteria. The criteria are determined based on the literature stating that minimal slope of 45° and a head of 2 meter are located on river flow that have minimal discharge 0.25 m³/s. Head and minimal slope were analyzed using 30 of ASTER DEM data. The discharges are estimated by using the data from PDA and land use data with debit balance equation and weighting coefficients of runoff. The result from this research can identify 90 point of potential micro hydro with power 2.04 MW and all categories of hydroelectric power plant amounted to 20.26 MW

(5)

Skripsi

sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik

pada

Departemen Teknik Mesin dan Biosistem

PEMETAAN POTENSI PEMBANGKIT LISTRIK TENAGA MIKROHIDRO DI PULAU JAWA MENGGUNAKAN

SISTEM INFORMASI GEOGRAFIS

DANANG ARIA PRANEDYA BASKORO

DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR BOGOR

(6)
(7)

Judul Skripsi : Pemetaan Potensi Pembangkit Tenaga Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis

Nama : Danang Aria Pranedya Baskoro NIM : F14100132

Disetujui oleh

Dr Liyantono, STP, MAgr Pembimbing

Diketahui oleh

Dr Ir Desrial, MEng Ketua Departemen

(8)

PRAKATA

Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga skripsi ini berhasil diselesaikan. Tema yang dipilih dalam penelitian yang dilaksanakan pada bulan Februari 2014 ini adalah pembangkit listrik tenaga mikrohidro, dengan judul Pemetaan Potensi Pembangkit Listrik Tenaga Mikrohidro di Pulau Jawa Menggunakan Sistem Informasi Geografis.

Ucapan terima kasih penulis sampaikan kepada Dr Liyantono, STP, M.Agr selaku dosen pembimbing yang senantiasa memberikan bimbingan dan arahan kepada penulis. Ucapan terima kasih juga penulis sampaikan kepada seluruh pihak yang telah membantu penulis sehingga penulis dapat menyelesaikan karya ilmiah ini.

Penulis berharap semoga karya ilmiah ini bermaanfaat dan memberikan kontribusi nyata terhadap ilmu pengetahuan.

(9)

DAFTAR ISI

DAFTAR TABEL ix

DAFTAR GAMBAR ix

DAFTAR LAMPIRAN ix

PENDAHULUAN 1

Latar Belakang 1

Perumusan Masalah 2

Tujuan Penelitian 2

METODE 3

Lokasi dan Waktu Penelitian 3

Wilayah Studi 3

Alat 3

Bahan 4

Prosedur Kerja 4

HASIL DAN PEMBAHASAN 12

Validasi Lapang 17

SIMPULAN DAN SARAN 18

Simpulan 18

Saran 18

DAFTAR PUSTAKA 19

LAMPIRAN 20

(10)

DAFTAR TABEL

1. Klasifikasi pembangkit tenaga air 5

2. Klasifikasi ketinggian pembangkit listrik skala kecil 5 3. Nilai koefisien runoff untuk metode rasional 8

4. Kategori ketinggian di setiap provinsi 13

5. Rentang nilai debit tiap provinsi 14

6. Potensi pembangkit tenaga air 16

7. Rincian potensi mikrohidro di Pulau Jawa 17

DAFTAR GAMBAR

1. Peta wilayah studi 3

2. Diagram alir analisis data spasial 6

3. Pengambilan data menggunakan currentmeter 11

4. Diagram alir prosedur kerja 12

5. Peta karakterisrik DAS rawatamtu 13

6. Lokasi pos duga air 14

7. Peta potensi DAS rawatamtu 15

8. Peta sebaran potensi mikrohidro 16

DAFTAR LAMPIRAN

1. Tabel data pos duga air 20

2. Daftar potensi mikrohidro 26

(11)

PENDAHULUAN

Latar Belakang

Pulau Jawa merupakan pulau dengan penduduk terpadat di Indonesia. Kepadatan penduduknya mencapai 883 jiwa/km2 dan jumlah penduduk mencapai 58% dari total penduduk. Jawa Barat, Jawa Timur dan Jawa Tengah adalah tiga provinsi dengan urutan teratas penduduk terbanyak, yaitu masing-masing berjumlah 43 021 826 jiwa, 37 476 011 jiwa, dan 31 380 687 jiwa dan diperkirakan akan terus meningkat sepanjang tahun (BPS 2010). Data tersebut menunjukkan melimpahnya sumberdaya manusia yang melimpah di Pulau Jawa, akan tetapi hal ini juga dapat menyebabkan banyaknya konsumsi listrik. Pemerintah juga memprediksi Pulau Jawa akan mengalami krisis energi listrik pada tahun 2018 dikarenakan setiap tahun pertumbuhan listrik di seluruh Pulau Jawa mencapai 9%. Potensi krisis listrik tersebut terjadi karena pesatnya pertumbuhan aktivitas perekonomian di Pulau Jawa sehingga berimbas pada menigkatnya konsumsi listrik (Budiyanti 2014). Pertumbuhan listrik tersebut cukup tinggi karena listrik yang dapat dihasilkan oleh pembangkit listrik Jawa sebesar 24 265.11 MW, sedangkan yang dibutuhkan untuk memenuhi kebutuhan sebesar 22 575.21 MW dengan rasio elektrifikasi 69.8% (PLN 2013).

Pembangkit listrik di Pulau Jawa sebagian besar menggunakan batu bara yang harus didatangkan dari Sumatra dan Kalimantan yang berarti kebutuhan energi di Pulau Jawa sangat tergantung pada daerah lain. Selain itu adanya wilayah pelosok yang sulit untuk dijangkau membuat distribusi listrik menjadi sulit dilakukan. Masalah tersebut menyebabkan di setiap daerah harus mandiri energi listrik dengan cara membuat pembangkit listrik sendiri untuk memenuhi kebutuhan daerahnya. Ada banyak potensi pembangkit tenaga listrik di Pulau Jawa seperti panas bumi, biofuel, biomassa dan tenaga air.

Salah satu alternatif yang dapat dikembangkan untuk memenuhi kebutuhan listrik adalah dengan membuat pembangkit listrik tenaga air, PLTA (Pembangkit Listrik Tenaga Air) telah menyumbang 2 392.03 MW untuk memenuhi kebutuhan listrik di Pulau Jawa serta ditambah lagi potensi mikrohidro sebesar 250 MW (PLN 2010). Daerah yang sulit dijangkau dapat memenuhi kebutuhan listriknya sendiri dengan membangun pembangkit listrik tenaga air berskala kecil atau mikrohidro. Banyaknya dataran tinggi dan aliran sungai di Pulau Jawa menjadi faktor PLTMH (Pembangkit Listrik Tenaga Mikrohidro) dipilih sebagai energi alternatif, hal ini dikarenakan PLTMH merupakan pembangkit listrik skala kecil yang menggunakan aliran air sebagai tenaga penggeraknya seperti saluran irigasi, sungai atau air terjun dengan cara memanfaatkan ketinggian air dan debit aliran yang tidak terlalu besar. PLTMH memerlukan biaya yang terjangkau dan tahan lama, sehingga negara berkembang dapat membuat dan menerapkan teknologi tersebut untuk membantu memenuhi kebutuhan listrik penduduknya di perkotaan maupun di daerah pedalaman.

(12)

2

pengembangan atau perbaikan peta serta sangat membantu memvisualisasikan fenomena di dunia nyata. SIG mempunyai kemampuan untuk menyimpan dan mengolah data, beroperasi pada set data menggunakan algoritma atau model dan menyajikan hasil transformasi dalam bentuk peta. Informasi atau data yang diolah dapat disimpan layer by layer dalam format yang sama, hal ini memungkinkan seseorang untuk membandingkan informasi yang berbeda untuk tata ruang yang sama. Integrasi informasi melalui area of interest memungkinkan untuk menganalisis data berbasis wilayah (Johnson 2009).

Arya (2012) memetakan potensi PLTMH berdasarkan curah hujan. Curah hujan digunakan sebagai dasar untuk mengestimasi debit sungai yang merupakan total runoff (TRO). Hubungan curah hujan dan debit sungai dapat diketahui dengan menggunakan rasio runoff. Keseimbangan air dihitung menggunakan Model SWAT (Soil and Water Assesment Tool) dengan input sederhana seperti curah hujan, temperatur, topografi dan tutupan lahan serta jenis tanah. Head efektif dihitung menggunakan slope yang dikalikan dengan ukuran grid data DEM yang digunakan. Efisiensi total PLTMH diasumsikan 80% dengan ukuran grid 90 meter. Bergstrom (2005) mengidentifikasi lokasi yang berpotensi mikrohidro menitikberatkan pada penggunaan SIG. Data DEM diperoleh dari kontur dengan interval 30 meter dari tempat studi. Data DEM dianalisis untuk dapat menjadi gambaran permukaan bumi seperti cekungan sungai, dataran tinggi dan danau. Aliran sungai yang permanen dianalisis elevasinya menggunakan fungsi dari LINEGRID pada ArcWorkstation. Elevasi dari yang telah diketahui nilainya pada aliran sungai dijadikan acuan untuk mencari beda ketinggian menggunakan algoritma yang dibuat pada software Matlab. Lokasi yang telah memenuhi kriteria ketinggian dievaluasi debit aliran sungainya untuk dicari potensi mikrohidro.

Perumusan Masalah

Kebutuhan listrik di Pulau Jawa meningkat setiap tahun, hal ini dapat menyebabkan krisis energi dan dapat mengganggu kegiatan perekonomian maupun pemerintahan. PLTMH sebagai alternatif energi terbarukan diharapkan dapat membantu menambah pasokan listrik ke masyarakat dan industri kecil. Analisis spasial dari Pulau jawa menggunakan SIG memungkinkan untuk memetakan potensi PLTMH di beberapa aliran sungai yang telah diketahui besar debitnya. Untuk dapat memetakan potensi PLTMH dibutuhkan beberapa kriteria untuk dapat dianalisis di dalam SIG. Kriteria tersebut di dasarkan kepada keadaan topografi dan aliran sungai seperti :

1. Aliran sungai harus memiliki terjunan dan kemiringan tertentu.

2. Debit andalan sungai yang sudah diketahui melalui pengukuran pada PDA (Pos Duga Air).

Tujuan Penelitian

(13)

3

METODE

Lokasi dan Waktu Penelitian

Kegiatan pengumpulan dan pengolahan data pada penelitian ini dilakukan pada bulan Februari 2014 sampai Maret 2015 di Laboratorium Teknik Bioinformatika, Departemen Teknik Mesin dan Biosistem, Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Wilayah Studi

Wilayah studi penelitian ini adalah Pulau Jawa (Gambar 1) yang berada di Indonesia yang mempunyai luas 126 700 km2 dan menjadi pusat industri dan pertanian serta menjadi pusat pemerintahan. Lokasi Pulau Jawa terdapat pada 5° 59' 58.28" LS sampai 8° 47' 58.28" LS dan 105° 16' 00.86" BT sampai 114° 39' 13.21" BT serta diapit dua daerah perairan yaitu Laut Jawa dan Samudera Hindia. Penduduk di luar kota besar kebanyakan bekerja pada sektor pertanian yang menggunakan aliran irigasi dari sungai maupun air tanah. Banyaknya dataran tinggi dan aliran sungai yang kontinyu serta curah hujan yang tinggi menjadi potensi yang dimiliki Pulau Jawa untuk pembangunan PLTMH.

Gambar 1 Peta wilayah studi Alat

(14)

4

Bahan

Bahan yang digunakan dalam penelitian merupakan data yang diperlukan untuk menentukan potensi PLTMH seperti data debit sungai, serta komponen data spasial seperti peta Digital Elevation Model (DEM), peta aliran sungai, dan peta penggunaan lahan.

Data Debit Sungai

Data debit air diperoleh dari data yang diterbitkan oleh Departemen Pekerjaan Umum, Pusat Penelitian dan Pengembangan Sumber Daya Air pada tahun 2006 yang dapat dilihat pada Lampiran 1. Data tersebut mencakup nama sungai, lokasi serta debit andalan yang terpantau oleh pos duga air (PDA) di setiap lokasi sungai. Besar debit andalan dengan peluang terjadinya 50% sampai 95% menjadi acuan untuk membangun PLTMH.

DEM (Digital Elevation Model)

Digital Elevation Model dapat menggambarkan topografi dari muka bumi berupa grid yang mempunyai nilai elevasi. DEM menyediakan refrensi dasar seperangkat data spasial, seperti vektor maupun raster dapat secara otomatis diambil dengan tujuan untuk analisis lebih lanjut. Penggunaan peta DEM pada penelitian ini adalah untuk menentukan slope/kemiringan dan cekungan sungai beserta daerah aliran sungai (DAS). Luas DAS diperlukan dalam analisis debit sungai menggunakan metode rasional, sedangkan cekungan sungai digunakan untuk menentukan arah aliran sungai beserta outletnya. Data DEM diperoleh dengan menggunakan metode ASTER.

Peta Penggunaan Lahan

Peta tutupan lahan pada penelitian ini didapat dari Kementrian Lingkungan Hidup dan Kehutanan pada tahun 2010. Tutupan lahan di sekitar DAS akan mempengaruhi aliran permukaan (runoff) yang akan menentukan nilai dari debit aliran sungai. Permukaan tanah yang ditutupi oleh tutupan/penggunaan lahan yang kedap air akan mengakibatkan aliran permukaan semakin besar. Peta penggunaan lahan digunakan untuk mengetahui luas daerah dan tutupan lahan yang terdapat di suatu DAS. Jenis tutupan lahan dan luas daerahnya mempengaruhi nilai koefisien runoff dari suatu DAS.

Prosedur Kerja Menentukan Kriteria PLTMH

(15)

5 potensi mikrohidro. Debit aliran sungai minimum yang dibutuhkan dengan beda ketinggian 2.5 meter adalah 0.25 m³/s (Subandono 2007).

Tabel 1 Klasifikasi pembangkit tenaga air

Tipe Kapasitas

Large-hydro ≥100 MW

Medium-hydro >15 MW - 100 MW

Small-hydro 1 MW - 15 MW

Mini-hydro >100 kW - <1 MW

Micro-hydro 5 kW - 100 kW

Pico-hydro Beberapa ratus watt sampai 5 kW

Tabel 2 Klasifikasi ketinggian pembangkit listrik skala kecil

Tipe Kisaran Beda tinggi

High head >100 m

Medium head >30 m - 100 m

Low head 2 m - 30 m

Sumber: Singh (2009)

Analisis Data Spasial

Proses analisis diawali dengan penentuan DAS dari aliran sungai yang telah diketahui debitnya melalui PDA menggunakan ArcSWAT. DAS dapat dideliniasi secara otomatis menggunakan ArcSWAT dengan memasukan peta DEM yang telah diproyeksikan. Input dari DEM akan diproses dan menghasilkan beberapa aliran sungai di dalam batasan polygon yang dibuat di sekitar titik PDA. Titik PDA yang terdekat dari aliran sungai tersebut dijadikan sebagai outlet untuk mendapatkan DAS secara otomatis.

Data dari peta DEM, selanjutnya akan digunakan untuk menampilkan kemiringan (slope) yang terdapat pada wilayah DAS yang telah didapatkan. Kriteria kemiringan yang digunakan untuk mengidentifikasi potensi mikrohidro adalah 45° atau lebih. SIG dengan input data dari peta DEM dapat melakukan analisis spasial untuk menampilkan nilai slope yang ada di dalam DAS secara otomatis berdasarkan nilai elevasi dari masing grid. Nilai slope pada suatu titik grid pada peta DEM akan dihitung berdasarkan empat titik grid disekitarnya (Bergstrom 2005). Nilai kemiringan yang telah didapatkan akan diklasisfikasikan menjadi dua rentang nilai yaitu < 45° dan ≥ 45°. Hasil analisis kemiringan dengan DEM tersebut merupakan satu layer pada SIG, untuk mengetahui aliran sungai yang mempunyai nilai kemiringan minimal 45° layer tersebut akan dioverlay dengan peta sungai. Aliran sungai yang masuk kedalam rentang nilai kemiringan yang sesuai ditandai dengan membuat data shapefile (.shp) baru.

(16)

6

yang telah memenuhi kriteria kemiringan dan beda ketinggian memiliki daerah tangkapan air yang mempengaruhi perhitungan debit air. Daerah tangkapan air dari aliran yang ditandai ditentukan dengan deliniasi secara manual berdasarkan peta DEM.

Karakteristik dari DAS mempengaruhi perhitungan debit aliran sungai yang telah ditandai sebagai aliran yang berpotensi. Perhitungan debit menggunakan metode rasional membutukan luas wilayah tangkapan air dan jenis tutupan lahan. DAS dari titik PDA dan aliran sungai yang ditandai dapat dijadikan batas daerah untuk melakukan analisis spasial. Luas wilayah dan jenis tutupan lahan dapat diperoleh dari peta tutupan lahan dengan menggunakan geo-processing pada ArcGIS. DAS yang telah ada akan menjadi feature yang akan memotong bagian dari peta tutupan lahan (clip feature). Potongan peta yang sesuai dengan DAS akan memiliki data attribute yang sama dengan peta tutupan lahan. Penghitungan luas wilayah dapat dilakukan setelah file yang akan dihitung telah diproyeksikan dengan koordinat yang sesuai dengan lokasi tempat berada, seperti Jawa Barat yang mempunyai wilayah tempat koordinat UTM 48S. Luas wilayah dihitung menggunakan calculate geometry pada kolom data yang telah ada, sedangkan jenis tutupan akan secara otomatis tersedia dari peta tutupan lahan. Analisis data spasial yang dilakukan sesuai dengan diagram alir pada Gambar 2.

Gambar 2 Diagram alir analisis data spasial

DEM

Deliniasi DAS Slope

Penandaan aliran sungai

Deliniasi sub DAS

Elevasi

Clip feature Peta

tutupan lahan

(17)

7 Menghitung Debit Aliran Sungai

Debit aliran sungai menjadi komponen penting bagi pengelolaan sumberdaya air. Aliran sungai berupa aliran permukaan, aliran bawah permukaan, aliran bawah tanah dan butiran hujan yang langsung jatuh ke sungai. Debit aliran sungai adalah volume air yang mengalir melalui suatu penampang melintang pada suatu titik tertentu persatuan waktu seperti yang terdapat pada Persamaan 1 dan umumnya dinyatakan dalam m3/detik.

= � × � (1)

keterangan : Q = debit aliran sungai (m3/s) V = kecepatan aliran (m/s) A = luas penampang basah (m2)

Metode perhitungan debit menggunakan cara rasional membantu memprediksi debit di satu titik dengan acuan aliran yang telah diketahui dengan menggunakan runoff coefficient. Metode rasional berdasarkan prinsip laju limpasan maksimal/debit puncak dimana semua komponen wilayah tangkapan air dan intensitas hujan diasumsikan seragam dengan demikian perubahan debit aliran dan jalannya aliran di dalam daerah aliran sungai serta keadaan alam lainnya diabaikan. Persamaan 2 menggambarkan formula dasar perhitungan debit puncak menggunakan metode rasional.

Koefisien runoff mempresentasikan hubungan antara infiltrasi, evaporasi, simpanan, dan resapan air yang mempengaruhi distribusi dan laju aliran. Nilai yang ada pada koefisien runoff digunakan untuk membedakan perbedaan karakteristik dari tutupan lahan. Koefisien dari suatu tempat dapat mempunyai nilai dari beberapa karakteristik tutupan lahan yang berbeda. Nilai koefisien runoff dapat dilihat pada Tabel 3. Persamaan 3 digunakan untuk mencari nilai dari nilai koefisien runoff dengan wilayah DAS yang mempunyai jenis tutupan lahan yang berbeda.

(18)

8

Tabel 3 Nilai koefisien runoff untuk metode rasional

Tutupan Lahan Koefisien runoff

Rerumputan 0.05-0.35

Hutan 0.05-0.25

Lahan bercocok tanam 0.08-0.41

Padang rumput 0.10-0.50

Taman 0.10-0.25

Lahan terbuka 0.10-0.30

Padang rumput gembala 0.12-0.62

Area perumahan 0.30-0.75

Sumber : Chin (2000), Chow et al. (1988), Corbitt (1999), Singh (1992)

�� =∑��=1����

∑��=1�� (3) keterangan : Ct = koefisien runoff campuran

Ci = koefisien runoff untuk komponen area

Ai = luas komponen area

Persamaan tersebut memungkinkan untuk menghitung nilai koefisien pada DAS dan sub DAS yang telah ditandai sebagai tempat potensi mikrohidro berada. Debit aliran pada aliran yang ditandai sebagai potensi mikrohidro dapat di prediksi menggunakan Persamaan 4, yaitu dengan keseimbangan debit air dan dimodifikasi dengan pembobotan menggunakan koefisien runoff.

� = � ����� ���� (4)

keterangan : Qx = debit pada titik yang telah ditandai (m3/s)

Qpda = debit PDA yang telah diketahui (m3/s)

Ax = luas sub DAS pada titik yang telah ditandai (m2) Apda = luas DAS PDA

Cx = koefisien runoff

Persamaan yang digunakan dapat diolah pada software ms excel, dengan demikian perhitungan dan pengaturan data akan semakin mudah dilakukan.

Menghitung Potensi Mikrohidro

(19)

9 saluran pembawa/headrace untuk membawa alian air ke dalam bak penenang, bak penenang berfungsi sebagai tempat mencegah turbulensi, pipa pesat berfungsi menyalurkan air dari elevasi tinggi ke rendah dimana rumah turbin berada, dan rumah turbin yang di dalamnya terdapat turbin dan generator yang berfungsi mengubah energi mekanik menjadi energi listrik. Seketsa PLTMH secara menyeluruh dapat dilihat pada Gambar 3.

Sumber : Kuwor (2012)

Gambar 3 Sketsa PLTMH

Sebuah rancangan pembangkit listrik tenaga mikrohidro memerlukan dua komponen, yaitu debit air dan beda ketinggian untuk menghasilkan daya. Hal ini adalah sebuah konversi energi gerak ke listrik. Setelah diketahui beda tinggi dan debit aliran sungai, langkah selanjutnya adalah menghitung potensi mikrohidro yang berada pada tiap titik yang telah ditandai. Menghitung potensi daya mikrohidro secara umun menggunakan persamaan 5, dimana besar daya listrik yang dihasilkan tergantung oleh debit sungai, beda ketinggian, dan percepatan gravitasi.

= × × � × (5)

keterangan : P = daya (kW) Q = debit (m3/s) H = beda tinggi (m)

g = percepatan gravitasi (m/s2) e = efisiensi

(20)

10

Validasi Lapang

Validasi lapang dilakukan ketika semua analisis untuk menentukan lokasi potensi PLTMH telah selesai, hal ini untuk mengevaluasi hasil penelitian dengan kenyataan yang ada di lapang. Lokasi pengambilan data lapang dilakukan pada tiga titik tempat PLTMH yang sudah beroprasi, tiga tempat tersebut meliputi Desa Kariasari, Megamendung dan Puraseda yang berada di Kabupaten Bogor. Data lapang yang diambil meliputi, beda ketinggian, kemiringan/slope, dan debit aliran sungai.

Alat yang digunakan untuk mengukur beda tinggi dan kemiringan adalah GPS (Global Positioning Sistem) yang terdapat pada aplikasi smartphone. GPS dapat mengukur ketinggian, jarak dan koordinat letak titik yang akan diukur. Menentukan beda ketinggian menggunakan GPS dapat menggunakan cara dengan mengurangi nilai altitude dari titik dimana air akan turun melalui pipa penstock (bagian atas) dengan nilai altitude titik keluaran air (bagian bawah). Pengambilan data dilakukan jika angka dalam tampilan sudah dalam keadaan stabil. Kemiringan yang dihitung adalah sudut yang berada diantara sisi miring dan sisi samping.

� = � �−1× (6)

keterangan : α = kemiringan (°) y = beda ketinggian (m) x = jarak antar titik (m)

Pengukuran debit aliran sungai menggunakan metode perhitungan kecepatan aliran yang diukur dengan currentmeter. Currentmeter yang digunakan berjumlah dua unit dengan model yang sama tetapi memiliki karakteristik yang berbeda. Satu kali bunyi pada currentmeter A bernilai 10 kali putaran sedangkan currentmeter B bernilai 5 kali putaran. Currentmeter digunakan untuk menentukan kecepatan aliran sungai dengan cara mengkonversi putaran kedalam Persamaan 7. Debit dihitung dengan memasukan kecepatan aliran yang telah didapat kedalam Persamaan 8.

(21)

11

� = . × � + . 5 (7)

keterangan : V = kecepatan aliran (m/s)

N = hasil bagi jumlah putaran dengan waktu putar

= × ℎ × � (8)

keterangan : b = lebar aliran (m) h = kedalaman (m)

V = kecepatan aliran (m/s)

Pengukuran kecapatan air dilakukan dengan cara memasukan kedua alat currentmeter secara berdekatan dan bersamaan, hal ini bertujuan untuk meningkatkan akurasi dari pengukuran. Pengambilan data pada kedua alat juga dilakukan secara bersamaan seperti pada Gambar 4. Titik pengukuran debit dilakukan pada 0.6 bagian dari total kedalaman yang diukur dari permukaan air, karena pada kedalam tersebut kecepatan alirannya seragam dan dapat mewakili seluruh bagian aliran.

Gambar 4 Pengambilan data menggunakan currentmeter

(22)

12

Gambar 5 Diagram alir prosedur kerja

HASIL DAN PEMBAHASAN

Kemiringan dan Beda tinggi

Analisis peta DEM untuk mencari kemiringan dengan nilai minimal 45° dan beda ketinggian menghasilkan tiga kategori beda ketinggian yang diklasifikasikan oleh Dilip Singh, yaitu low head, medium head dan high head. Beda ketinggian pada kategori low head hanya ada 16 titik dari keseluruhan 206 titik potensi yang mempunyai nilai kurang dari 10 meter hal ini menunjukan kurang akuratnya analisis beda ketinggian menggunakan DEM dengan resolusi 30x30 meter. Nilai beda ketinggian maksimal yang teridentifikasi pada titik potensi mencapai 222 meter sedangkan nilai beda ketinggian terendah adalah 2 meter. Kriteria kemiringan 45° membuat keberadaan titik potensi dari aliran sungai secara umum berada di pegunungan dengan ketinggian berkisar antara 1 118 sampai 1 717 meter diatas permukaan laut. Walaupun secara umum titik potensi tersebut berada di daratan

(23)

13 tinggi atau pegunungan, akan tetapi ketinggian/elevasi tidak mempengaruhi beda tinggi. Hal ini dapat diketahui dari hasil analisis ketinggian dan slope bahwa kategori ketinggian medium head ada beberapa titik yang berada pada rentang ketinggian 494 sampai 1 118 meter sedangkan kategori low head berada pada rentang 1 118 sampai 1 717 meter. Gambaran ketinggian dan kemiringan dapat dilihat pada Gambar 6, topografi DAS rawatamtu sebagai gambaran umum dari semua topografi titik potensi. Bedasarkan hasil penelitian probabilitas mendapatkan nilai beda tinggi yang sesuai berdasarkan kemiringan adalah 100 %, yang berarti setiap kemiringan 45 % dapat dipastikan memilki beda tinggi yang sesuai untuk membangun PLTMH.

Beda ketinggian pada titik potensi yang terdapat di Jawa Timur berkisar 2 meter sampai 222 meter, sedangkan pada Jawa Tengah berkisar antara 4 meter sampai 94 meter dan pada Jawa Barat memiliki beda ketinggian antara 2 meter sampai 75 meter. Hal tersebut menunjukkan bahwa pada ketiga provinsi tersebut memiliki karakteristik ketinggian yang hampir sama. Kategori ketinggian di setiap provinsi yang memiliki titik potensi dapat dilihat pada Tabel 4.

Tabel 4 Kategori ketinggian di setiap provinsi Kategori head Jumlah per Provinsi

Jawa Barat Jawa Tengah Jawa Timur

Low head 10 7 48

Medium head 26 28 79

High head 0 0 8

(a) (b)

(24)

14

Debit Aliran Sungai

Analisis debit aliran sungai pada penelitian ini membutuhkan data dari PDA untuk mengestimasi nilai debit pada titik potensi. Titik potensi yang tidak masuk dalam DAS yang tercatat nilai debitnya oleh PDA tidak dapat dihitung nilainya. Data PDA yang didapat dari departemen Pekerjaan Umum, selain tercantum debit aliran sungai juga terdapat letak dimana pos duga air itu dibangun dengan menggunakan koordinat lintang dan bujur sehingga keberadaannya dapat dipetakan menggunakan arcGIS. Posisi PDA dapat dilihat pada Gambar 7.

Gambar 7 Lokasi pos duga air

Hasil dari analisis debit aliran sungai menunjukkan secara umum nilai debit aliran sungai pada titik yang berpotensi kurang dari 0.25 m³/s. Kriteria debit tersebut tidak terpenuhi, akan tetapi karena nilai beda ketinggian dari titik potensi tersebut yang besar menyebabkan daya yang terhitung menunjukan bawa titik tersebut berpotensi mikrohidro. Debit aliran yang paling kecil pada titik potensi mikrohidro adalah 0.01 m³/s akan tetapi pada titik ini mempunyai beda tinggi 84 meter, hal ini yang menyebabkan pada titik ini terhitung potensi dayanya sebesar 4.88 kW. Sementara itu, debit aliran terbesar yaitu 1.46 m³/s mempunyai beda ketinggian 2 meter dengan demikian daya yang terhitung 24.32 kW.Berdasarkan perhitungan debit menggunakan metode SIG, potensi total debit rata-rata pertahun dapat mencapai 11.60 m³/s. Rentang debit tiap provinsi pada aliran sungai yang mempunyai potensi mikrohidro dapat dilihat pada Tabel 5.

Tabel 5 Rentang nilai debit tiap provinsi No. Rentang debit

(m³/s)

Jumlah per Provinsi

Jawa Barat Jawa Tengah Jawa Timur

1 0.0003 - 0.009 12 18 38

2 0.01 - 0.09 21 11 46

3 0.1 - 0.9 2 3 33

(25)

15 Potensi Mikrohidro

Hasil yang diperoleh dari pengolahan data spasial dan perhitungan debit aliran sungai dapat dipetakan beberapa kategori pembangkit listrik tenaga air. Kategori pembangkit tenaga air yang dapat teridentifikasi adalah kategori pico, micro, mini dan small. Aliran sungai yang mempunyai potensi pembangkit listrik ditandai dengan garis, dan untuk menampilkan kategori dari setiap potensi akan disajikan dengan perbedaan warna dari masing-masing sub DAS. Potensi aliran dan kategori pembangkit listrik tenaga air dapat dilihat pada DAS rawatamtu Provinsi Jawa Timur (Gambar 8a). DAS rawatamtu terdapat 23 titik kategori micro, 6 kategori mini, 5 kategori pico, dan 1 kategori small. Potensi mikrohidro pada DAS rawatamtu berkisar dari 5 sampai 97 kW (Gambar 8b). Teridentifikasinya kategori selain mikrohidro ini disebabkan karena pada pemilihan kriteria, hanya kemiringan dan tinggi jatuhan saja yang diperhatikan untuk analisis spasial sedangkan debit air diabaikan. Tinggi jatuhan tidak disesuaikan dengan debit aliran sungai sehingga potensi energi yang dihasilkan dapat melebihi atau kurang dari kategori mikrohidro.

Titik dengan potensi tertinggi berada pada daerah Kabupaten Tulung Agung Jawa Tengah dengan potensi daya sebesar 2 997.41 kW dengan kategori pembangkit listrik small. Potensi terendah berada di daerah Kabupaten Kediri Jawa Timur dengan potensi daya 0.20 kW.

(a) (b)

Gambar 8 Peta potensi DAS rawatamtu. a) kategori pembangkit tenaga air. b) potensi mikrohidro

(26)

16

masing-masing pada tiap provinsi adalah, Jawa Timur mempunyai 60 titik potensi dengan total daya 1.62 MW, 10 titik potensi di Jawa Tengah dengan total daya 0.19 MW, dan 20 titik potensi di Jawa Barat dengan total daya 0.24 MW. Daftar lokasi dan rincian daya pada setiap titik potensi mikrohidro dapat dilihat pada Tabel 7.

Tabel 6 Potensi pembangkit tenaga air

Kategori

Jumlah per Provinsi

Rentang potensi (kW)

Potensi Total (kW) Jawa

Barat

Jawa Tengah

Jawa Timur

Pico 15 20 44 0.24 - 4.92 134.02

Micro 20 10 60 5.06 - 97.86 2 043.03

Mini 1 5 25 108.34 - 989.48 8 899.50

Small 0 0 6 1 027.13 - 3 526.36 9 177.89

Gambar 9 Peta sebaran potensi mikrohidro

(27)

17 Tabel 7 Rincian potensi mikrohidro di Pulau Jawa

Kabupaten Jumlah

Hasil dari validasi lapang menunjukkan bahwa tidak semua PLTMH mempunyai kemiringan 45° atau lebih. Pengukuran menggunakan GPS menunjukan PLTMH yang berada di Kiarasari memiliki kemiringan 58.61° dan keetinggian 54 meter, sedangkan dua tempat lainnya yaitu Megamendung dan Puraseda memiliki kemiringan secara berurut 10.48° dan 8.97° serta ketinggian 7 meter dan 17 meter. Hal ini menunjukkan bahwa kemiringan tanah bukanlah faktor utama untuk menentukan potensi pada suatu aliran, melainkan tinggi terjunan dan debit aliran sungai yang menjadi variabel yang berpengaruh. Kemiringan tanah dapat dimanipulasi dengan menggunakan pipa penstock yang menghubungkan bak penenang dan turbin, dengan demikian walaupun kemiringan tanah kurang dari 45° PLTMH masih dapat dibangun.

(28)

18

penentuan lokasi potensi mikrohidro dengan metode ini tidak akurat karena semua titik validasi tidak teridentifikasi menggunakan metode ini. Hal ini terbukti dari nilai error yang didapat antara hasil validasi dengan perhitungan SIG. Nilai error dari head berkisar antara 28.57% sampai 35.29%, sedangkan nilai error dari slope cukup besar yaitu 62.21% sampai 78.37%. Identifikasi lokasi yang berpotensi kurang maksimal juga dikarenakan identifikasi hanya dilakukan pada aliran sungai saja, tidak pada keadaaan sekitar aliran sungai.

Tiga tempat yang menjadi lokasi validasi tidak teridentifikasi dengan metode yang dipakai dalam penelitian, hal ini terjadi dikarenakan beberapa faktor. PLTMH Kiarasari tidak teridentifikasi dikarenakan aliran air yang digunakan untuk memutar turbin tidak mengambil dari aliran sungai langsung, melainkan memodifikasi saluran irigasi area persawahan, hal ini juga mengakibatkan listrik tidak tersedia 24 jam. Turbin pada PLTMH Kiarasari dioperasikan mulai dari jam 4 sore, sedangkan pada pagi hari aliran air digunakan untuk mengairi area persawahan warga. Dua PLTMH yang lain tidak dapat teridentifikasi dikarenakan perbedaan ketinggian yang tidak begitu besar, dengan menggunakan peta DEM dengan ukuran pixel 30x30 meter dan kemiringan 45° sulit untuk mendeteksi beda ketinggian yang kecil. Penggunaan peta DEM 30x30 meter dengan kemiringan 45°, secara umum hanya dapat mendeteksi beda ketinggian yang bernilai sekitar 30 meter. Mengidentifikasi beda ketinggian yang lebih kecil nilainya dibutuhkan peta DEM dengan resolusi yang lebih tinggi. Dengan demikian maka dari hasil validasi, pemetaan potensi mikrohidro menggunakan metode ini tidak akurat karena dari tiga titik lokasi validasi tidak ada satu titikpun yang teridentifikasi

.

SIMPULAN DAN SARAN

Simpulan

Pemetaan potensi PLTMH secara umum telah memenuhi beberapa kriteria yang dibuat, akan tetapi pemetaan menggunakan metode ini belum bisa mengidentifikasi secara keseluruhan dikarenakan belum adanya algoritma untuk mencari beda ketinggian secara akurat dan masih tergantung pada nilai kemiringan yang ada pada peta DEM. Peta DEM dengan ukuran pixel 30x30 meter tidak dapat mendeteksi beda ketinggian minimal dari kriteria PLTMH secara akurat, jika kemiringan 45° dijadikan acuan awal penentuan potensi mikrohidro.

Potensi total dari semua kategori pembangkit tenaga air sebesar 20.25 MW dari 206 titik yang ada, sedangkan potensi mikrohidro total adalah 2.04 MW dari 90 titik yang tersebar diseluruh Pulau Jawa.

Saran

(29)

19

DAFTAR PUSTAKA

Arya DK. 2012. Analisis potensi mikrohidro berdasarkan curah hujan [Skripsi]. Bandung (ID). Institut Teknologi Bandung .

Bergstrom D dan Malmros C. Finding Potential for Small-Scale Hydro Power in Ugand: a Step to Assist The Rural Electrification by The Use of GIS. 2005. Solvegatan (SE): Lund University.

Boulos PF. 2006. Comprehensive Water Distribution System Analyssis Handbook for Engineers and Planners. Denver, CO (US): American Water Works Association.

[BPS] Badan Pusat Statistik. 2010. Hasil sensus penduduk: Data agregat provinsi [Internet]. [diacu 2015 Jan 12]. Tersedia pada http://www.bps.go.id/65tahun/SP2010_agregat_data_perProvinsi.pdf.

Budiyanti E. 2014. Info singkat. Ekonomi dan kebijakan publik [Internet]. [diunduh 2015 Feb 20] vol:5 no.5. Tersedia pada http://pengkajian.dpr.go.id/produk-ilmiah/index/cat/1/id/65.

[PLN] Perusahaan Listrik Negara. 2010. Rencana usaha penyediaan tenaga listrik. [Internet]. [diacu 2015 maret 28]. Tersedia pada http://www.pln.co.id/dataweb/RUPTL%202010-2019.pdf

[PLN] Perusahaan Listrik Negara. 2013. Statistik PLN [Internet]. [diunduh 2015 Maret 28]. Tersedia pada http://www.pln.co.id/dataweb/STAT2013IND.pdf Prahasta E. 2009. Sistem Informasi Geografis: Konsep-Konsep Dasar. Bandung

(ID): INFORMATIKA.

Prahasta E. 2011. Tutorial ArcGIS Desktop Untuk Bidang Geodesi dan Geomatika. Bandung (ID): INFORMATIKA

Indarto. 2010. Hidrologi: Dasar Teori dan Contoh Aplikasi Model Hidrologi. Jakarta (ID): Bumi Aksara.

Johnson LE. 2009. Geographic Information System in Water Resources Engineering. New York (US): CRC Press.

Irmansyah W. 2012. Lokasi potensial pembangkit tenaga mikrohidro di Kabupaten Sukabumi [Skripsi]. Depok (ID). Universitas Indonesia.

Kunwor A. 2012. Technical specification of micro Hydro system design and its implement: Feasibility analysis and design of Lamaya Khola hydro power plant [Skipsi]. Helsinki (SE). Arcada University.

Shaw EM et al. 2011. Hydrology in Practice. London (GB): Spoon Press.

Singh D. 2009. Micro hydro power: resource assessment handbook [Internet]. [diacu 2015 Feb 3]. Tersedia pada recap.apctt.org/Docs/MicroHydro.pdf.

(30)
(31)

21 Lampiran 1 Tabel data pos duga air (lanjutan)

No PDA Sungai Induk Q 80% Q 90% Lintang Bujur

02-031-01-02 K.Cisanggarung 2.02 0.65 -6.99 108.76 02-032-01-05 K.Kabuyutan 0.17 0.13 -6.99 108.86

02-041-01-02 k.Sengkarang 14.02 10.23 -6.97 109.65

(32)

22

Lampiran 1 Tabel data pos duga air (lanjutan)

(33)

23 Lampiran 1 Tabel data pos duga air (lanjutan)

(34)

24

Lampiran 1 Tabel data pos duga air (lanjutan)

(35)

25 Lampiran 1 Tabel data pos duga air (lanjutan)

No PDA Sungai Induk Q 80% Q 90% Lintang Bujur

02-090-C-3 K.Serayu 10.29 7.73 -7.43 109.19

02-090-G-1 K.Serayu 5.74 3.13 -7.49 109.22

02-092-01-03 Citanduy 14.90 7.11 -7.33 108.32

02-092-01-05 Citanduy 6.12 2.80 -7.30 108.55

02-092-01-06 Citanduy 53.28 20.41 -7.38 108.55

02-092-02-01 Citanduy 1.81 0.48 -7.45 108.57

02-092-02-02 Citanduy 2.75 0.90 -7.40 108.53

02-092-03-01 Citanduy 47.80 23.50 -7.37 108.68

02-092-03-02 Citanduy 7.79 3.47 -7.25 108.58

02-092-03-04 Citanduy 11.58 4.04 -7.07 108.38

02-092-04-08 S.Citanduy 0.12 0.06 -7.37 108.90

02-092-06-01 Citanduy 29.00 7.80 -7.45 108.38

02-094-01-01 Cimedang 3.10 1.94 -7.58 108.30

02-095-01-01 Ciwulan 1.10 0.67 -7.49 108.15

02-095-01-02 Ciwulan 8.31 6.73 -7.36 108.11

02-095-01-08 Ciwulan 10.52 5.12 -7.45 108.19

02-095-02-01 Ciwulan 36.82 22.82 -7.52 108.18

02-096-01-03 Ciangla 4.29 1.51 -7.63 108.11

02-096-01-04 Ciangla 2.34 1.76 -7.58 108.05

02-102-01-01 Cisadea 12.40 11.54 -7.39 107.18

02-103-01-01 Cibuni 33.28 22.08 -7.38 108.85

02-103-02-03 Cibuni 5.71 5.53 -7.23 107.15

02-104-02-02 Cikaso 4.55 2.84 -7.29 106.74

02-107-02-07 Cimandiri 9.35 5.93 -7.03 106.73

02-108-01-01 Cisadane 8.12 7.18 -6.55 106.75

06-005-04-01 K.Nipah 0.47 0.29 -6.87 113.28

(36)

26

(37)

27 Lampiran 2 Daftar potensi mikrohidro (lanjutan)

(38)

28

Lampiran 2 Daftar potensi mikrohidro (lanjutan) No Beda Tinggi

(m)

Debit (m³)

Potensi

(kW) Kabupaten Lintang Bujur

79 32 0.04 11.32 Kuningan -7.11 108.71

80 16 0.04 4.71 Garut -7.33 107.89

81 37 0.03 9.12 Cianjur -7.25 107.26

82 35 0.05 15.84 Cianjur -7.24 107.24

83 37 0.03 9.12 Cianjur -7.27 107.24

84 36 0.03 10.40 Cianjur -7.29 107.23

85 42 0.10 33.80 Cianjur -7.29 107.23

86 54 0.02 9.07 Cianjur -7.27 107.20

87 44 0.12 42.26 Bogor -6.74 106.92

88 20 0.05 8.81 Bogor -6.72 106.76

89 32 0.07 19.58 Bogor -6.71 106.76

(39)
(40)

30

Lampiran 3 Hasil validasi (lanjutan)

Pengulangan

Tempat Debit Aliran SIG (m³/s)

Validasi Lapang Hasil SIG Error (%)

(41)

31

RIWAYAT HIDUP

(42)
(43)
(44)
(45)

Gambar

Gambar 1  Peta wilayah studi
Gambar 2  Diagram alir analisis data spasial
Gambar 3  Sketsa PLTMH
Gambar 4  Pengambilan data menggunakan currentmeter
+7

Referensi

Dokumen terkait

Penelitian ini bertujuan untuk memetakan potensi lahan di Kabupaten Magelang dengan mengaplikasikan Sistem Informasi Geografi dengan menggunakan metode Indeks

Penelitian ini bertujuan untuk memetakan potensi lahan di Kabupaten Magelang dengan mengaplikasikan Sistem Informasi Geografi dengan menggunakan metode Indeks

Pembangkit Listrik Tenaga Mikro Hidro (PLTMH), biasa disebut mikrohidro, adalah suatu pembangkit listrik kecil yang menggunakan tenaga air dengan kapasitas tidak lebih dari

Melihat daya yang terbangkitkan tersebut maka potensi air aliran sungai Pinogu secara teknis layak untuk di bangun pembangkit listrik tenaga mikrohidro (PLTMH) dengan

Dari hasil penelitian Analisa Potensi Daya Listrik pada Bendungan Colo di Sukoharjo untuk Pembangkit Listrik Tenaga Mikrohidro, didapati rataan debit air pada tahun 2016 53,5

Melihat potensi sumber energi yang ada untuk PLTMH maka perlu dilakukan suatu kajian tentang seberapa besar potensi aliran air sungai yang dapat dimanfaatkan untuk energi

Berdasarkan permasalahan yang telah dijabarkan di atas, maka dilakukan penelitian yang berjudul Pemetaan Potensi Kekeringan Lahan Se-Pulau Batam Menggunakan Teknik Sistem

Chengel, 2006 8 Dimana: =Kerja Dihasilkan Turbin Kondisi Isentropis kW = Kerja Spesifik Dihasilkan Turbin Isentropis kJ/kg = Massa Fluida kg/s Kerja turbin pada kondisi aktual