• Tidak ada hasil yang ditemukan

DAFTAR PUSTAKA. [1] Felix. Y dan Pratomo, H. L, 2009 Memaksimalkan Daya Photovoltaic

N/A
N/A
Protected

Academic year: 2021

Membagikan "DAFTAR PUSTAKA. [1] Felix. Y dan Pratomo, H. L, 2009 Memaksimalkan Daya Photovoltaic"

Copied!
13
0
0

Teks penuh

(1)

44

DAFTAR PUSTAKA

[1]

Felix. Y dan Pratomo, H. L, 2009 “Memaksimalkan Daya Photovoltaic

dengan Korelasi Riak”, IES-ITS Surabaya

[2]

Jonathan W. Kimball and Philip T. Krein, Digital Ripple Correlation

Control for Photovoltaic Applications. IEEE Power Elec. Conf., pp.

1690-1694, 2007.

[3]

Rinovi. A. D , Pratomo H.L dan Tejo. Y, 2010 “Maximum Power Point

Tracker pada Photovoltaic Module dengan Menggunakan Fuzzy Logic

Controller”, , CITEE, UGM Yogyakarta

[4] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick L. Chapman,

and Pallab Midya, Dynamic Maximum Power Point Tracking of

Photovoltaic Arrays Using Ripple Correlation Control. IEEE Trans. on

Power Elec., vol. 21, no. 5, pp.1282-1291, Sept. 2006.

[5]

V. Salas, E. Olias, A. Barrado, and A. Lazaro, “Review of maximum power

point tracking algorithms for stand alone photovoltaic systems” Solar

Matter, Solar Cells, vol. 90, no. 11, pp. 1555-1578, July 2006

[6]

Pratomo, H. L, 2005 , “Buck DC-DC Konverter Dengan Kendali One

Cycle”, MILLENIUM, Vol 1. No 3

[7]

Dedy. P, Pratomo H.L dan Tejo. Y, 2010 “Pemanfaatan Mikrokontroler

Tipe AT89S52 Sebagai Pengendalian Daya Maksimum” CITEE, UGM

(2)

45

[8]

Eridanus dan Pratomo H.L, 2010, “Metode Pengendali Daya Panel Surya

dengan Kendali Adaptif”, CITEE, UGM Yogyakarta

[9]

N. Femia, et. Al. “Optimization of Perturb and observe Maximum Power

Point tracking Method,” IEEE Trans. Power Electron., Vol. 20, pp.

963-973, July 2005

[10] Santoso, Danny M. 2003, Artikel Sel Surya, Jakarta, NN.

[11] Faranda, R. dan Leva, S., “Energy comparison of MPPT techniques for PV

Systems”, WSEAS TRANSACTIONS on POWER SYSTEMS VOLUME 3,

2008.

[12] Manik, Ronal C and Pratomo, Leonardus. H “Sistem Pengisi Baterai

Berbasis Daya Maksimal Melalui Deteksi Arus dan Tegangan”. Prosiding

Seminar Nasional Teknoin 2012 . D104-D110. ISSN 978-979-96964-3-9.

[13] Pratomo, Leonardus Heru “Sistem Pengkonversi Daya Maksimal Modul

Surya Melalui Deteksi Tegangan”. SERI KAJIAN ILMIAH 2013, 15 (1).

pp. 27-34. ISSN 0853-0707

[14] Prasetiyo, Hendy “Kinerja Maximum Power Point Tracker Terhadap

(3)

46

LAMPIRAN 1

Gambar 1. Realisasi alat

CATU DAYA

TRANSFORMATOR

RANGKAIAN

SENSOR DAYA

RANGKAIAN

SENSOR ARUS

(4)

47

LAMPIRAN 2

Laporan Tugas Akhir ini telah dipublikasikan di Universitas Negeri

Yogyakarta pada tanggal 19 Oktober 2013, dalam proceeding Seminar Nasional

Pendidikan Teknik Elektro (SNPTE) halaman 184 – 193.

Paper Seminar

Desain dan Implementasi Maksimum Power Point Tracker Sebagai Pengisi

Baterai Berbasiskan Deteksi Daya dan Tegangan Pada Modul Surya

Ludovicus Satya. H. B Leonardus. H. Pratomo

Prog.Di Teknik Elektro- Fakultas Teknik Universitas Katolik Soegijapranana Semarang Jl. Pawiyatan Luhur IV/1 Bendan Duwur Semarang

E-mail : satya.ludovicus@yahoo.com

Abstrak

Di Indonesia energi matahari tersedia cukup banyak dan bisa diperoleh dengan cuma-cuma. Namun Energi yang bisa kita peroleh setiap hari ini belum dimaanfatkan secara maksimal. Salah satu alat yang dapat memaanfaatkan energy matahari ini adalah modul surya. Modul surya dapat merubah energi sinar matahari ke energi listrik dalam besaran arus searah. Untuk mendapatkan daya yang maksimal modul surya harus didukung dengan sistem kendali yang sesuai dengan karakteristiknya. Pada makalah berikut ini akan dibahas mengenai suatu teknik kendali daya dan tegangan sumber untuk memaksimalkan daya modul surya yang akan digunakan sebagai sistem pengisian baterai. Konverter yang digunakan dalam penelitian ini adalah konverter jenis buck yang dianggap sebagai variable resistor untuk memaksimalkan daya modul surya.

Kata kunci : energi, modul surya, maksimum power point tracker, buck konverter

Pendahuluan

Kemajuan tekhnologi dengan memanfaatkan energi matahari yang diubah menjadi energi listrik sudah sangat pesat. Hal ini dibuktikan dengan banyaknya penelitian modul surya. Energi matahari merupakan sumber daya alam yang tidak dapat habis dan bisa diperoleh dengan mudah dan cuma-cuma. Pada umumnya modul surya di manfaatkan secara langsung dengan nilai keluaran arus listrik searah dan membutuhkan

(5)

48

baterai untuk menyimpannya. Dari baterai tersebut akan dimanfaatkan untuk memenuhi kebutuhan listrik sehari-hari.

Di Indonesia kebutuhan listrik masih belum dapat mencukupi perkembangan sistem kelistrikan yang terus berkembang saat ini. Hal ini dapat dilihat dari semakin berkembangnya sistem kelistrikan pada bidang industri, perkantoran dan perumahan. Yang berdampak semakin besarnya pula kebutuhan listrik yang dibutuhkan. Salah satu energi alternatif yang mampu memenuhi kekurangan tersebut adalah dengan memanfaatkan energi matahari. Di Negara kita ini energi matahari belum dimanfaatkan secara maksimal yang sebenarnya pada saat sekarang ini memiliki efisiensi yang lebih baik. Pemanfaatan tersebut dengan menggunakan modul surya.

Modul surya merupakan suatu alat yang mengkonversi energi matahari menjadi energi listrik. Tetapi pada kenyataannya modul surya tidak dapat digunakan secara langsung karena kekarakteristikannya. Oleh karena itu untuk memaksimalkan daya yang diperoleh, harus menggunakan sistem yang mampu mengikuti karakteristik modul surya yaitu bisa berbasis lereng yang ada. Ada beberapa metode yang dapat digunakan untuk mendapatkan daya yang maksimal antara lain korelasi riak, fuzzy logic, kendali P dan I, fractional open voltage, fractional short circuit. Masing-masing metode tersebut memiliki kelebihan dan kekurangan masing-masing. Sebagai contoh fuzzy logic dan korelasi riak [3,4,7,8] di samping mampu menghasilkan konversi yang baik, namun metode ini memiliki algoritma yang sulit dan implementasi yang rumit dan mahal. Berbanding terbalik dengan metode fractional short circuit [9] dan fractional open voltage. Kedua metode ini memiliki struktur dan implementasi yang sederhana tetapi hasilnya kurang baik.

Pada makalah ini dikembangkan suatu metode konversi dengan sistem kendali daya dan tegangan untuk mendapatkan maximum power point tracker. Kedua besaran tersebut kemudian akan dibagi untuk mendapatkan nilai transkonduktannya. Nilai inilah yang kemudian akan digunakan untuk mendapatkan konversi daya maksimal dengan cara dikendalikan dan dimodulasi.

Sistem di atas menggunakan sistem DC-DC converter jenis buck, yang kemudian akan digunakan untuk pengisian pada baterai. Karena yang digunakan adalah teknik konversi daya maksimal, maka sistem pengisian pada baterai dapat berlangsung dengan cepat.

Metodologi penelitian

Metode yang digunakan untuk menyelesaikan makalah ini adalah dengan studi literature, analisis, simulasi komputasi dan implementasi skala laboratorium. Pada berikut ini akan di uraikan analisis tentang konverter DC-DC tipe buck dan modul surya.

A.konverter DC-DC

Jika kita memiliki suatu besaran DC maka kita dapat mengubahnya ke besaran DC yang lain. Hal ini disebut dengan konverter DC ke DC atau bisa dikenal dengan chopper. Jika tegangan keluaran lebih kecil dari tegangan sumber maka disebut buck chopper. Pengubahan besaran DC konstan menjadi DC variabel dapat dilakukan dengan menggunakan saklar elektronik (antara lain BJT, MOSFET, IGBT dll). Pada gambar 1 berikut akan ditunjukkan suatu buck konverter dapat mengimplementasikan BJT sebagai saklar elektroniknya yang digunakan dalam pengisian baterai.

(6)

49

Baterai L D T Vs + Vo

-Baterai

L

D

T

Vs

+

Vo

-Baterai L D T Vs + Vo -Gambar 1. Buck konverter

Konverter DC-DC jenis buck dapat beroperasi dalam dua mode. Mode pertama saklar elektronik yang diimplementasi dengan transistor BJT menutup, sehinggan arus akan mengalir menuju baterai seperti pada gambar 2.

Gambar 2. Mode pertama Sehingga memiliki persamaan :

V

s

V

o

t

on

Ldi

(1)

Mode kedua saat saklar elektronik yang diimplementasikan dengan transistor BJT membuka, sehingga membentuk rangkaian seperti pada gambar 3.

Gambar 3. Mode kedua Sehingga memiliki persamaan :

off o

t

V

Ldi

(2) Jika persamaan (1) dan (2) dieliminasi maka akan diperoleh :

(7)

50

irradiance

R

s L O A D

R

sh

I

L

I

ph

I

d

I

sh

T

t

V

V

on s o

d

V

V

s o

(3) B. Modul surya

Merupakan alat yang dapat mengubah energi matahari menjadi energi listrik. Modul surya terdiri dari beberapa solar cell yang terhubung seri dan parallel dan membentuk suatu modul yang terintegrasi satu sama lain. Solar cell adalah suatu sambungan bahan semikonduktor jenis P (positif) dan N (negatif). Sambungan tersebut akan menghasilkan tegangan jika ada suatu energi foton yang mengenai sambungan tersebut. Array adalah modul surya yang saling terintegrasi antara satu dengan yang lain.

Gambar 4. Cell, module dan array

Modul surya memiliki karakteristik arus terhadap tegangan. Maka dibuat suatu rangkaian ekivalen untuk mempermudah. Suatu sell modul surya dapat digantikan dengan photodioda dan dengan akibat radiasi cahaya maka akan mengalirkan arus Iph (photo current). Kemudian arus bercabang menuju diode dan tahanan shunt dan akan keluar ke beban seperti pada gambar 5.

Gambar 5. Rangkaian ekivalen sell modul surya. Persamaan arus : sh d ph L

I

I

I

I

(4)

(8)

51

Jika





exp

1

c s o d

T

k

m

R

I

V

e

I

I

Dan sh s sh

R

I

R

V

I

Maka : (5) Keterangan : m = Idealizing fagtor k = Konstanta Boltzman (1.381 x 10-23) Rs = Tahanan seri Rsh = Tahanan parallel

Iph = Arus akhibat photon

e = Muatan elektron (1.602 x 10-19) ID = Arus dioda normal

Io = Arus saturasi pada saat gelap

Modul surya memiliki kurva karakteristik daya dan arus terhadap tegangan serta sistem pembebanan seperti pada gambar 6

sh s c s o ph d

R

I

R

V

T

k

m

R

I

V

e

I

I

I





exp

1

(9)

52

V P V I 0  dV P d MPP R G dV I d 1  R1 Rn

Gambar 6. Kurva karakteristik modul surya

Modul surya terpengaruh oleh suhu disekitar artinya terpengaruh oleh kondisi lingkungan yang dipengaruhi oleh intensitas matahari, sesuai kurva karakteristik terhadap suhu seperti pada gambar 7.

Gambar 7. Kurva karakteristik modul surya terhadap suhu

Parameter operasi modul surya dipengaruhi oleh kondisi lingkungan dan mempengaruhi daya yang dihasilkan. Istilah tersebut dikenal dengan Fill Factor (FF). Parameter ini mempengaruhi karakteristik tak linear modul surya. Parameter yang lain dinamakan factor efisien energi. Berikut ini adalah parameter fill factor, gambar 8.

(10)

53

V P 0 dV P d

0

dV

P

d

0

dV

P

d

Gambar 8. Hubungan fill factor pada kurva I-V modul surya Hasil dan Perancangan

Suatu kendali yang berdasarkan kurva karakteristik daya akan maksimum jika memenuhi suatu persamaan seperti :

 

dV

I

V

d

dV

dP

MPP





0

dV

P

d

jika

G

G

0

dV

P

d

jika

G

G

0

dV

P

d

jika

G

G

(6) Sehingga proses kendali jika dibuat berdasarkan kurva adalah sebagai berikut :

(11)

54

Berikut ini merupakan gambar struktur kendali yang dibuat dan diimplementasikan.

Gambar 10. Diagram blok kendali daya maksimal

Berikut ini adalah pengujian karakteristik kurva dan pengujian kendali secara simulasi dengan menggunakan software powersim.

Gambar 11. Pengujian parameter modul surya 2 X 50 WP hubung seri

(12)

55

Berikut ini adalah tabel pengujian. Tabel pengujian di bawah merupakan hasil pengujian terbaik diantara pengujian-pengujian yang dilakukan. Pengujian dilakukan dengan menggunakan 2 modul surya 50WP hubung seri.

Tabel 1. Pengujian sistem kendali

Waktu Vi Ai Pi Vo Ao Po 1 24.5 2.6 63.7 24.3 2.61 63.423 2 24.52 2.56 62.7712 24 2.56 61.44 3 24.52 2.4 58.848 24.2 2.4 58.08 4 25.1 2.34 58.734 24.8 2.33 57.784 5 26.11 2.36 61.6196 25 2.36 59 6 26.15 2.27 59.3605 25 2.25 56.25 7 25.24 2.07 52.2468 24.3 2.03 49.329 8 26.27 2.06 54.1162 24.5 2.02 49.49 9 25 2.08 52 24.3 2.04 49.572 10 24.5 2.02 49.49 24.1 2.02 48.682

Berdasarkan tabel di atas daya keluaran rata-rata setelah mengisi baterai sebesar 55.305W dan keluaran modul surya memiliki rata-rata sebesar 57,288W. Dilihat dari nilai rata-rata tersebut maka sistem kendali ini memiliki effisiensi daya modul surya ke energy listrik sebesar 55.305%, sedangkan effisiensi konverter sebesar 96.54%

Kesimpulan

Dari hasil percobaan yang dilakukan dengan simulasi komputasi menggunakan software Power Simulator dan implementasi skala laboratorium sistem pengisian baterai yang dirancang dapat berjalan dengan baik dan memiliki effisiensi daya modul surya ke energy listrik sebesar 55.305%, sedangkan effisiensi konverter sebesar 96.54%

Daftar Pustaka

[1] Dedy. P, Pratomo H.L dan Tejo. Y, 2010 “ Pemanfaatan Mikrokontroler Tipe AT89S52 Sebagai Pengendalian Daya Maksimum Pada” CITEE, UGM Yogyakarta

[2] Eridanus dan Pratomo H.L, 2010, “ Metode Pengendali Daya Panel Surya dengan Kendali Adaptif”, CITEE, UGM Yogyakarta

[3] Felix. Y dan Pratomo, H. L, 2009 “Memaksimalkan Daya Photovoltaic dengan Korelasi Riak”, IES-ITS Surabaya

[4] Jonathan W. Kimball and Philip T. Krein, Digital Ripple Correlation Control for Photovoltaic Applications. IEEE Power Elec. Conf., pp. 1690-1694, 2007.

(13)

56

[5] N. Femia, et. Al. “Optimization of Perturb and observe Maximum Power Point tracking Method,” IEEE Trans. Power Electron., Vol. 20, pp. 963-973, July 2005

[6] Pratomo, H. L, 2005 , “Buck DC-DC Konverter Dengan Kendali One Cycle”, MILLENIUM, Vol 1. No 3

[7] Rinovi. A. D , Pratomo H.L dan Tejo. Y, 2010 “Maximum Power Point Tracker pada Photovoltaic Module dengan Menggunakan Fuzzy Logic Controller”, , CITEE, UGM Yogyakarta

[8] Trishan Esram, Jonathan W. Kimball, Philip T. Krein, Patrick L. Chapman, and Pallab Midya, Dynamic Maximum Power Point Tracking of Photovoltaic Arrays Using Ripple Correlation Control. IEEE Trans. on Power Elec., vol. 21, no. 5, pp.1282-1291, Sept. 2006.

[9] V. Salas, E. Olias, A. Barrado, and A. Lazaro, “Review of maximum power point tracking algorithms for stand alone photovoltaic systems” Solar Matter, Solar Cells, vol. 90, no. 11, pp. 1555-1578, July 2006

Gambar

Gambar 1. Realisasi alat
Gambar 2. Mode pertama  Sehingga memiliki persamaan :
Gambar 4. Cell, module dan array
Gambar 6. Kurva karakteristik modul surya
+4

Referensi

Dokumen terkait

Berdasarkan hasil penelitian yang telah peneliti laksanakan, ada beberapa kesimpulan dari penelitian ini, diantaranya, 1) Pelaksanaan layanan bimbingan dan konseling di MI Ma’arif

Sebagai satu lembaga keuangan mikro islam yang dapat memberikan pembiayaan bagi usaha kecil, mikro dan menengah dan juga koperasi dengan kelebihan tidak meminta jaminan

Perusahaan; Multinasional ada dasarn#a memerlihatkan satu dari emat orientasi mereka dalam akti$itasn#a' Mereka un#a ke#akinan mengenai &ara mengendalikan

Adapun tujuan dari penelitian ini adalah membangun perangkat lunak try out ujian semester berbasis web untuk SMK Negeri 4 Palembang dengan pengacakan nomor urut

Dengan dasar ini maka model analisis data yang digunakan adalah model SUR (Seemingly Unrelated Regression) dimana seolah-olah alat tangkap yang beroperasi di perairan yang sama

Hasil pengamatan kadar protein dalam cocoghurt setelah dianalisis seacara statistik disajikan pada lampiran dan rata- rata nilai kadar protein cocoghurt dianalisi sidik

Penetapan harga pada jual beli makanan dan minuman di warung makan wisata Sidomukti antara pembeli satu dengan yang lain berbeda untuk pembeli yang merupakan warga

Berat jenis dari sari buah belimbing sebelum proses perlakuan menggunakan PEF sebesar 1.082 mg/mL, dan setelah proses nontermal menggunakan PEF dengan variasi tegangan dan