• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:AUA:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:AUA:"

Copied!
10
0
0

Teks penuh

(1)

NEIGHBORHOOD AND PARTIAL SUM PROPERTY FOR UNIVALENT HOLOMORPHIC FUNCTIONS IN TERMS OF

KOMATU OPERATOR

Shahram Najafzadeh and Ali Ebadian

Abstract. In the present paper, we investigate some important properties of a new class of univalent holomorphic functions by using Komatu operator. For example coefficient estimates, extreme points, neighborhoods and partial sums.

2000Mathematics Subject Classification: 30C45, 30C80. 1. Introduction and preliminaries

Let S denote the class of functions f that are analytic in the open unit disk D={z∈ C : |z|<1} of the form

f(z) =z+ ∞ X k=2

akzk, (1)

and consider the subclass T consisting of functions f which are univalent inDand are of the form

f(z) =z− ∞ X k=2

|ak|zk. (2)

For α ≥ 0, 0 ≤ β < 1, c ≥ −1 and δ ≥ 0, we let Sδ

c(α, β) be the subclass of S consisting of functions of the form (1) and satisfying the condition

Re

( Kδ

c(f)

z[Kδ c(f)]′

)

> α

Kδ c(f)

z[Kδ c(f)]′

−1

+β. (3)

The operator Kδ

c(f) is the Komato operator [3] defined by Kδc(f) =

Z 1

0

(c+ 1)δ Γ(δ) t

clog1

t

δ−1 f(tz)

(2)

We also let

T Scδ(α, β) =Scδ(α, β)∩ T. (4) By applying a simple calculation forf ∈ Sδ

c(α, β) we get Kδc(f) =z−

∞ X k=2

c+ 1

c+k

δ

|ak|zk. (5)

The family T Sδ

c(α, β) is of special interest for contains many well-known as well as new classes of analytic functions. For example T S0

c(0, β) is the family of starlike functions of order at most β1.

In our present investigation, we need the following elementary Lemmas.

Lemma 1.1. If α 0, 0β <1 and γ ∈ R then Re ω > α|ω1|+β if and

only if Re [ω(1 +αeiγ)αe]> β where ω be any complex number.

Lemma 1.2. With the same condition in Lemma 1.1, Re ω > α if and only if |ω−(1 +α)|<|ω+ (1−α)|.

The main aim of this paper is to verify coefficient bounds and extreme points of the general class T Sδ

c(α, β). Furthermore, we obtain neighborhood property for functions in T Sδ

c(α, β). Also partial sums of functions in the class Scδ(α, β) are obtained.

2.Coefficient bounds for Scδ(α, β)

In this section we find a necessary and sufficient condition and extreme points for functions in the class T Sδ

c(α, β). Theorem 2.1. If

∞ X k=2

[(1 +α)−k(α+β)] (1−β)

c+ 1

c+k

δ

ak <1, (6)

then f(z)∈ Sδ c(α, β).

Proof. Let (6) hold, we will show that (3) is satisfied and sof(z)∈ Sδ

c(α, β). By Lemma 1.2, it is enough to show that

|ω−(1 +α|ω−1|+β)|<|ω+ (1−α|ω−1| −β)|,

where ω= Kδc(f)

z[Kδ

c(f)]′. By lettingB =

z[Kδ c(f)]

|z[Kδ

c(f)]′| and by using (5) we may write

R =|ω+ 1−β−α|ω−1||

= 1

|z[Kδ c(f)]′|

2z−βz− ∞ X k=2

[1 + (1−β)k+α−αak]

c+ 1

c+k

δ

akzk

(3)

This implies that

R > |z|

|z[Kδ c(f)]′|

"

2−β− ∞ X k=2

[k+ (1 +α)−k(α+β)]

c+ 1

c+k

δ

ak #

.

Similarly, if L=|ω−1−α|ω−1| −β|we get

L < |z|

|z[Kδ c(f)]′|

"

β+ ∞ X k=2

[−k+ (1 +α)−k(α+β)]

c+ 1

c+k

δ

ak #

.

It is easy to verify that R−L >0 if (6) holds and so the proof is complete. Theorem 2.2. Let f ∈ T. Then f is in T Kcδ(α, β) if and only if

∞ X k=2

[(1 +α)−k(α+β)] 1−β

c+ 1

c+k

δ

ak <1.

Proof. Since T is the subclass of S and T Sδ

c(α, β) = Scδ(α, β)∩ T, and using Theorem 2.1, we need only to prove the necessity of theorem. Suppose that f ∈ T Kδ

c(α, β).By Lemma 1.1, and lettingω = K

δ c(f)

z[Kδ

c(f)]′ in (3) we obtain

Re(ω(1 +αeiγ)−αeiγ)> β

or Re    

z−P∞ k=2

c+1

c+k δ

akzk

z

1−P∞ k=2k

c

+1

c+k δ

akzk−1

(1 +αe

)αeβ    

>0,

then Re    

1−β−P∞

k=2(1−βk)

c+1

c+k δ

akzk−αeiγP∞k=2(1−k)

c+1

c+k δ

akzk−1

1−P∞ k=2k

c+1

c+k δ

akzk−1

   

>0.

The above inequality must hold for all z inD. Letting z=re−iθ where 0≤r < 1 we obtain Re    

1−β−P∞

k=2(1−βk)

c

+1

c+k δ

akrk−αeiγP∞k=2(1−k)

c

+1

c+k δ

akrk−1

1−P∞ k=2k

c+1

c+k δ

akrk−1

   

(4)

By letting r → 1 through half line z = re−iθ (0 ≤ r < 1) and the mean value theorem we have

Re

"

(1−β)− ∞ X k=2

[(1−βk)−α(1−k)]

c+ 1

c+k

δ

ak]>0 #

.

Therefore

∞ X k=2

[(1−βk) +α(1−k)]

c+ 1

c+k

δ

ak<1−β. This implies that

∞ X k=2

(1 +α)−k(α+β) (1−β)

c+ 1

c+k

δ

ak<1, and the proof is complete.

Theorem 2.3. Let f1(z) =z and

fk(z) =z−

1−β

[(1 +α)−k(α+β)]

c+k

c+ 1 δ

zk, k≥2. (7)

Thenf ∈ T Sδ

c(α, β)if and only if it can be expressed in the formf(z) = P∞

k=1ηkfk(z)

where ηk ≥0 and P∞k=1ηk = 1. In particular, the extreme points of T Scδ(α, β) are

the functions defined by (7).

Proof. Let f be expressed as in the above theorem. This means that we can write

f(z) = ∞ X k=1

ηkfk(z) =η1f1(z) +

∞ X k=2

ηkfk(z)

=η1z+

∞ X k=2

ηkz− ∞ X k=2

(1−β) [(1 +α)−k(α+β)]

c+k

c+ 1 δ

ηkzk

=z

∞ X k=1

ηk− ∞ X k=2

tkzk,

where tk= [(1+α(1)−k−β()α+β)] c

+k c+1

δ

ηk.Therefore f ∈ T Scδ(α, β) since ∞

X k=2

[(1 +α)−k(α+β)]

1−β tk

c+ 1

c+k

δ =

∞ X k=2

ηk= 1−η1<1.

Conversely, suppose thatf ∈ T Sδ

c(α, β).Then by (6), we have

ak<

1−β

[(1 +α)−k(α+β)]

c+k

c+ 1 δ

(5)

So

f(z) =z− ∞ X k=2

1−β

[(1 +α)−k(α+β)]

c+k

c+ 1 δ

ηkzk

=z− ∞ X k=2

ηk(z−fk(z))

= 1− ∞ X k=2

ηk !

z− ∞ X k=2

ηkfk(z)

=η1z−

∞ X k=2

ηkfk(z) = ∞ X k=1

ηkfk(z).

This completes the proof.

3.Neighborhood Property

In this section we study neighborhood property for functions in the classT Sδ c(α, β). This concept was introduced by Goodman [2] and Ruscheweyh [6]. See also [1], [4], [5], and [7].

Definition 3.1. For functions f belong f to S of the form (1) and γ 0, we

define η−γ-neighborhood of f by

γ(f) ={g(z)∈ S :g(z) =z+ ∞ X k=2

bkzk, ∞ X k=2

kη+1|ak−bk| ≤γ},

where η is a fixed positive integer.

By using the following lemmas we will investigate the η −γ-neighborhood of functions in T Sδ

c(α, β).

Lemma 3.2. Let m0 and−1θ <1. If g(z) =z+P∞

k=2bkzk satisfies ∞

X k=2

kρ+1|bk| ≤ 1−θ 1 +α, then g(z)∈ Sρ

c(α, θ).

Proof. By using of Theorem 2.1, it is sufficient to show that (1 +α)−k(α+θ)

1−θ

ρ+ 1

ρ+k

δ = k

ρ+1

1−θ(1 +α).

But

(1 +α)−k(α+θ) 1−θ

ρ+ 1

ρ+k

δ

≤ 1 +α 1−θ

ρ+ 1

ρ+k

δ

(6)

Therefore it is enough to prove that

Q(k, ρ) = ρ+1

ρ+k δ

kρ+1 ≤1.

The result follows because the last inequality holds for all k≥2.

Lemma 3.3. Let f(z) =zP∞

k=2akzk∈ T, −1≤β <1, α≥0 and ǫ≥0.If f(z)+ǫz

1+ǫ ∈ T Scδ(α, β) then ∞ X k=2

kρ+1ak≤

2ρ+1(1β)(1 +ǫ)

(1−α−2β)

c+ 2

c+ 1 δ

where either ρ = 0 and c ≥o or ρ = 1 and 1 ≤c≤2. The result is sharp with the extremal function

f(z) =z− (1−β)(1 +ǫ) (1−α−2β)

c+ 2

c+ 1 δ

z2, (z∈ D). Proof. Letting g(z) = f(z1+)+ǫǫz we have

g(z) =z− ∞ X k=2

ak 1 +ǫz

k, (z∈ D).

In view of theorem 2.3, g(z) =P∞

k=1ηkgk(z) whereηk≥0, P∞k=1ηk= 1,

g1(z) =z and gk(z) =z−

(1−β)(1 +ǫ) [(1 +α)−k(α+β)]

c+k

c+ 1 δ

zk (k≥2).

So we obtain

g(z) =η1z+

∞ X k=2

ηk "

z− (1−β)(1 +ǫ) [(1 +α)−k(α+β)]

c+k

c+ 1 δ

zk

#

=z− ∞ X k=2

ηk

(1−β)(1 +ǫ) [(1 +α)−k(α+β)]

c+k

c+ 1 δ!

zk.

Since ηk ≥0 andP∞k=2ηk≤1,it follows that ∞

X k=2

kρ+1ak ≤sup k≥2

kρ+1

"

(1−β)(1 +ǫ) [(1 +α)−k(α+β)]

c+k

c+ 1 δ#

.

Since whenever ρ= 0 and c≥0 orρ= 1 and 1≤c≤2 we conclude

W(k, ρ, α, β, ǫ, c, δ) =kρ+1

"

(1−β)(1 +ǫ) [(1 +α)−k(α+β)]

c+k

c+ 1 δ#

(7)

is a decreasing function ofk, the result will follow. So the proof is complete. Theorem 3.4. Let either ρ = 0 and c 0 or ρ = 1 and 1 c 2. Suppose −1≤β <1, and

−1≤θ < (1−α−2β)(c+ 1)

δ2ρ+1(1β)(1 +ǫ)(c+ 2)δ(1 +α) (1−α−2β)(c+ 1)δ(1 +α) ,

f(z) ∈ T and f(z1+)+ǫǫz ∈ T Sδ

c(α, β). Then the η−γ-neighborhood of f is the subset

of Sη

c(α, θ),where

γ = (1−θ)(1−α−2β)(c+ 1)

δ2η+1(1β)(1 +ǫ)(c+ 2)δ(1 +α) (1−α−2β)(c+ 1)δ(1 +α) .

The result is sharp.

Proof. Forf(z) =z−P∞

k=2|ak|zk,letg(z) =z+P∞k=2bkzk be inNγη(f).So by Lemma 3.3, we have

∞ X k=2

kη+1|bk| = ∞ X k=2

kη+1|ak−bk−ak|

≤γ+2

η+1(1β)(1 +ǫ)

(1−α−2β)

c+ 2

c+ 1 δ

.

By using Lemma 3.2, g(z)∈ Sη

c(α, β) if

γ+2

η+1(1β)(1 +ǫ)

(1−α−2β)

c+ 2

c+ 1 δ

≤ 1−θ 1 +α.

That is,

γ ≤ (1−θ)(1−α−2β)(c+ 1)

δ2η+1(1β)(1 +ǫ)(c+ 2)δ(1 +α) (1−α−2β)(c+ 1)δ(1 +α)

and the proof is complete.

4.Partial Sums

In this section we verify some properties of partial sums of functions in the class Sδ

c(α, β).(see [5] and [8])

Theorem 4.1. Let f(z)∈ Scδ(α, β),and define the partial sumsf1(z) andfn(z)

by

f1(z) =z and fn(z) =z+

n X k=2

(8)

If

∞ X k=2

ck|ak| ≤1 (9)

where

ck =

[(1 +α)−k(α+β)] 1−β

c+ 1

c+k

δ

. (10)

Then fk(z)∈ Scδ(α, β). Moreover

Re

f(z)

fn(z)

>1− 1

cn+1

, (z∈ D, n∈ N) (11)

Re

fn(z)

f(z)

> cn+1

1 +cn+1

. (12)

Proof. It is easy to show that f1(z) = z ∈ Scδ(α, β). So by Theorem 3.3, and condition (9), we have N1η(z)⊂ Sδ

c(α, β),so fk∈ Scδ(α, β). Next, for the coefficient

ck it is easy to show that

ck+1 > ck>1. Therefore by using (9) we obtain

n X k=2

|ak|+cn+1

∞ X k=n+1

|ak| ≤ ∞ X k=2

ck|ak| ≤1. (13) By putting

h1(z) =cn+1

f(z)

fn(z)−

1− 1

cn+1

= 1 +cn+1

f(z)

fn(z) −1

= 1 +cn+1

z+P∞ k=2akzk

z+Pn

k=2akzk −1

!

= 1 +cn+1

1 +P∞

k=2akzk−1 1 +Pn

k=2akzk−1 −1

!

= 1 +cn+1

"

1 +P∞

k=2akzk−1−1−Pnk=2akzk−1 1 +P∞

k=2akzk−1

#

= 1 +cn+1 P∞

k=n+1akzk−1 1 +Pn

k=2akzk−1

,

and using (13), for all z∈ D we have

h1(z)−1 h1(z) + 1

=

cn+1P ∞

k=n+1akz k−1

1+Pn k=2akz

k−1

2 +cn+1 P∞

k=n+1akz k−1

1+Pn

akzk−1

≤ cn+1 P∞

k=n+1|ak|

2−2Pn

k=2|ak| −cn+1P∞k=n+1|ak|

(9)

which proves (11). Similarly, if we put

h2(z) =

f n(z)

f(z) −

cn+1

1 +cn+1

(1 +cn+1)

= 1−(1 +cn+1) P∞

k=n+1akzk−1 1 +P∞

k=2akzk−1

,

and using (13) we obtain

h2(z)−1 h2(z) + 1

1, (z∈ D),

which yields the condition (12). So the proof is complete.

References

[1] Altintas and S. Owa,Neighborhoods of certain analytic functions with negative coefficients, Int. J. Math. and Math. Sci. 19(1996), 797-800.

[2] A. W. Goodman, Univalent functions with analytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601.

[3] Y. Komato, On analytic prolongation of a family of operators, Mathematica (Cluj). 39 (55) ( 1990), 141-145.

[4] Shahram Najafzadeh and S. R. Kulkarni,Study of certain properties of uni-valent functions based on Ruscheweyh derivative, Southeast Asian Bulletin of Math-ematics 32(2008), 478-488.

[5] Thomas Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neigh-borhoods and partial sums of starlike functions based on Ruscheweyh derivative, J. Ineq. pure and appl. Math. 4 (4) (2003), art. 64.

[6] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (4) (1981), 521-527.

[7] H. Silverman,Neighbohoods of classes of analytic functions, Fareast. J. Math. Sci. 3 (2) (1995), 165-169.

[8] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. and Appl., 209(1997), 221-227.

Shahram Najafzadeh

Department of Mathematics University of Maragheh Maragheh, Iran

(10)

Ali Ebadian

Department of Mathematics Urmia University

Faculty of Science Urmia, Iran

Referensi

Dokumen terkait

Batas Akhir Pemasukan Dokumen Penawaran dan Pembukaan Dokumen Penawaran, waktu dan tempat ditentukan pada saat acara pemberian penjelasan Dokumen Pengadaan. Pendaftaran

Pokja IV ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan konstruksi sebaqai

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Berdasarkan Surat Penetapan Pemenang Pelelangan Pelaksana Pekerjaan Pengadaan Alat Kesehatan Puskesmas, Kegiatan Pengadaan Sarana Kesehatan (DPPID) Dinas

Berdasarkan Berita acara Evaluasi Penawaran Pekerjaan Nomor : 04.1/PP.TR- PLSPP/DAK/DISBUN/2011, tanggal 10 Oktober 2011, maka diumumkan sebagai pemenang pelelangan

Dalam penelitian yang membahas pengaruh corporate entrepreneurship terhadap komitmen organisasi pada perusahaan keluarga di Jawa timur, penulis memilih beberapa sampel

[r]

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti