• Tidak ada hasil yang ditemukan

Paper-12-Acta24.2010. 131KB Jun 04 2011 12:03:10 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-12-Acta24.2010. 131KB Jun 04 2011 12:03:10 AM"

Copied!
11
0
0

Teks penuh

(1)

SHARP WEIGHTED INEQUALITIES FOR VECTOR-VALUED MULTILINEAR COMMUTATORS OF MARCINKIEWICZ

OPERATOR

FENG Qiufen

Abstract. In this paper, we prove the sharp inequality for the vector-valued multilinear commutators related to the Marcinkiewicz operator. By using the sharp inequality, we obtain the weighted Lp-norm inequality for the vector-valued multi-linear commutators.

2000Mathematics Subject Classification: 42B20, 42B25. 1. Introduction

Let T be the Calder´on-Zygmund singular integral operator, we know that the commutator [b, T](f) =T(bf)−bT(f) (whereb∈BM O(Rn)) is bounded onLp(Rn) for 1< p <∞(see [3]). In [9], the sharp estimates for some multilinear commutators of the Calder´on-Zygmund singular integral operators are obtained. The main pur-pose of this paper is to prove a sharp inequality for some vector-valued multilinear commutators related to the Marcinkiewicz operator. By using the sharp inequal-ity, we obtain the weighted Lp-norm inequality for the vector-valued multilinear commutators.

2. Notations and Results

First let us introduce some notations(see [4][9][10]). In this paper,Qwill denote a cube ofRnwith sides parallel to the axes, and for a cue Q letfQ=|Q|−1

R

Qf(z)dz and the sharp function of f is defined by

f#(x) = sup Q∋x

1 |Q|

Z

Q

|f(y)−fQ|dy.

(2)

f#(x) = sup Q∋x

inf c∈C

1 |Q|

Z

Q

|f(y)−c|dy.

We say that bbelongs toBM O(Rn) ifb#belongs toL(Rn) and define||b||

BM O = ||b#||

L∞. If

− →

b = (b1,· · · , bm),bj ∈BM O for (j= 1,· · ·, m), then

||~b||BM O = m Y

j=1

||bj||BM O.

LetM be the Hardy-Littlewood maximal operator, that is that

M(f)(x) = sup x∈Q

|Q|−1 Z

Q

|f(y)|dy;

we write that Mp(f) = (M(|f|p))1/p for 0< p <∞.

Given a positive integer m and 1≤ j ≤ m, we denote by Cm

j the family of all finite subsets σ={σ(1),· · ·, σ(j)}of{1,· · ·, m}ofj different elements. Forσ ∈Cjm, set σc = {1,· · ·, m} \σ. For~b = (b

1,· · ·, bm) and σ = {σ(1),· · ·, σ(j)} ∈ Cjm, set

~bσ = (bσ(1),· · ·, bσ(j)),bσ =bσ(1)· · ·bσ(j)and||~bσ||BM O=||bσ(1)||BM O· · · ||bσ(j)||BM O. We denote the Muckenhoupt weights byAp, let Ω∈Ap and 1≤p <∞,ωsatisfy the inverse H¨older inequality, there exists a constantCand 1< q <∞, for any cube

Q, we get(see [10])

1 |Q|

Z

Q

ω(x)qdx

1/q ≤ C

|Q| Z

Q

ω(x)dx.

In this paper, we will study some vector-valued multilinear commutators as fol-lowing.

Definition. Let 0 < γ ≤ 1 andbe homogeneous of degree zero on Rn such that RSn−1Ω(x′)dσ(x′) = 0. Assume that Ω ∈ Lipγ(Sn−1), that is there exists a

constant M > 0 such that for any x, y ∈ Sn−1, |Ω(x)Ω(y)| ≤ M|xy|γ. Set

bj(j = 1,· · ·, m) as a fixed locally integrable function of Rn, then when 1< r <∞,

The vector-valued Marcinkiewicz multilinear commutators is defined by

|µ~b(f)(x)|= (

X

i=1

(µ~b(fi)(x))r)1/r,

where

µ~b(f)(x) = Z ∞

0

|Ft~b(f)(x)|2dt

(3)

and

Ft~b(f)(x) = Z

|x−y|≤t

Ω(x−y) |x−y|n−1

 

m Y

j=1

(bj(x)−bj(y)) 

f(y)dy.

Set

Ft(f)(x) = Z

|x−y|≤t

Ω(x−y)

|x−y|n−1f(y)dy,

we also define that

µΩ(f)(x) = Z ∞

0

|Ft(f)(x)|2

dt t3

1/2

,

which is the Marcinkiewicz operator(see [11]).

LetHbe the spaceH =nh:||h||= R0∞|h(t)|2dt/t31/2 <o. Then, it is clear that

µΩ(f)(x) =||Ft(f)(x)||and µ ˜b

Ω(f)(x) =||F ˜b

t(f)(x)||.

Note that when b1 = · · · = bm, |µ~bΩ(f)(x)| is just the m order vector-valued Marcinkiewicz operator multilinear commutators. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors (see [1][4-8][10]). Our main purpose is to establish the sharp inequality for the vector-valued Marcinkiewicz operator multilinear commutators.

Now we state our main results as following.

3. Main Theorem and proof

First, we will establish the following theorem.

Theorem 1. Let 1 < r <∞, bj ∈BM O(Rn) for j = 1,· · ·, m. Then for any 1 < s < ∞, there exists a constant C >0 such that for any f ∈C∞

0 (Rn) and any e

x∈Rn,

(|µ~b(f)|r)#(xe)≤C 

||~b||BM OMs(|f|r)(xe) + m X

j=1 X

σ∈Cm j

||~bσ||BM OMs(|µ~bσc(f)|r)(xe)  .

Theorem 2. Let 1< r <∞, bj ∈BM O(Rn) for j = 1,· · · , m. Then |µ~b|r is

bounded on Lp(Rn) for 1< p <∞.

(4)

Lemma 1. (see [11]) Let w ∈ Ap and 1 < r < ∞, 1 < p < ∞. When Ω∈Lipr(Sn−1) for 0< γ≤1, then |µΩ|r is bounded on Lp(w).

Lemma 2. Let 1 < r <∞, bj ∈BM O for j = 1,· · · , k and k∈N. Then, we

have

1 |Q|

Z

Q k Y

j=1

|bj(y)−(bj)Q|dy≤C k Y

j=1

||bj||BM O

and

 1 |Q|

Z

Q k Y

j=1

|bj(y)−(bj)Q|rdy  

1/r

≤C

k Y

j=1

||bj||BM O.

Proof. For σ∈Ckm, where k≤mand m∈N,we have 1

|Q| Z

Q

|(b(y)−(bj)Q)σ|dy≤C||bσ||BM O

and

1 |Q|

Z

Q

|(b(y)−(bj)Q)σ|rdy 1/r

≤C||bσ||BM O.

We just need to choose pj >1 andqj >1 , where 1≤j≤k, such that 1/p1+· · ·+ 1/pk= 1 and 1/q1+· · ·+ 1/qk = 1/r. After that,using the H¨older’s inequality with exponent 1/p1+· · ·+ 1/pk = 1 and 1/q1 +· · ·+ 1/qk = 1/r respectively, we may get the conclusions.

Lemma 3.(see [11]) Let0< γ≤1andbe homogeneous of degree zero on Rn such that RSn−1Ω(x′)dσ(x′) = 0. Assume that Ω∈Lipγ(Sn−1), if Q=Q(x0, d), y ∈

(2Q)c, then

Ω(x−y) |x−y|n−1 −

Ω(x0−y) |x0−y|n−1

≤C

|x−x0| |x0−y|n

+ |x−x0| γ

|x0−y|n−1+γ

.

Proof of Theorem 1.It suffices to prove forf ∈C∞

0 (Rn) and some constantC0, the following inequality holds:

1 |Q|

Z

Q

||µ~b(f)(x)|r−C0|dx

≤C

Ms(|f|r)(ex) + m X

j=1 X

σ∈Cm j

Ms(|µ~bΩ(f)|r)(xe) 

(5)

Fix a cube Q = Q(x0, d) and ˜x ∈ Q. We write, f = g +h = gi+hi, where

gi =fiχ2Q and hi =fiχ(2Q)c. If let ˜b= (b1, ..., bm), where (bj)Q=|Q|−1R

Qbj(y)dy, for 1≤j ≤m. We have

Ft˜b(fi)(x) = Z

|x−y|≤t  

m Y

j=1

(bj(x)−bj(y))  fi(y)

Ω(x−y) |x−y|n−1dy

= Z

|x−y|≤t  

m Y

j=1

((bj(x)−(bj)2Q)−(bj(y)−(bj)2Q))  fi(y)

Ω(x−y) |x−y|n−1dy

= m X

j=0 X

σ∈Cm j

(−1)m−j(b(x)−(b)2Q)σ Z

|x−y|≤t

(b(y)−(b)2Q)σcfi(y) Ω(x−y)

|x−y|n−1dy

= (b1(x)−(b1)2Q)· · ·(bm(x)−(bm)2Q)Ft(fi)(x) +(−1)mFt((b1−(b1)2Q)· · ·(bm−(bm)2Q)fi)(x) +

mX−1

j=1 X

σ∈Cm j

(−1)m−j(b(x)−(b)2Q)σF ˜bσc

(6)

Then by Minkowski’s inequality, we get 1

|Q| Z

Q

||µ~b(f)(x)|r− |µΩ((b1−(b1)2Q)· · ·(bm−(bm)2Q))h)(x0)|r|dx

≤ 1 |Q|

Z

Q

|||Ft~b(f)(x)||r− ||Ft((b1−(b1)2Q)· · ·(bm−(bm)2Q))h)(x0)||r|dx

≤ 1 |Q|

Z

Q X

i=1

||Ft~b(fi)(x)−Ft((b1−(b1)2Q)· · ·(bm−(bm)2Q)hi)(x0)||r 1/r

dx

≤ 1 |Q|

Z

Q X

i=1

||(b1(x)−(b1)2Q)· · ·(bm(x)−(bm)2Q)Ft(fi)(x)||r 1/r

dx

+ 1 |Q|

Z

Q X

i=1 mX−1

j=1 X

σ∈Cm j

||(b(x)−(b)2Q)σF ˜ bσc

t (fi)(x)||r 1/r

dx

+ 1 |Q|

Z

Q X

i=1

||Ft((b1−(b1)2Q)· · ·(bm−(bm)2Q)gi)(x)||r 1/r

+ 1 |Q|

Z

Q X

i=1

||Ft((b1−(b1)2Q)· · ·(bm−(bm)2Q)hi)(x)

−Ft((b1−(b1)2Q)· · ·(bm−(bm)2Q)hi)(x0)||r 1/r

dx

= I1+I2+I3+I4.

ForI1, by H¨older’s inequality with exponent 1/s′+ 1/s= 1 and lemma 2, we get

I1 ≤ C 1 |Q|

Z

Q |

m Y

j=1

(bj(x)−(bj)2Q)||µΩ(f)(x)|rdx

≤ C

  1

|2Q| Z

2Q |

m Y

j=1

(bj(x)−(bj)2Q)|s

dx

 

1/s′

1 |Q|

Z

Q

|µΩ(f)(x)|srdx 1/s

(7)

ForI2, by H¨older’s inequality with exponent 1/s′+ 1/s= 1, we have

I2 = 1 |Q|

Z

Q mX−1

j=1 X

σ∈Cm j

||(b(x)−(b)2Q)σFt~bσc(f)(x)||rdx

≤ mX−1

j=1 X

σ∈Cm j

1 |Q|

Z

Q

|(b(x)−(b)2Q)σ||µ~bΩσc(f)(x)|rdx

≤ C

mX−1

j=1 X

σ∈Cm j

1 |2Q|

Z

2Q

|(b(x)−(b)2Q)σ|s

dx

1/s′

1 |Q|

Z

Q |µ~bσc

Ω (f)(x)|srdx 1/s

≤ C

mX−1

j=1 X

σ∈Cm j

||~bσ||BM OMs(|µ~bΩσc(f)|r)(˜x).

For I3, we choose some p, such that 1 < p < s, by the boundness of |µΩ|r on

Lp(Rn)(see lemma 1) and H¨older’s inequality, we gain

I3 = 1 |Q|

Z

Q ||Ft(

m Y

j=1

(bj(y)−(bj)2Q)g)(x)||rdx

≤   1

|Q| Z

Rn

|µΩ( m Y

j=1

(bj(y)−(bj)2Q)f χ2Q)(x)|prdx  

1/p

≤ C

  1

|Q| Z

Rn

| m Y

j=1

(bj(y)−(bj)2Q)|p|f χ2Q|prdx  

1/p

≤ C

 1 |2Q|

Z

2Q |

m Y

j=1

(bj(y)−(bj)2Q)|sp/(s−p)dx 

(s−p)/sp 1 |2Q|

Z

2Q

|f(x)|srdx

1/s

(8)

ForI4, we have

||Ft( m Y

j=1

(bj−(bj)2Q)h)(x)−Ft( m Y

j=1

(bj−(bj)2Q)h)(x0)||r

=   Z ∞ 0 | Z

|x−y|≤t

Ω(x−y)|h(y)|r |x−y|n−1

 m Y

j=1

(bj(y)−(bj)2Q) 

dy

− Z

|x0−y|≤t

Ω(x0−y)|h(y)|r |x0−y|n−1

 m Y

j=1

(bj(y)−(bj)2Q) 

dy|2dt

t3   1/2 ≤   Z ∞ 0   Z

|x0−y|≤t,|x0−y|>t

|Ω(x−y)||h(y)|r |x−y|n−1

m Y j=1

(bj(y)−(bj)2Q) dy   2 dt t3   1/2 +   Z ∞ 0   Z

|x−y|>t,|x0−y|≤t

|Ω(x0−y)||h(y)|r |x0−y|n−1

m Y j=1

(bj(y)−(bj)2Q) dy   2 dt t3   1/2 + Z ∞ 0 "Z

|x−y|≤t,|x0−y|≤t

|Ω(x−y)| |x−y|n−1 −

|Ω(x0−y)| |x0−y|n−1 × m Y j=1

(bj(y)−(bj)2Q)

|h(y)|rdy   2 dt t3   1/2

(9)

ForJ1, we get

J1 ≤ C Z (2Q)c m Y j=1

(bj(y)−(bj)2Q)

|f(y)|r |x−y|n−1

Z

|x−y|≤t<|x0−y|

dt t3 !1/2 dy ≤ C Z (2Q)c m Y j=1

(bj(y)−(bj)2Q)

|f(y)|r |x−y|n−1

1 |x−y|2 −

1 |x0−y|2

1/2 dy ≤ C Z (2Q)c m Y j=1

(bj(y)−(bj)2Q)

|f(y)|r |x−y|n−1

|x0−x|1/2 |x−y|3/2 dy

≤ C ∞

X

k=1 Z

2k+1Q\2kQ

m Y j=1

(bj(y)−(bj)2Q)

|Q|1/(2n)|f(y)| r |x0−y|n+1/2

dy

≤ C ∞

X

k=1

2−k/2|2k+1Q|−1 Z

2k+1Q

m Y j=1

(bj(y)−(bj)2Q)

|f(y)|rdy

≤ C ∞

X

k=1 2−k/2

 

|2k+1Q|−1 Z

2k+1Q

m Y j=1

(bj(y)−(bj)2Q) s′ dy    1/s′ ×

|2k+1Q|−1 Z

2k+1Q

|f(y)|srdy

1/s

≤ C ∞

X

k=1 2−k/2

m Y

j=1

||bj||BM OMs(|f|r)(˜x)

≤ C||~b||BM OMs(|f|r)(˜x).

(10)

We now estimate J3, by the Lemma 3, we gain

J3 ≤ C Z

(2Q)c

m Y

j=1

(bj(y)−(bj)2Q)

|f(y)|r|x−x0| |x0−y|n

Z

|x0−y|≤t,|x−y|≤t

dt t3

!1/2

dy

+C

Z

(2Q)c

m Y

j=1

(bj(y)−(bj)2Q)

|f(y)|r|x−x0|γ |x0−y|n−1+γ

Z

|x0−y|≤t,|x−y|≤t

dt t3

!1/2

dy

≤ C ∞

X

k=1 Z

2k+1Q\2kQ

m Y

j=1

(bj(y)−(bj)2Q)

|Q|1/n |x0−y|n+1

+ |Q| γ/n

|x0−y|n+γ !

|f(y)|rdy

≤ C ∞

X

k=1

(2−k+ 2−kγ)|2k+1Q|−1 Z

2k+1Q

m Y

j=1

(bj(y)−(bj)2Q)

|f(y)|rdy ≤ C

X

k=1

(2−k+ 2−kγ) m Y

j=1

||bj||BM OMs(|f|r)(˜x)

≤ C||~b||BM OMs(|f|r)(˜x).

This completes the total proof of Theorem 1.

Proof of Theorem 2.We first consider the case m= 1, for 1< p <∞, Choose s

such that 1< s < p, by using Theorem 1 and Lemma 1, we may get |||µb1

Ω(f)|r||Lp ≤ kM(|µ b1

Ω(f)|rkLp ≤Ck(|µ b1

Ω(f)|r)#kLp ≤ CkMs(|µb1(f)|rkLp+CkMs(|f|r))kLp

≤ Ck|µb1

Ω(f)|rkLp+Ck|f|rkLp

≤ Ck|f|rkLp.

When m≥2, we may obtain the conclusion by induction. This finishes the proof.

4.Acknowledgement

The author would like to express his deep gratitude to the referee for his valuable comments and suggestions.

(11)

[1] J. Alvarez, R. J. Babgy, D. S. Kurtz and C. P´erez, Weighted estimates for commutators of linear operators, Studia Math., 104(1993), 195-209.

[2] Alvarez J,Continuity properties for linear commutators of Calder´on-Zygmund operators, Collect Math., 1998, 49: 17-31.

[3] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103(1976), 611-635.

[4] J. Garcia-Cuerva and J. L. Rubio de Francia,Weighted norm inequalities and related topics, North-Holland Math., 16, Amsterdam, 1985.

[5] G. Hu and D. C. Yang, A variant sharp estimate for multilinear singular integral operators, Studia Math., 141(2000), 25-42.

[6] L. Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, ntegral Equations and Operator Theory, 49(1)(2004), 65-76.

[7] L. Z. Liu and B. S. Wu,Weighted boundedness for commutator of Marcinkiewicz integral on some Hardy spaces, Southeast Asian Bull. of Math., 28(2005), 643-650.

[8] C. P´erez, Endpoint estimate for commutators of singular integral operators, J. Func. Anal., 128(1995), 163-185.

[9] C. P´erez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65(2002), 672-692.

[10] E. M. Stein, Harmonic Analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.

[11] A. Torchinsky and S.Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61(1990), 235-243.

FENG Qiufen

Changsha Commence and Tourism College Changsha 410004

P. R. of China

Referensi

Dokumen terkait

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai

Berdasarkan Berita Acara Hasil Pelelangan (BAHP) Pekerjaan Pembangunan Drainase Lingkungan Desa Karang Indah Kec. VII Desa Batuah Kecamatan Kusan Hilir Kabupaten

hwa setelah diadakan penelitian oleh panitia penga g Bina Marga, menurut ketentuan–ketentuan yang be. PP.PWS.JALAN/BM/DPU/2011, tanggal 29 Sept erturut-turut

KUPANG JAYA ELEKTRIK Tidak memenuhi syarat Gugur.

Nama Perusahaan Hasil Penilaian Keterangan..