• Tidak ada hasil yang ditemukan

Paper-25-Acta23.2010. 129KB Jun 04 2011 12:03:13 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Paper-25-Acta23.2010. 129KB Jun 04 2011 12:03:13 AM"

Copied!
12
0
0

Teks penuh

(1)

ON CERTAIN CLASS OF MEROMORPHIC FUNCTIONS DEFINED BY MEANS OF A LINEAR OPERATOR

Ali Muhammad

Dedicated to my Supervisor Professor Dr. Khalida Inayat Noor on the occasion of getting award of Noor integral operator organized by COMSATS Institute of

Information Technology, H-8/1 Islamabad, Pakistan.

Abstract. The purpose of the present paper is to introduce new classM B(α, λ,

q, s, A, B) of meromorphic functions defined by using a meromorphic analogue of the Choi-Saigo-Srivastava operator for the generalized hypergeometric function and investigate a number of inclusion relationships and radius problem of this class.The subordination relations, distortion theorems, and inequality properties are discussed by applying differential subordination method.

Keywords and phrases: Meromorphic functions, Differential subordination, Gen-eralized hypergeometric functions, Choi-Saigo-Srivastava operator.

2000Mathematics Subject Classification: 30C45, 30C50.

1. Intoduction LetM denote the class of functions of the form

f(z) = 1

z + ∞

X

k=0

ak zk, (1.1)

which are analytic in the punctured unit disk

E∗

={z :z∈Cand 0<|z|<1}=E\{0}.

Iff andgare analytic inE =E∪{0},we say thatfis subordinate tog,writtenf ≺g

orf(z)≺g(z),if there exists a Schwarz functionwinE such thatf(z) =g(w(z)).

For a complex parametersα1, ...αq and β1, ...βs (βj ∈C\Z

0 ={0,−1,−2, ...};

j = 1, ...s),we now define the generalized hypergeometric function

qFs(α1, ...αq;β1, ...βs) =

X

k=0

1)k...(αq)k

1)k...(βq)k k!

(2)

(q ≤ s+ 1;s ∈ N∪ {0};N = {1,2, ...};z E), where (v)k is the Pochhammer symbol(or shifted factorial) defined in (terms of the Gamma function) by

(v)k =

Γ(v+k) Γ(v) =

1 ifk= 0 and v∈C\{0}

v(v+ 1)...(v+k−1) ifk∈Nand vC. Corresponding to a function

1, ...αq;β1, ...βs;z) =z

−1

qFs(α1, ...αq;β1, ...βs;z). (1.3)

Liu and Srivastava [8] consider a linear operator

H(α1, ...αq;β1, ...βs) :M −→M defined by the following Hadamard product(or

convolution):

H(α1, ..αq;β1, ..βs)f(z) = (α1, ...αq;β1, ...βs;z)∗f(z). (1.4)

We note that the linear operator H(α1, ..αq;β1, ..βs) was motivated essentially by

Dzoik and Srivastava [2]. Some interesting developments with the generalized hy-pergeometric function were considered recently by Dzoik and Srivastava [3,4] and Liu and Srivastava [6,7].

Corresponding to the function (α1, ...αq;β1, ...βs;z) defined by (1.3), we

intro-duce a function λ(α1, ...αq;β1, ...βs;z) given by

1, ...αq;β1, ...βs;z)∗λ(α1, ...αq;β1, ...βs;z) =

1

z(1−z)λ (λ >0). (1.5)

Analogous toH(α1, ..αq;β1, ..βs) defined by (1.4),we now define the linear operator

Hλ(α1, ..αq;β1, ..βs) onM as follows:

Hλ(α1, ..αq;β1, ..βs)f(z) =λ(α1, ...αq;β1, ...βs;z)∗f(z) (1.6)

(αi, βj ∈C\Z

0; i= 1, ..q; j= 1, ..s; λ >0;z∈E∗;f ∈M). For convenience, we write

Hλ,q,s(α1) =Hλ(α1, ..αq;β1, ..βs).

It is easily verified from the definition (1.5) and (1.6) that

z(Hλ,q,s(α1+ 1)f(z))

=α1Hλ,q,s(α1)f(z)−(α1+ 1)Hλ,q,s(α1+ 1)f(z), (1.7) and

z(Hλ,q,s(α1)f(z))

(3)

We note that the operator (Hλ,q,s(α1) is closely related to the Choi-Saigo-Srivastava operator [1] for analytic functions, which includes the integral operator studied by Liu [5] and Noor et al [12,13].

Now by using the operator (Hλ,q,s(α1),we introduce some new class of meromor-phic functions.

Definition 1.1.Assume that µ >0, α≥0, −1≤B ≤1, A6=B, A∈R,we say that a function f(z)∈M is in the class M B(α, λ, q, s, A, B) if it satisfies:

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 ≺

1 +Az

1 +Bz, z∈E.In particular, we letM B(α, λ, q, s,1−2ρ,−1)≡M B(α, λ, q, s, ρ) denote the subclass ofM B(α, λ, q, s, A, B) for A= 1−2ρ, B=−1 and0≤ρ <1.It is obvious that f ∈M B(α, λ, q, s, ρ) if and only if f ∈M and satisfies

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 > ρ, z∈E. In this paper, we will discuss the subordination relations, inclusion relations, distor-tion theorems and inequalities properties of M B(α, λ, q, s, A, B).

2.Preliminary results To establish our main results we need the following Lemma.

Lemma 2.1[10,11].Let the functionh(z) be analytic and convex (univalent) in

E with h(0) = 1. Suppose also that the function Φ(z) given by Φ(z) = 1 +c1z+c2z2+. . . is analytic in E. If

Φ(z) +z Φ

(z)

γ ≺h(z) (z∈E; Reγ ≥0; γ 6= 0), (2.1)

then

Φ(z)≺Ψ(z) = γ

zγ z

Z

0

tγ−1h(t)dth(z) (zE),

(4)

3.Main resuls

Theorem 3.1. Letµ >0, α≥0,−1≤B ≤1, A∈R, f(z)M B(α, λ, q, s, A, B). Then

(zHλ,q,s(α1)f(z))µ≺

µλ α

1 Z

0

1 +Azu

1 +Bzuu

µλ

α−1du≺ 1 +Az

1 +Bz.

Proof. Consider the function φ(z) defined by

(zHλ,q,s(α1)f(z))µ=φ(z), z∈E. (3.1)

Then φ(z) is analytic inE with φ(0) = 1.Differentiating (3.1) with respect to z

and using the identity (1.8) in (3.1),we have "

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 =φ(z) +αzφ

(z)

µλ ≺ 1+ Az

1+Bz, z ∈E.

Now by using Lemma 2.1 for γ = µλα,we deduce that

(zHλ,q,s(α1)f(z))µ = φ(z)≺

µλ α z

−µλ

α z

Z

0

1 +At

1 +Btt

µλ α−1dt

= µλ

α

1 Z

0

1 +Azu

1 +Bzuu

µλ

α−1≺ 1 +Az

1 +Bz.

Corollary 3.2.Let µ >0, α≥0, ρ6= 1.If

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 ≺

1 + (1−2ρ)z

1−z , z∈E,then

zHλ,q,s(α1)f(z))µ≺ρ+

(1−ρ)λµ α

1 Z

0

1 +zu

1−zuu

µλ

α−1du, z∈E.

Corollary 3.3.Let µ >0, α≥0,then

(5)

Theorem 3.3. Let f ∈ M B(0, λ, q, s, ρ) for z ∈ E.Then f ∈ M B(α, λ, q, s, ρ) for |z|< R(α, λ, µ),where

R(α, λ, µ) = λµ

α+pα2+λ2µ2. (3.2)

Proof. Set

zHλ,q,s(α1)f(z))µ= (1−ρ)h(z) +ρ, z ∈E. Now proceeding as Theorem 3.1, we have

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 = (1−ρ)

h(z) + α

λµzh ′

(z)

. (3.3)

Using the following well known estimate [9]

zh

(z) ≤

2r

1−r2Re{h(z)}, (|z|=r <1) in (3.3),we get

(1−α)(z(Hλ,q,s(α1)f(z))µ+αz((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1−ρ 1−ρ

= Re

h(z) + α

λµzh ′

(z)

≥Re

h(z) + α

λµ

zh

(z)

≥Reh(z)

1− 2αr

λµ(1−r2)

.

The right hand side of this inequality is positive if r < R(α, λ, µ),where R(α, λ, µ) is given by (3.2). Consequently it follows from (3.3) that f ∈ M B(α, λ, q, s, ρ) for |z|< R(α, λ, µ).Sharpness of this result follows by taking hi(z) = 1+1−zz, i = 1,2 in

(3.3).

Theorem 3.3. Let 0≤α2 ≤α1.Then

M B(α1, λ, q, s, A, B)⊂M B(α2, λ, q, s, A, B).

Proof. Let f(z) ∈ M B(α1, λ, q, s, A, B).Then by Theorem 3.1 we have f(z) ∈

M B(0, λ, q, s, A, B).

(6)

= α2

α1

(1−α1)(z(Hλ,q,s(α1)f(z))µ+α1z((Hλ+1,q,s(α1)f(z))(z(Hλ,q,s(α1)f(z))µ−1 +(1−α2

α1

)(zHλ,q,s(α1)f(z))µ≺

1 +Az

1 +Bz.

We see thatf(z)∈M B(α2, λ, q, s, A, B).

Corollary 3.4. Let 0≤α2 ≤α1,0≤ρ1 ≤ρ2.Then

M B(α1, λ, q, s, ρ2)⊂M B(α2, λ, q, s, ρ1).

Theorem 3.5. Let µ >0, α≥0,−1≤B < A≤1, f(z)∈M B(α, λ, q, s, A, B).

Then λµ α 1 Z 0

1−Au

1−Buu

λµ

α−1du <Re (zHλ,q,s1)f(z))µ

< λµ α

1 Z

0

1 +Au

1 +Buu

λµ

α−1du, z∈E, (3.4)

and the inequality (3.4)is sharp, with the extremal function defined by

Hλ,q,s(α1)f(z) =z−1    λµ α 1 Z 0

1 +Azu

1 +Bzuu

λµ α−1du

   1 µ (3.5)

Proof. Since f(z)∈M B(α, λ, q, s, A, B),according to Theorem 3.1 we have

(zHλ,q,s(α1)f(z))µ≺

µλ α

1 Z

0

1 +Azu

1 +Bzuu

µλ

α−1du≺ 1 +Az

1 +Bz.

Therefore it follows from the definition of subordination and A > B that

Re(zHλ,q,s(α1)f(z))µ < sup

z∈E

Re    λµ α 1 Z 0

1 +Azu

1 +Bzuu

λµ α−1du

   ≤ λµ α 1 Z 0 sup

z∈E

Re

1 +Azu

1 +Bzu

uλµα−1du

< λµ α

1 Z

0

1 +Au

1 +Buu

(7)

Also

Re(zHλ,q,s(α1)f(z))µ > inf

z∈ERe

   λµ α 1 Z 0

1 +Azu

1 +Bzuu

λµ α−1du

   ≥ λµ α 1 Z 0 inf

z∈ERe

1 +Azu

1 +Bzu

uλµα−1du

> λµ α

1 Z

0

1−Au

1−Buu

λµ α−1du.

Note that the functionHλ,q,s(α1)f(z) defined by (3.5) belongs to the classM B(α, λ,

q, s, A, B),we obtain the inequality (3.4) is sharp.Now by using the lines of proof of Theorem 3.5 we have the following results.

Theorem 3.6. Let µ >0, α≥0,−1≤A < B≤1, f(z)∈M B(α, λ, q, s, A, B).

Then λµ α 1 Z 0

1 +Au

1 +Buu

λµ

α−1du <Re (zHλ,q,s1)f(z))µ

< λµ α

1 Z

0

1−Au

1−Buu

λµ

α−1du, z∈E, (3.6)

and the inequality (3.6)is sharp, with the extremal function defined by (3.5).

Corollary 3.7. Let µ >0, α≥0,0≤ρ <1, f(z)∈M B(α, λ, q, s, A, B). Then

λµ α

1 Z

0

1−(1−2ρ)u

1 +u u

λµ

α−1du <Re (zHλ,q,s1)f(z))µ

< λµ α

1 Z

0

1 + (1−2ρ)u

1−u u

λµ

α−1du, z∈E, (3.7)

and inequality (3.7) is equivalent to

ρ+(1−ρ)λµ

α

1 Z

0

1−u

1 +uu

λµ

α−1du < Re (zHλ,q,s1)f(z))µ

< ρ+(1−ρ)λµ

α

1 Z

0

1 +u

1−uu

λµ

(8)

Theorem 3.8.Let µ >0, α≥0,−1≤B < A≤ 1, f(z) ∈M B(α, λ, q, s, A, B). Then    λµ α 1 Z 0

1−Au

1−Buu

λµ α−1du

 

 1 2

<Re (zHλ,q,s(α1)f(z))

µ 2 <    λµ α 1 Z 0

1 +Au

1 +Buu

λµ α−1du,

 

 1 2

z∈E, (3.8)

and the inequality (3.8)is sharp with the extremal function defined by equation(3.5).

Proof. By Theorem 3.1 we have

{(zHλ,q,s(α1)f(z))µ} ≺

1 +Az

1 +Bz.

Since −1≤B < A≤1,we have 0≤ 1−A

1−B <{(zHλ,q,s(α1)f(z))

µ}< 1 +A

1 +B.

Hence the result follows by Theorem 3.5.

Note that the function Hλ,q,s(α1)f(z) defined by (3.5) belongs to the class

M B(α, λ, q, s, A, B),we obtain that the inequality (3.8) is sharp.Now by using the lines of proof of Theorem 3.8 we have the following result.

Theorem 3.9.Let µ >0, α≥0,−1≤A < B ≤1, f(z) ∈M B(α, λ, q, s, A, B).

Then    λµ α 1 Z 0

1 +Au

1 +Buu

λµ α−1du

 

 1 2

<Re (zHλ,q,s(α1)f(z))

µ 2 <    λµ α 1 Z 0

1−Au

1−Buu

λµ α−1du,

 

 1 2

z∈E, (3.9)

and the inequality (3.9)is sharp, with the extremal function defined by (3.5).

Theorem 3.10.Letµ >0, α≥0,−1≤B < A≤1, f(z)∈M B(α, λ, q, s, A, B).

(i) If α= 0, when |z|=r <1, we have

r−1

1−Ar

1−Br

µ1

≤ |Hλ,q,sf(z)| ≤r−1

1 +Ar

1 +Br

µ1

(9)

and inequality (3.10) is sharp , with the extremal function defined by

Hλ,q,s(α1)f(z) =z−1

1 +Az

1 +Bz

1µ

. (3.11)

(ii) If α6= 0, when |z|=r <1, we havee

r−1

λµ α

1 Z

0

1−Aru

1−Bruu

λµ α−1du

 1

µ

≤ |Hλ,q,sf(z)|

≤r−1 

λµ α

1 Z

0

1 +Aru

1 +Bruu

λµ α−1du

 1

µ

, z∈E, (3.12)

and inequality (3.12) is sharp with the extremal function defined by(3.5). Proof. (i) If α = 0. Since f(z) ∈ M B(α, λ, q, s, A, B), −1 ≤ B < A ≤ 1, we obtain from the definition of M B(α, λ, q, s, A, B) that

(zHλ,q,s(α1)f(z))µ≺

1 +Az

1 +Bz.

Therefore it follows from the definition of the subordination that (zHλ,q,s(α1)f(z))µ=

1 +Aw(z) 1 +Bw(z),

where w(z) = c1z+c2z2+. . . is analytic E and |w(z)|<|z|, so when |z|=r <1, we have

|(zHλ,q,s(α1)f(z))|µ=

1 +Aw(z) 1 +Bw(z)

≤ 1 +A|w(z)| 1 +B|w(z)| ≤

1 +Ar

1 +Br,

and

|(zHλ,q,s(α1)f(z))|µ≥Re (zHλ,q,s(α1)f(z))µ≥

1−Ar

1−Br.

It is obvious that (3.10) is sharp, with the extremal function defined by (3.11). (ii) Ifα 6= 0. according to Theorem 3.1 we have

(zHλ,q,s(α1)f(z))µ≺

λµ α

1 Z

0

1 +Azu

1 +Bzuu

λµ

α−1du≺ 1 +Az

(10)

Therefore it follows from the definition of the subordination

(zHλ,q,s(α1)f(z))µ=

λµ α

1 Z

0

1 +Aw(z)u

1 +Bw(z)uu

λµ α−1du,

where w(z) = c1z+c2z2+. . . is analytic E and |w(z)| ≤ |z|, so when |z|=r <1, we have

|(zHλ,q,s(α1)f(z))|µ ≤

λµ α

1 Z

0

1 +Aw(z)u

1 +Bw(z)u

uλµα−1du

≤ λµ

α

1 Z

0

1 +Au|w(z)| 1 +Bu|w(z)|u

λµ α −1du

≤ λµ

α

1 Z

0

1 +Aur

1 +Buru

λµ α−1du,

and

|(zHλ,q,s(α1)f(z))|µ≥Re (zHλ,q,s(α1)f(z))µ≥

λµ α

1 Z

0

1−Aur

1−Buru

λµ α−1du.

Note that the function defined by (3.5) belongs to the classM B(α, λ, q, s, A, B),we obtain that the inequality (3.12) is sharp.By applying the techniques that we used in proving Theorem 3.10 we have the following theorem.

Theorem 3.11.Letµ >0, α≥0,−1≤A < B≤1, f(z)∈M B(α, λ, q, s, A, B).

(i) If α= 0, when |z|=r <1, we have

r−1

1 +Ar

1 +Br

µ1

≤ |Hλ,q,sf(z)| ≤r−1

1−Ar

1−Br

µ1

(3.13) and inequality (3.13) is sharp , with the extremal function defined by(3.11).

(ii) If α6= 0, when |z|=r <1, we have

r−1 

λµ α

1 Z

0

1 +Aru

1 +Bruu

λµ α−1du

 1

µ

(11)

≤r−1 

λµ α

1 Z

0

1−Aru

1−Bruu

λµ α−1du

 1

µ

, z∈E, (3.14)

and inequality (3.14) is sharp with the extremal function defined by(3.5).

References

[1] J. H. Choi, M. Saigo and H. M. Srivastava, Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432 -445.

[2] J. Dziok, and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput, 103 (1999), 1-13.

[3] J. Dziok, and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric func-tions, Adv. Stud. Contemp. Math. 5 (2002), 115 -125.

[4] J. Dziok, and H. M. Srivastava, Certain subclasses of analytic functions as-sociated with the generalized hypergeometric function, Integral Trans. Spec. Funct. 14 (2003), 7-18.

[5] J. L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261 (2001), 441- 447.

[6] J. L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl.259 (2001), 566-581.

[7] J. L. Liu and H. M. Srivastava, Certain properties of the Dzoik Srivastava operator, Appl. Math. Comput. 159 (2004), 485-493.

[8] J. L. Liu and H. M. Srivastava,Classes of meromorphically multivalent func-tions associated with the generalized hypergeormetric function, Math. Comut. Mod-ell. 39 (2004), 21- 34.

[9] T. H. MacGregor, Radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 14 (963), 514-520.

[10] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.

[11] S. S. Miller and P. T Mocanu,Differential Subordination: Theory and Appli-cations, in: Mongraphs and Textbooks in Pure and applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.

[12] K. I. Noor,On new classes of integral operators, J. Natur. Geom. 16 (1999), 71- 80.

(12)

[14] K. I. Noor,On subclasses of close-to-convex functions of higher order, Inter-nat. J. Math. and Math Sci., 15 (1992), 279-290.

[15] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeo-metric functions, Canad. J. Math. 39 (1987), 1057-1077.

[16] H. M. Srivastava and S. Owa,Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard prod-ucts, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1 28.

Dr Ali Muhammmad

Department of Basic Sciences

University of of Engineering and Technology Peshawar, Pakistan

Referensi

Dokumen terkait

Perancangan identitas merek Borondong Ibu Alit ini bertujuan untuk memberikan identitas yang jelas dan konsisten,serta pembuatan kemasan untuk Borondong Alit yang

0,650 Faktor 1 terdiri dari indikator pemahaman ide-ide usaha, produk baru merupakan pembaharuan dari product category yang ada, peningkatan pelayanan untuk

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Bagi peserta yang keberatan atas pengumuman pemenang lelang tersebut di atas dapat mengajukan sanggahan secara tertulis kepada Pokja Pengadaan Jasa Konstruksi

Hal ini menunjukan bahwa karyawan operator alat berat CV Haragon Surabaya kurang mempunyai motivasi kerja yang baik, karena sikap karyawan dalam bekerja tidak

llal-lrel yang telum iehs dapat ditanyakan pada saat pendaftaran. Ilemikhn Filgumunan ini, atas pertratiannya kami sampa*an

Cahaya Abadi Indah adalah strategi tipe 5 atau best-value focus yang memproduksi suatu produk kepada sejumlah kecil konsumen dengan nilai tambah terbaik, karena perusahaan

Strategi pengembangan bisnis yang dapat dilakukan perusahaan dengan melalui fungsi sumber daya manusia yang dimiliki oleh perusahaan adalah dengan meningkatkan