• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
7
0
0

Teks penuh

(1)

Electronic Journal of Qualitative Theory of Differential Equations 2003, No. 18, 1-7; http://www.math.u-szeged.hu/ejqtde/

ON THE UNIFORMLY CONTINUITY OF THE SOLUTION

MAP FOR TWO DIMENSIONAL WAVE MAPS

Svetlin Georgiev Georgiev

Penka Vasileva Georgieva

Abstract

University of Sofia, Faculty of Mathematics and Informatics, Department of Differential Equations, 1000 Sofia, Bulgaria

e-mail:sgg2000bg@yahoo.com,p g@abv.bg

Abstract

Abstract. The aim of this paper is to analyze the properties of the solution map to the Cauchy problem for the wave map equation with a source term, when the target is the hyper-boloidH2that is embedded inR3. The initial data are in ˙H1

×L2

. We prove that the solution map is not uniformly continuous.

Abstract

Subject classification: Primary 35L10, Secondary 35L50.

In this paper we study the properties of the solution map (u◦, u1, g) −→ u(t, x) to the Cauchy

problem

(1) utt− △u−(|ut|2− |∇xu|2)u=g(t, x),

(2) u(0, x) =u◦(x)∈H˙1(R2), ut(0, x) =u1(x)∈L2(R2)

in the case whenx∈ R2and the target is the hyperboloidH2:u2

1+u22−u23=−1,H2֒→ R3. Here

|ut|2=u21t+u22t−u23t,

|∇xu|2=|∇x1u|

2+

|∇x2u|

2,

|∇xiu|

2=u2 1xi+u

2 2xi−u

2

3xi, i= 1,2.

More precisely, we prove that the solution map (u◦, u1, g)−→ u(t, x) to the Cauchy problem (1),

(2) is not uniformly continuous.

In [1] is proved that the solution map isn’t uniformly continuous in the case wheng0. When we say that the solution map (u◦, u1, g)−→ u(t, x) is uniformly continuous we

under-stand: for every positive constant ǫ there exist positive constants δ and R such that for any two solutions u, v:R × R2−→ H2 of (1), (2), with right handsg=g

1,g=g2 of (1), so that

(3)

(2)

the following inequality holds

(4) E(t, u−v)≤ǫ f or ∀t∈[0,1],

where

E(t, u) :=||∂tu(t,·)||2L2(R2)+||∇xu(t,·)||2L2(R2).

Here we prove

Theorem 1.There exist constantǫ >0 such that for every pair of positive constantsδ andR there

exists smooth solutionsu,v: R × R2−→ H2 of (1), (2), with right handsg=g

1,g=g2 of (1), so

that

E(0, u−v)≤δ, ||g1||L1([0,1]L2(R2)) ≤R, ||g2||L1([0,1]L2(R2))≤R, ||g1−g2||L1([0,1]L2(R2))≤δ, and

E(1, u−v)≥ǫ.

Proof. We suppose that the solution map (u, u1, g)−→u(t, x) to the Cauchy problem (1), (2) is

uniformly continuous. Then for everyǫ >0 there exist positive constantsδandRsuch that for any solutionuof (1), (2) with right handgof (1) for which

(5) E(0, u)≤δ, ||g||L1([0,1]L2(R2)) ≤R and the inequality

(6) E(t, u)≤ǫ

holds for everyt∈[0,1] (in this casev= 0, which is solution of (1) with right handg= 0). Let

(⋆)

u= (u1, u2, u3),

u1= sinhχcosφ1,

u2= sinhχsinφ1,

u3= coshχ, χ≥0, φ1∈[0,2π],

χ=Y2, whereY is solution to the Cauchy problem

(7) Ytt− △Y = 0,

(8) Y(0, x) = 0, Yt(0, x) =q(x), q(x) =

Z

R2

sin(xξ)φ(ξ)dξ,

φ(ξ)≡φN(ξ) =H(AN) 1

p

|ξ|,

H(·) is the characteristic function of correspond set,xξ=x1ξ1+x2ξ2,

AN ={ξ∈ R2, ξ1=rcosφ, ξ2=rsinφ, N◦≤ |ξ| ≤N, φ∈

π

6,

π

4

(3)

N > N◦>0 are fixed such thatN◦ is close enough toN,sin(ξη)≥a1,cos(|η|)≥a2,sin(|ξ|)≥a4

We can to write the solution of the problem (7), (8) in the form

(9) Y(t, x) =

Z

R2

sin(t|ξ|)sin(xξ)φN(ξ)

| dξ.

For the functionY, which is defined with (9), we have the following estimates

(4)

Similarly, we have On the other hand

(17) ||f||L2(R2)≤ ||2Yt2||L2(R2)+||2Yr2||L2(R2)+ On the other hand (here we use (11) and the fact thatsinhxincreases for everyx)

(5)

≤2π From third equation of (1) we get thatχis solution to the equation

χtt−∆χ+

Then(here we use (11) and the fact that the functionssinhx, coshxare increasing for everyx≥0)

(6)

whereC1 is close enough to zero whenN◦ is close enough toN. Similarly,

(28) ||g2||L2(R2)≤C2,

whereC2 is close enough to zero whenN◦ is close enough toN. From (23), (27), (28) we have

||g||L2(R2)≤C,

whereC is close enough to zero whenN◦is close enough toN. From here the second inequality of (5) is hold for everyR >0 whenN◦is close enough to N.

Sinse

Y(0, x) = 0, χ(0, x) = 0, χt(0, x) = 2Y(0, x)Yt(0, x) = 0, χxi(0, x) = 2Y(0, x)Yxi(0, x) = 0, i= 1,2,

u1t(0, x) =coshχ(0, x)cosφ1χt(0, x) = 0,

u2t(0, x) =coshχ(0, x)sinφ1χt(0, x) = 0,

u3t(0, x) =sinhχχt(0, x) = 0,

u1x1(0, x) =coshχ(0, x)cosφ1χx1(0, x) +sinhχ(0, x)sinφ1

x2

r2 = 0,

u2x1(0, x) =coshχ(0, x)sinφ1χx1(0, x)−sinhχ(0, x)cosφ1

x2

r2 = 0,

u3x1(0, x) =sinhχ(0, x)χx1(0, x) = 0,

u1x2(0, x) =coshχ(0, x)cosφ1χx2(0, x)−sinhχ(0, x)sinφ1

x1

r2 = 0,

u2x2(0, x) =coshχ(0, x)sinφ1χx2(0, x) +sinhχ(0, x)cosφ1

x1

r2 = 0,

u3x2(0, x) =sinhχ(0, x)χx2(0, x) = 0, we have

E(0, u) = 0,

i.e. the first inequality of (5) holds for everyδ >0. From (6) we get that

(29) ||∂tu||2L2

(R2

)≤ǫ ∀ t∈[0,1].

On the other hand

||∂tu||2L2(R2)=||∂tu1||2L2(R2)+||∂tu2||2L2(R2)− ||∂tu3||2L2(R2)= =||coshχcosφ1χt||2L2(R2)+||coshχsinφ1χt||2L2(R2)− ||sinhχχt||2L2(R2)=

=

Z

R2

χ2t(cosh2χ−sinh2χ)dx=

Z

R2

χ2tdx=||χt||2L2(R2). Therefore, using (29), we get

||χt||L2(R2)≤ǫ 1 2

or

(7)

From here

(30) 2

Z

R2

ψY Ytdx≤ ||ψ||L2(R2)ǫ 1 2

for any functionψ∈L2(R2). Let

(31) B :=a41a22a24 π

5

18.1262(N

3 2−N

3 2 ◦)(N

7 4 −N

7 4 ◦)2(

NpN◦)2 andǫ= B

2,

ψ≡ψN(ξ) =H(AN) 1

|14

.

Fort= 1 and x∈AN we have

(32) Y ≥a1a4

π

6(

N −pN◦)>0,

(33) Yt≥a1a2

π

18(N 3 2 −N

3 2 ◦)>0.

(34)

Z

AN

ψdx= π 21(N

7 4 −N

7 4 ◦),

(35) ||ψ||L2

(AN)= r

π

18(

q

N32−N ◦

3 2). From (30), (32), (33), (34), (35) we have fort= 1

a21a2a4

π52 126√18(N

3 2 −N

3 2 ◦)

1 2(N

7 4 −N

7 4 ◦)(

N−pN◦)≤ǫ 1 2,

i. e. ǫ B which is contradiction with ǫ = B

2. Therefore the solution map is not uniformly

continuous.

References

[1] D’Ancona, P., V. Georgiev. On the continuity of the solution operator the wave map system. Preprint

[2] D’Ancona, P., V. Georgiev. On Lipshitz continuity of the solution map for two dimensional wave maps. Preprint.

[3] Shatah, J., M. Struwe. Geometric wave equation. Courant lecture notes in mathematics 2(1998). [4] Struwe, M. Radial symmetric wave maps from 1+2 - dimensional Minkowski space to the sphere,

preprint 2000.

[5] Klainerman, S., S. Selberg. Remarks on the optimal regularity of equations of wave maps type, CPDE, 22(1997), 901-918.

Referensi

Dokumen terkait

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS SUMATERA UTARA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Sehubungan dengan pelaksanaan Pengadaan Langsung Jasa Konsultansi di lingkungan Dinas Pekerjaan Umum Kabupaten Pesawaran Tahun Anggaran 2016 Pada Kegiatan

Dalam penelitian ini, metode deskriptif verifikatif dengan pendekatan kuantitatif tersebut digunakan untuk menguji pengaruh Variabel Inflasi Indonesia dan Tingkat

Apabila pada saat pembuktian kualifikasi ditemukan pemalsuan data, maka perusahaan tersebut akan diberi sanksi dengan ketentuan hukum yang berlaku dan jika tidak

Bila keberatan dengan di-online-kan data perusahaan di BAB lllldi Bab vans mencantum data perusahaan (pengecualian khusus data perusahaan,boleh untuk

Monitoring dan evaluasi penyaluran dana bantuan sosial pada kelompok tani berbasis web yang dapat mempermudah Kepala Pelaksana Teknis untuk memonitoring

Pokja Unit Layanan Pengadaan (ULP) Kantor Unit Penyelenggara Pelabuhan Kelas III Bawean akan melaksanakan Lelang Pemilihan Langsung dengan Pascakualifikasi Metode Sistem

(Selasa, 08-08-2017), kami yang bertandatangan dibawah ini Kelompok Kerja Unit Layanan Pengadaan Kantor Kesyahbandaran Dan Otoritas Pelabuhan Kelas II Benoa Paket