• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
9
0
0

Teks penuh

(1)

1(1994), No. 4, 343-351

ON THE CORRECTNESS OF LINEAR BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF GENERALIZED

ORDINARY DIFFERENTIAL EQUATIONS

M. ASHORDIA

Abstract. The sufficient conditions are established for the

correct-ness of the linear boundary value problem

dx(t) =dA(t)·x(t) +df(t), l(x) =c0,

whereA: [a, b]→Rn×n

andf : [a, b]→Rn

are matrix- and vector-functions of bounded variation,c0∈Rn

, andlis a linear continuous operator from the space ofn-dimentional vector-functions of bounded variation intoRn

.

Let the matrix- and vector-functions,A: [a, b]→Rn×n andf : [a, b]→

Rn, respectively, be of bounded variation,c0 ∈Rn, and letl :BVn(a, b)→

Rn be a linear continuous operator such that the boundary value problem

dx(t) =dA(t)·x(t) +df(t), (1)

l(x) =c0 (2)

has the unique solutionx0.

Consider the sequences of matrix- and vector-functions of bounded vari-ation Ak : [a, b]→Rn×n (k= 1,2, . . .) andfk : [a, b]→Rn (k= 1,2, . . .), respectively, the sequence of constant vectorsck ∈Rn(k= 1,2, . . .) and the sequence of linear continuous operatorslk:BVn(a, b)→Rn (k= 1,2, . . .).

In this paper the sufficient conditions are given for the problem

dx(t) =dAk(t)·x(t) +dfk(t), (3)

lk(x) =ck (4)

to have a unique solutionxk for any sufficiently large kand lim

k→+∞xk(t) =x0(t) uniformly on [a, b]. (5)

1991Mathematics Subject Classification. 34B05. 343

(2)

An analogous question is studied in [2–4] for the boundary value problem for a system of ordinary differential equations.

The theory of generalized ordinary differential equations enables one to investigate ordinary differential and difference equations from the common standpoint. Moreover, the convergence conditions for difference schemes corresponding to boundary value problems for systems of ordinary differen-tial equations can be deduced from the correctness results for aprropriate boundary value problems for systems of generalized ordinary differential equations [1, 5, 6].

The following notations and definitions will be used throughout the pa-per:

R=]− ∞,+∞[;

Rn is a space of real columnn-vectorsx= (xi)n

i=1 with the norm

kxk= n

X

i=1

|xi|;

Rn×n is a space of realn×n-matricesX = (x

ij)ni,j=1 with the norm

kXk= max j=1,...,n

n

X

i=1

|xij|;

IfX∈Rn×n, thenX−1 and det(X) are the matrix inverse toX and the

determinant ofX, respectively;Eis the identityn×nmatrix; b

axand b

aX are the sums of total variations of components of vector- and matrix-functions,x: [a, b]→Rn andX: [a, b]Rn×n, respectively;

BVn(a, b) is a space of all vector-functions of bounded variation x : [a, b]→Rn (i.e., such that ∨b

ax <+∞) with the norm

kxksup= sup{kx(t)k:t∈[a, b]}1;

x(t−) andx(t+) (x(a−) =x(a),x(b+) =x(b)) are the left and the right limits of the vector-functionx: [a, b]→Rn at the pointt;

d1x(t) =x(t)−x(t−),d2x(t) =x(t+)−x(t);

BVn×n(a, b) is a set of all matrix-functions of bounded variation X : [a, b]→Rn×n, i.e., such that b

aX <+∞;

d1X(t) =X(t)−X(t−),d2X(t) =X(t+)−X(t);

IfX= (xij)ni,j=1∈BVn×n(a, b), thenV(X) : [a, b]→Rn×nis defined by V(X)(a) = 0, V(X)(t) =€ t

axij

n

i,j=1 (a < t≤b); 1

(3)

Ifα∈BV1(a, b),x: [a, b]→Randa≤s < t≤b, then

t

Z

s

x(τ)dα(τ) =x(t)d1α(t) +x(s)d2α(s) +

Z

]s,t[

x(τ)dα(τ),

whereR

]s,t[x(τ)dα(τ) is the Lebesgue–Stieltjes integral over the open

inter-val ]s, t[ (ifs=t, thenRt

sx(τ)dα(τ) = 0);

If A = (aij)ni,j=1 ∈ BVn×n(a, b), X = (xij)ni,j=1 : [a, b] → Rn×n, x =

(xi)n

i=1: [a, b]→Rn anda≤s≤t≤b, then

t

Z

s

dA(τ)·X(τ) = n

X

k=1

t

Z

s

xkj(τ)daik(τ)‘ n

i,j=1,

t

Z

s

dA(τ)·x(τ) = n

X

k=1

t

Z

s

xk(τ)daik(τ)‘n i=1;

klk is the norm of the linear continuous operatorl:BVn(a, b)→Rn; IfX∈BVn×n(a, b) is the matrix-function with columnsx1, . . . , xn, then

l(X) is the matrix with columnsl(x1), . . . , l(xn).

A functionx∈BVn(a, b) is said to be a solution of problem (1), (2) if it satisfies condition (2) and

x(t) =x(s) + t

Z

s

dA(τ)·x(τ) +f(t)−f(s) for a≤s≤t≤b.

Alongside with (1) and (3), we shall consider the corresponding homoge-neous systems

dx(t) =dA(t)·x(t) (10)

and

dx(t) =dAk(t)·x(t), (30)

respectively.

A matrix-functionY ∈BVn×n(a, b) is said to be a fundamental matrix

of the homogeneous system (10) if

Y(t) =Y(s) + t

Z

s

dA(τ)·Y(τ) for a≤s≤t≤b

and det€ Y(t)

6

(4)

Theorem 1. Let the conditions

det€

E+ (−1)j

djA(t)6= 0 for t∈[a, b] (j= 1,2), (6) lim

k→+∞lk(y) =l(y) for y ∈BVn(a, b), (7)

lim

k→+∞ck =c0, (8)

lim

k→+∞supklkk<+∞, (9)

lim k→+∞sup

b

aAk<+∞ (10)

be satisfied and let the conditions

lim k→+∞

‚

Ak(t)−Ak(a)

ƒ

=A(t)−A(a), (11) lim

k→+∞ ‚

fk(t)−fk(a)

ƒ

=f(t)−f(a) (12)

be fulfilled uniformly on[a, b]. Then for any sufficiently largekproblem(3),

(4)has the unique solution xk and(5)is valid.

To prove the theorem we shall use the following lemmas. Lemma 1. Let αk, βk∈BV1(a, b) (k= 0,1. . .),

lim

k→+∞kβk−β0ksup= 0, (13) r= supˆ b

a αk :k= 0,1, . . .

‰

<+∞ (14)

and the condition

lim k→+∞

‚

αk(t)−αk(a)

ƒ

=α0(t)−α0(a) (15) be fulfilled uniformly on[a, b]. Then

lim k→+∞

t

Z

a

βk(τ)dαk(τ) = t

Z

a

β0(τ)dα0(τ)

uniformly on [a, b].

Proof. Letεbe an arbitrary positive number. We denote

Dj(a, b, ε;g) =

ˆ

t∈[a, b] :djg(t)≥ε

‰

(j= 1,2) where

g(t) =V(β0)(t) for t∈[a, b].

By Lemma 1.1.1 from [5] there exists a finite subdivision

{α0, τ1, α1, . . . , τm, αm} of [a, b] such that

(5)

b) Ifτi6∈ D1(a, b, ε;g), theng(τi)−g(αi−1)< ε;

Ifτi∈ D1(a, b, ε;g), thenαi−1< τi andg(τi−)−g(αi−1)< ε;

c) Ifτi6∈ D2(a, b, ε;g), theng(αi)−g(τi)< ε;

Ifτi∈ D2(a, b, ε;g), thenτi< αi andg(αi)−g(τi+)< ε. We set

η(t) =

         

        

β0(t) fort∈ {α0, τ1, α1, . . . , τm, αm};

β0(τi−) fort∈]αi−1, τi[, τi∈ D1(a, b, ε;g);

β0(τi) fort∈]αi−1, τi[, τi6∈ D1(a, b, ε;g) or

fort∈]τi, αi[,τi6∈ D2(a, b, ε;g);

β0(τi+) for t∈]τi, αi[,τi∈ D2(a, b, ε;g);

(i= 1, . . . , m).

It can be easily shown thatη∈BV1(a, b) and

|β0(t)−η(t)|<2ε for t∈[a, b]. (16)

For every naturalkandt∈[a, b] we assume

γk(t) = t

Z

a

βk(τ)dαk(t)− t

Z

a

β0(τ)dα0(τ)

and

δk(t) = t

Z

a

η(t)d[αk(τ)−α0(τ)].

It follows from (15) that lim

k→+∞kδkksup= 0. (17)

On the other hand, by (14) and (16) we have

kγkksup≤4rε+rkβk−β0ksup+kδksup (k= 1,2, . . .).

Hence in view of (13) and (17) limk→+∞kγkksup= 0 sinceεis arbitrary.

Lemma 2. Let condition(6) be fulfilled and

lim

k→+∞Yk(t) =Y(t) uniformly on [a, b], (18)

whereY andYk are the fundamental matrices of the homogeneous systems (10)and(30), respectively. Then

infˆŒ

Œdet(Y(t)) Œ

Œ:t∈[a, b] ‰

>0, (19)

infˆŒ

Œdet(Y−1(t)) Œ

Œ:t∈[a, b] ‰

(6)

and

lim k→+∞Y

−1

k (t) =Y

−1(t) uniformly on [a, b]. (21) Proof. It is known ([6], Theorem III.2.10) thatdjY(t) = djA(t)·Y(t) for

t∈[a, b] (j= 1,2). Therefore (6) implies

det€

Y(t−)·Y(t+)

det(Y(t))2ƒ ·

2

Y

j=1

det€

E+ (−1)j

djA(t)



6

= 0

for t∈[a, b]. (22)

Let us show that (19) is valid. Assume the contrary. Then it can be easily shown that there exists a pointt0∈[a, b] such that det€Y(t0−)·Y(t0+)=

0. But this equality contradicts (22). Inequality (19) is proved. The proof of inequality (20) is analogous.

In view of (18) and (19) there exists a positive number q such that infˆŒ

Œdet(Yk(t)) Œ

Œ : t ∈ [a, b] ‰

> q > 0 for any sufficiently large k. From this and (18) we obtain (21).

Proof of the Theorem. Let us show that det€

E+ (−1)j

djAk(t)6= 0 for t∈[a, b] (j= 1,2) (23) for any sufficiently largek.

By (11)

lim

k→+∞djAk(t) =djA(t) (j = 1,2) (24)

uniformly on [a, b]. Since ∨b

aA <+∞, the series

P

t∈[a,b]kdjA(t)k(j = 1,2) converges. Thus for anyj∈ {1,2} the inequality

kdjA(t)k ≥ 1 2

may hold only for some finite number of pointstj1, . . . , tj mj in [a, b].

There-fore

kdjA(t)k< 1

2 for t∈[a, b], t6=tji (i= 1, . . . , mj). (25) It follows from (6), (24) and (25) that for any sufficiently large k and for

j∈ {1,2}

det€

E+ (−1)j

djAk(tji)6= 0 (i= 1, . . . , mj) (26) and

kdjAk(t)k< 1

(7)

The latter inequality implies that the matricesE+ (−1)jd

jAk(t) (j= 1,2) are invertible for t ∈ [a, b], t 6=tji (i = 1, . . . , mj) too. Therefore (23) is proved.

Besides, by (26) and (27) there exists a positive numberr0 such that for

any sufficiently largek 

 ‚

E+ (−1)j

djAk(t)

ƒ−1

≤r0 for t∈[a, b] (j = 1,2). (28)

Letkbe a sufficiently large natural number. In view of (6) and (23) there exist ([6], Theorem III.2.10) fundamental matricesY andYk of systems (10)

and (30), respectively, satisfying Y(a) = Yk(a) = E. Moreover, Yk−1 ∈

BVn×n(a, b).

Let us prove (18). We setZk(t) =Yk(t)−Y(t) fort∈[a, b] andBk(t) =

Ak(t−) fort∈[a, b]. Obviously, for everyt∈[a, b]

d1‚Bk(t)−Ak(t)ƒ=−d2‚Bk(t)−Ak(t)ƒ=−d1Ak(t) and

t

Z

a

Bk(τ)−Ak(τ)ƒ·Zk(τ) =−d1Ak(t)·Zk(t).

Consequently,

Zk(t)≡‚

E−d1Ak(t)

ƒ−1h

t

Z

a

Ak(τ)−A(τ)ƒ

·Y(τ) + t

Z

a

dBk(τ)·Zk(τ)

i .

From this and (28) we get

kZk(t)k ≤r0

 εk+

t

Z

a

dkV(Bk)(τ)k · kZk(τ)k

‘

for t∈[a, b],

where

εk= sup

n  

t

Z

a

Ak(τ)−A(τ)

ƒ

·Y(τ)

:t∈[a, b] o

.

Hence, according to the Gronwall inequality ([6], Theorem I.4.30),

kZk(t)k ≤r0εkexp

€ r0

b

a Bk



≤r0εkexp

€ r0

b

a Ak



for t∈[a, b].

By (10), (11) and Lemma 1 this inequality implies (18).

It is known ([6], Theorem III.2.13) that ifxk is the solution of (3), then

xk(t)≡Yk(t)xk(a) +fk(t)−fk(a)−Yk(t) t

Z

a

dYk−1(τ)·‚

fk(τ)−fk(a)

(8)

Thus problem (3), (4) has the unique solution if and only if det€

lk(Yk)

6

= 0. (29)

Since problem (1), (2) has the unique solutionx0, we have

det€ l(Y)

6

= 0. (30)

Besides, by (7), (9) and (18) lim

k→+∞lk(Yk) =l(Y).

Therefore, in view of (30), there exists a natural numberk0such that

condi-tion (29) is fulfilled for everyk≥k0. Thus problem (3), (4) has the unique

solutionxk fork≥k0 and

xk(t)≡Yk(t)‚ lk(Yk)

ƒ−1‚

ck−lk(Fk(fk))ƒ+Fk(fk)(t), (31) where

Fk(fk)(t) =fk(t)−fk(a)−Yk(t) t

Z

a

dYk−1(τ)·‚

fk(τ)−fk(a)ƒ.

According to Lemma 2 condition (21) is fulfilled and

ρ= supˆ kY−1

k (t)k+kYk(t)k:t∈[a, b], k≥k0

‰

<+∞. (32) The equality

Yk−1(t)−Yk−1(s) =Yk−1(s) s

Z

t

dAk(τ)·Yk(τ) Yk−1(t)

implies

kYk−1(t)−Y

−1

k (s)k ≤ρ

3t

sAk for a≤s≤t≤b (k≥k0). This inequality, together with (10) and (32), yields

lim k→+∞sup

b

aY

−1

k <+∞. By this, (12) and (21) it follows from Lemma 1 that

lim k→+∞

t

Z

a

dYk−1(τ)·‚

fk(τ)−fk(a)ƒ

=

= t

Z

a

dY−1(τ)·‚

f(τ)−f(a)ƒ

(9)

uniformly on [a, b].

Using (7)-(9), (12), (18), (29), (30) and (33), from (31) we get lim k→+∞xk(t)

=z(t) uniformly on [a, b], where

z(t) =Y(t)‚

l(Y)ƒ−1‚

c0−l€F(f)ƒ+F(f)(t),

F(f)(t) =f(t)−f(a)−Y(t) t

Z

a

dY−1(τ)·‚

f(τ)−f(a)ƒ .

It is easy to verify that the vector-functionz: [a, b]→Rn is the solution of problem (1), (2). Therefore

x0(t) =z(t) for t∈[a, b].

References

1. M.T. Ashordia, On the continuous dependence on the parameter of the solution of the Cauchy problem for a system of generalized ordinary differential equations. (Russian)Proc. I.Vekua Inst. Appl. Math. Tbiliss. State Univ. 31(1988), 5-22.

2. M.T. Ashordia, On the stability of solutions of linear boundary value problems for system of ordinary differential equations. Proc. Georgian Acad. Sci. Math. 1(1993), No. 2, 129-141.

3. I.T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian)Current problems in mathematics. Newest results, v. 30, (Russian) 3-103, Itogi nauki i tekhniki, Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhnich. Inform., Moscow,1987.

4. M.A. Krasnoselski and S.G. Krein, Averaging principle in nonlinear mechanics. (Russian) Uspekhi Mat. Nauk10(1955), No. 3, 147-152.

5. J. Kurzweil, Generalized ordinary differential equations and continu-ous dependence on a parameter. Czechoslovak Math. J. 7(1957), No. 3, 418-449.

6. S. Schwabik, M. Tvrdy and O. Vejvoda, Differential and integral equations: Boundary value problems and adjoints. Academia, Praha,1979.

(Received 2.07.1993) Author’s address:

I. Vekua Institute of Applied Mathematics of Tbilisi State University

Referensi

Dokumen terkait

Pada hari ini Minggu s/d Kamis Tanggal Lima belas s/d Sembilan belas Bulan Mei Tahun Dua Ribu Enam Belas pada pukul 00 00 s/d 23 59 WIB telah dilaksanakan Rapat Evaluasi

Apabila Perusahaan yang diundang tidak hadir sesuai dengan waktu yang telah ditetapkan pada saat klarifikasi dan negosiasi teknis dan biaya akan dinyatakan gugur. Demikian

Berdasarkan penelitian yang telah dilakukan terdapat perbedaan yang bermakna pada jumlah leukosit dan tidak terdapat perbedaan yang bermakna pada jumlah neutrofil dan

Pada hari ini Jum’at tanggal 10 Juni 2016, berdasarkan Berita Acara Hasil Pelelangan No: 07/POKJA-ULP/PSBK/brg/06/2016 tanggal 09 Juni 2016 bahwa pemilihan Penyedia Barang

mesin atau komputer dari hasil suatu arus data yang masuk ke dalam proses. untuk dihasilkan arus data yang akan keluar

 Jadi ketika komputer booting dan sudah selesai melakukan POST, maka CPU membaca sistem operasi dari harddisk, tetapi karena prosesor tidak bisa langsung membaca data tetapi

[r]

[r]