• Tidak ada hasil yang ditemukan

STUDI KETERSEDIAAN AIR TANAH UNTUK PENGEMBANGAN IRIGASI DI KABUPATEN PASURUAN. ABSTRAK

N/A
N/A
Protected

Academic year: 2021

Membagikan "STUDI KETERSEDIAAN AIR TANAH UNTUK PENGEMBANGAN IRIGASI DI KABUPATEN PASURUAN. ABSTRAK"

Copied!
10
0
0

Teks penuh

(1)

STUDI KETERSEDIAAN AIR TANAH UNTUK PENGEMBANGAN IRIGASI DI KABUPATEN PASURUAN

Moh. Solichin1, Anggara WWS1, Anindia Bestari2

1

Dosen Jurusan Teknik Pengairan

2

Mahasiswa Jurusan Teknik Pengairan email : bestarianindia@ymail.com

ABSTRAK

Kabupaten Pasuruan mempunyai dua gugusan pegunungan Arjuno dan Bromo merupakan salah satu daerah yang memiliki potensi sumber daya airtanah yang sangat melimpah. Potensi sumber daya airtanah tersebut dimanfaatkan untuk mencukupi kebutuhan separuh populasi penduduk Kabupaten Pasuruan. Meningkatnya jumlah penduduk mendorong pemenuhan jumlah air yang semakin banyak sedangkan jumlah airtanah semakin menurun. Pada beberapa dekade terakhir ini pemanfaatan airtanah di Kabupaten Pasuruan menunjukkan angka yang memprihatinkan. Dari tahun ke tahun, jumlah pengguna sumur airtanah meningkat, tapi jumlah produksi airnya cenderung menurun.

Studi ini terletak di Desa Watestani, Kecamatan Nguling, Kabupaten Pasuruan. Tujuan studi ini adalah untuk mengetahui debit optimum yang terdapat pada sumur SDPS – 093, sehingga dengan diketahuinya kebutuhan air irigasi di daerah irigasi tersebut berdasarkan rencana pola tata tanam, debit optimum sumur dapat dikembangkan untuk hasil produksi pertanian.

Dari hasil perhitungan uji sumur, didapat debit optimum sumur SDPS – 093 sebesar 28 l/dt dan kebutuhan air irigasi maksimum sebesar 1,640 lt/dt/ha dengan luas tanam 47 Ha dengan sistem pemberian air dengan rotasi 4 blok tanpa mengesampingkan kelestarian sumur.

Kata kunci : Ketersediaan airtanah, debit optimum, pengembangan irigasi ABSTRACT

Pasuruan Regency had two clusters, Arjuno Mountain area and Bromo Mountain area which one of them were having big groundwater potential. The groundwater potential was able to sufficient almost half of population in Pasuruan Regency. Population kept increasing and it made water fulfillment bigger while groundwater kept discreasing. On this last several decades, groundwater utilizations in Pasuruan Regency indicated the value of groundwater was worrying. Year to year, the well users kept increasing but the production of the well kept discreasing.

This research was done in Watestani Village, Nguling Subdistrict, Pasuruan Regency. The purpose of the study were to get the optimum discharge and the maximum irrigation water requirement based on planed the pattern of planting, and the optimum discharge could be developed to optimize the area planted and agricultural production.

From the resulted of well test, were obtained the optimum discharge and the maximum irrigation water requirement were 0,28 m3/dt and 1,640 lt/dt/ha with total area was 47 Ha, those could be optimized and we could give some production advantages to the farmers with provision of water system with four blocks rotation without forgot about the well preservation.

Key words : Groundwater availability, optimum discharge, irrigation development 1. PENDAHULUAN

Airtanah pada masa lalu merupakan barang bebas (free goods) yang dapat dipakai secara bebas tanpa batas dan belum memerlukan pengawasan pemanfaatan, tetapi pada era pembangunan saat ini yang disertai dengan peningkatan kebutuhan airtanah yang sangat pesat telah merubah nilai airtanah

menjadi barang ekonomis (economic goods), artinya airtanah diperdagangkan seperti komoditi yang lain, bahkan di beberapa tempat airtanah mempunyai peran yang cukup strategis. Mengingat peran airtanah semakin penting, maka pemanfaatan airtanah harus didasarkan pada keseimbangan dan kelestarian airtanah itu sendiri, dengan istilah

(2)

lain pemanfaatan airtanah harus berwawasan lingkungan. Di Desa Watestani, Kecamatan Nguling, Kabupaten Pasuruan pemenuhan kebutuhan air irigasi masih kurang, sehingga upaya perbaikan prasarana dan sarana irigasi menjadi sangat penting untuk terus dilakukan untuk menjamin efesiensi penggunaan sumber air. Berdasarkan hal tersebut maka, tujuan dari studi ini adalah untuk mengetahui debit optimum yang terdapat pada sumur SDPS – 093, sehingga dengan diketahuinya kebutuhan air irigasi di daerah irigasi tersebut berdasarkan rencana pola tata tanam, debit optimum sumur dapat dikembangkan untuk hasil produksi pertanian di Desa Watestani, Kecamatan Nguling, Kabupaten Pasuruan.diperlukan optimalisasi sumur untuk pengembangan sistem pertanian di

masa yang akan datang dengan

mengoptimalkan luas lahan dan debit yang tersedia. Dengan adanya pengembangan irigasi ini diharapkan dapat memaksimalkan keuntungan produksi pertanian.

2. TINJAUAN PUSTAKA A. DEBIT OPTIMUM SUMUR

Untuk mengetahui debit optimum

sumur menggunakan metode Step

Drawdown Test dengan rumus :

/15

. . . . 2 r D K0,5 Qmaks   w 2 maks maks maks BQ CQ Sw   Dimana:

Qmaks = Debit maksimum sumur rw = Jari – jari sumur

D = Ketebalan akuifer

K = Koefisien kelulusan air

Swmaks = Penurunan muka air maksimal di dalam sumur yang dipompa (m)

B = Koefisien akuifer loss (dt/m2) C = Koefisien well loss (dt2/m5)

Nilai Qmaks dan Swmaks diplot dan ditarik garisperpotongan antara kedua garis hasil ploting , maka akan diperoleh nilai Qoptimum dan Swoptimum

B. CURAH HUJAN EFEKTIF

Besarnya curah hujan hujan efektif untuk tanaman padi ditentukan dengan 70%

dari curah hujan merata sepuluh harian dengan kemungkinan kegagalan 20% atau curah hujan R20. Curah hujan efektif diperoleh dari 70% nilai R80 per periode

waktu pengamatan dengan persamaan

berikut :

Rpadi = R80 x 70%/10 (2-24)

dengan :

Rpadi = curah hujan untuk tanaman padi sawah (mm/hari)

R80 = tingkat hujan yang terjadi dengan

tingkat kepercayaan 80% (mm) = curah hujan untuk tanaman padi sawah (mm/har80 = tingkat hujan yang terjadi dengan tingkat kepercayaan 80% (mm).

Besarnya curah hujan efektif untuk tanaman palawija dipengaruhi oleh besarnya tingkat evapotranspirasi dan curah hujan bulanan rerata dari daerah yang bersangkutan. Curah hujan efektif diperoleh dari R50 per periode waktu pengamatan dengan persamaan di bawah ini :

Reff = R50

C. PERKOLASI

Laju perkolasi sangat bergantung kepada sifat-sifat tanah. Pada tanah-tanah

lempung berat dengan karakteristik

pengolahan yang baik, laju perkolasi dapat mencapai 1-3 mm/hari. Pada tanah-tanah yang lebih ringan laju perkolasi bisa lebih tinggi.

D. KEBUTUHAN AIR UNTUK PENYIAPAN LAHAN

Untuk tanah bertekstur berat tanpa retak-retak, kebutuhan air untuk penyiapan lahan diambil 200 mm. Ini termasuk air untuk penjenuhan dan pengolahan tanah. Pada permulaan transplantasi tidak akan ada lapisan yang tersisa di sawah. Setelah transplantasi selesai, lapisan air di sawah akan ditambah 50 mm. Secara keseluruhan, ini berarti bahwa lapisan air yang diperlukan menjadi 250 mm untuk penyiapan lahan dan untuk lapisan air awal setelah transplantasi selesai.

Bila lahan dibiarkan bero selama jangka waktu yang lama (2,5 bulan atau lebih), maka lapisan air yang diperlukan

(3)

untuk penyiapan lahan diambil 300 mm, termasuk yang 50 mm untuk penggenangan transplantasi.

E. KEBUTUHAN AIR IRIGASI

Irigasi merupakan penyaluran air

yang dibutuhkan untuk pertumbuhan

tanaman ke tanah yang diolah dan

mendistribusikannya secara sistematis. Perancangan irigasi disusun berdasarkan kondisi-kondisi meteorologi di daerah bersangkutan dan kadar air yang diperlukan untuk pertumbuhan tanaman. Pada studi ini digunakan Metode Kriteria Perencanaan PU yang mana menggunakan rumus dibawah ini :

a. Kebutuhan air di sawah :

NFR = IR + Etc + P - Reff + WLR dimana :

NFR = Kebutuhan air bersih di sawah (mm/hr)

IR = Kebutuhan air untuk penyiapan lahan

Etc = Perkolasi (mm/hr) Reff = Curah hujan efektif WLR = Pergantian lapisan air

b. Kebutuhan air irigasi untuk tanaman padi

IR = eff NFR dimana :

eff = efisiensi irigasi

c. Kebutuhan air irigasi untuk tanaman palawija IR = eff ff ET Re dimana :

ET = kebutuhan air tanaman (mm/hr) Reff = Curah hujan efektif (mm/hr) eff = efisiensi irigasi

F. ANALISA NERACA AIR

Dalam perhitungan neraca air, kebutuhan air irigasi yang dihasilkan untuk pola tata tanam yang dipakai akan dibandingkan dengan debit air yang tersedia. Apabila debit yang tersedia melimpah, maka luas daerah irigasi akan terpenuhi

kebutuhanya terhadap air. Bila debit yang tersedia tidak berlimpah dan kadang – kadang terjadi kekurangan debit, maka ada 3 pilihan yang harus dipertimbangkan:

o Luas daerah irigasi dikurangi

Pengurangan terhadap luas layanan irigasi yang akan dialiri oleh sumur.

o Melakukan modifikasi dalam pola tata tanam

Dapat diadakan perubahan dalam

pemilihan tanaman atau tanggal

dimulainya tanam untuk mengurangi kebutuhan air irigasi di sawah, agar ada kemungkinan untuk mengairi areal yang lebih luas dengan debit yang tersedia. o Rotasi teknis atau golongan

Melakukan pembagian air secara rotasi atau golongan terhadap daerah layanan irigasi.

G. SISTEM PEMBERIAN AIR EMPAT BLOK ROTASI

Metode pembagian air pada petak tersier yang dibagi atas empat blok rotasi adalah petak tersier dibagi menjadi empat blok rotasi dimana tiap blok diusahakan agar luasnya hampir sama.

1. Rotasi I (satu blok tidak diairi , tiga blok lainnya diairi) dilakukan bila Q = 60% - 80% Qmax.

2. Rotasi II (dua Blok tidak diairi, dua blok lainnya diairi) dilakukan bila Q = 40% - 60% Qmax.

3. Rotasi III (Tiga Blok tidak diairi, satu blok lainnya diairi) dilakukan bila Q = 40% Qmax.

3. LANGKAH-LANGKAH PENELITIAN

A. ANALISA DEBIT OPTIMUM Langkah – langkah :

a. Plot nilai Sw dari masing-masing tahap sebagai sumbu y, dan nilai Q sebagai sumbu x.

b. Menghitung nilai Q maksimum dengan menggunakan persamaan :

/15

. . . . 2 r D K0,5 Qmaks  w

c. Menghitung nilai Sw maksimum dengan menggunakan persamaan :

(4)

2

maks maks

maks BQ CQ

Sw  

d. Nilai Qmaks dan Swmaks diplot dan ditarik garis perpotongan antara kedua garis hasil ploting, maka akan diperoleh nilai Qoptimum dan Swoptimum

e. Besarnya Qoptimum inilah yang digunakan sebagai dasar dalam memanfaatkan debit airtanah. Artinya pemanfaatan debit airtanah tidak boleh lebih dari debit optimum (Qoptimum) untuk menjaga kelestariannya.

B. ANALISA KEBUTUHAN AIR IRIGASI

Langkah – langkah : a. Pengolahan data hujan

Mengurutkan data curah hujan selama 10 tahun dari nilai terkecil sampai terbesar, kemudian menetapkan R80 dan R50 sebagai tahun dasar perencanaan untuk menentukan curah hujan efektif (Re)

b. Analisa kebutuhan air tanaman - Evapotranspirasi

Menghitung evapotranspirasi potensial dengan metode Penman Modifikasi (Eto) berdasarkan data klimatologi yang telah ada.

- Koefisien tanaman

Menetapkan koefisien tanaman

berdasarkan jenis tanaman dan usia tanaman pada penggambaran pola tata tanam.

- Penggunaan air konsumtif

Nilai penggunaan air konsumtif didapat dari perhitungan rerata koefisien tanaman dan evapotranspirasi potensial.

- Perkolasi

Menentukan besarnya nilai perkolasi berdasarkan jenis tanah.

- Kebutuhan air untuk penyiapan lahan Berdasarkan nilai dari evapotranspirasi potensial dan perkolasi, dapat dihitung nilai kebutuhan air untuk penyiapan lahan.

- Rencana pola tata tanam

Menentukan pola tata tanam dan

menghitung besarnya kebutuhan air irigasi berdasarkan hasil perhitungan evapotranspirasi potensial (Eto) dan curah hujan efektif (Re).

C. ANALISA NERACA AIR

Dalam perhitungan neraca air ini, kebutuhan air irigasi yang dihasilkan untuk pola tata tanam yang dipakai akan dibandingkan dengan debit optimum yang didapat dari hasil uji sumur, sehingga dari grafik neraca air dapat dilihat kebutuhan air irigasi sudah tercukupi oleh debit optimum sumur atau belum .

4. HASIL DAN PEMBAHASAN

A. PERHITUNGAN DEBIT OPTIMUM Tabel 1. Tabel Step Drawdown Test Sumur

SDPS 093 No. Tahap Uji Sw Q Q/S S/Q (meter) (lt/dtk) (m2/dt) (dt/m2) 1 I 8,88 25,32 0,002851 350,7109 2 II 11,16 30,49 0,002732 366,0216 3 III 14,88 35,36 0,002376 420,8145 4 IV 17,12 40,04 0,002339 427,5724 5 V 20,58 45,3 0,002201 454,3046 6 VI 23,26 50,01 0,00215 465,107

Membuat grafik normal (Step

Dradown Test) dengan absis Sw/Q untuk mendapatkan nilai B dan C sehingga dapat dihitung nilai kehilangan tekanan pada akuifer (Aquifer loss/BQ) dan kehilangan tekanan pada sumur (well loss/CQ2). Kemudian menghitung nilai Fd (faktor development) untuk mengetahui kondisi sumur.

Gambar 1. Grafik hubungan Q dan Sw/Q Berdasarkan hasil faktor development (Fd) sumur SDPS – 093 merupakan sumur dengan kondisi yang sangat baik dan mempunyai produktifitas yang tinggi.

(5)

Langkah-langkah yang harus

dilakukan dalam uji sumur ini adalah sebagai berikut :

a. Perhitungan dilakukan dengan membuat kurva hubungan antara Q dan S dibuat pada skala normal. Kemudian Melakukan regresi polinomial orde 2 sehingga diperoleh persamaan y = 1105,4 x2 + 510 x ( X = Q dan Y = S).

b. Selanjutnya menghitung debit maksimum (Qmaks) sumur dengan persamaan Huisman sebagai berikut:

Qmaks = 2π x rw x D x ( ) = 2 x 3,14 x 0,2032 x 42 x ( 15 0001 , 0 ) = 0,0463 m3/dt

c. Dari persamaan regresi maka diperoleh: Smaks = 1105 Qmaks2 + 510 Qmaks

= 1105 (0,0463)2 + 510 (0,0463) = 25 m

d. Kemudan nilai S maks dihubungkan dengan Q maks maka dari grafik diperoleh Q optimum 0,028 m3/dt dan Sw

optimum 10 m. Secara grafis

penyelesaiannya dapat dilihat pada grafik berikut :

Gambar 2. Grafik Step Drawdown Test Sumur SDPS 093

B. PERHITUNGAN KEBUTUHAN AIR IRIGASI

Pada studi ini dibuat 3 alternatif pola tanam agar mendapatkan keuntungan hasil produksi yang maksimal.

A. Pola tanam alternatif 1

- Tanaman yang ditanam adalah padi, padi, dan jagung.

- Tanaman padi I (100%) berumur 90 hari - Tanaman padi II (50%) berumur 90 hari - Tanaman jagung I (50%) berumur 90 hari - Tanaman jagung II (100%) berumur 90

(6)

Tabel 2. Kebutuhan Air Irigasi Alternatif I

Bulan Periode Kebutuhan Air Irigasi (lt/dt/ha) I 1,640 II 1,378 III 1,117 I 0,778 II 0,632 III 0,526 I 0,770 II 0,650 III 0,352 I 0,164 II 1,017 III 1,232 I 0,679 II 0,603 III 0,645 I 0,379 II 0,524 III 0,710 I 0,574 II 0,569 III 0,514 I 0,391 II 0,217 III 0,036 I 0,021 II 0,081 III 0,162 I 0,296 II 0,363 III 0,408 I 0,607 II 0,568 III 0,497 I 0,679 II 1,098 III 1,551 November Desember Januari Februari Maret April Mei Juni Juli Agustus September Oktober Sumber: Perhitungan

Dari hasil kebutuhan irigasi alternatif I dijadikan grafik dengan absis kebutuhan air irigasi dan curah hujan efektif (grafik dapat dilihat pada gambar 3).

B. Pola Tanam Alternatif II

- Tanaman yang ditanam adalah padi, padi, dan jagung.

- Tanaman padi I (100%) berumur 90 hari - Tanaman padi II (75%) berumur 90 hari - Tanaman jagung I (25%) berumur 90 hari

- Tanaman jagung II (100%) berumur 90 hari

Tabel 3. Kebutuhan Air Irigasi Alternatif II

Bulan Periode Kebutuhan Air Irigasi (lt/dt/ha) I 1,640 II 1,378 III 1,117 I 0,778 II 0,632 III 0,526 I 0,770 II 0,650 III 0,352 I 0,164 II 1,017 III 1,232 I 0,679 II 0,603 III 0,645 I 0,379 II 0,524 III 0,710 I 0,574 II 0,569 III 0,514 I 0,391 II 0,217 III 0,036 I 0,021 II 0,081 III 0,162 I 0,296 II 0,363 III 0,408 I 0,607 II 0,568 III 0,497 I 0,679 II 1,098 III 1,551 Juni Juli Agustus September Oktober November Desember Januari Februari Maret April Mei

Dari hasil kebutuhan irigasi alternatif II dijadikan grafik dengan absis kebutuhan air irigasi dan curah hujan efektif efektif (grafik dapat dilihat pada gambar 4).

C. Pola Tanam Alternatif III

- Tanaman yang ditanam adalah padi, padi, jagung.

- Tanaman padi I (100%) berumur 90 hari - Tanaman padi II (100%) berumur 90 hari - Tanaman jagung I (100%) berumur 90

(7)

Tabel 4. Kebutuhan Air Irigasi Alternatif III

Bulan Periode Kebutuhan Air Irigasi (lt/dt/ha) I 1,640 II 1,378 III 1,117 I 0,778 II 0,632 III 0,526 I 0,770 II 0,650 III 0,352 I 0,173 II 1,046 III 1,281 I 0,878 II 0,764 III 0,796 I 0,540 II 0,702 III 0,832 I 0,696 II 0,677 III 0,601 I 0,473 II 0,284 III 0,039 I 0,021 II 0,081 III 0,162 I 0,296 II 0,363 III 0,408 I 0,607 II 0,568 III 0,497 I 0,679 II 1,098 III 1,551 Oktober April Mei Juni Juli Agustus September November Desember Januari Februari Maret

Dari hasil kebutuhan irigasi alternatif III dijadikan grafik dengan absis kebutuhan air irigasi dan curah hujan efektif efektif (grafik dapat dilihat pada gambar 5).

.

C. ANALISA NERACA AIR

Analisa neraca air dilakukan untuk melihat apakah debit optimum sumur cukup untuk memenuhi kebutuhan air irigasi. Dari perhitungan sebelumnya diketahui debit optimum sumur adalah 28 lt/dt dan luas daerah irigasi sebesar 47 ha. Perhitungan neraca air dibagi menjadi 3 alternatif sesuai dengan rencana pola tanam dan akan didapat grafik sebagai berikut :

Dari grafik tiga alternatif (grafik dapat dilihat pada gambar 6,7 dan 8) analisa neraca air dapat dilihat bahwa dengan debit

optimum sumur, kebutuhan air irigasi masih belum mencukupi pada beberapa periode dan pemberian air secara rotasi 3 blok juga belum dapat memenuhi sehingga digunakan sistem pemberian air rotasi 4 blok agar ebit optimum dapat memenuhi kebutuhan air irigasi dan dapat memberikan keuntungan yang maksimal dari segi produksi pada para petani.

D. ANALISA KEUNTUNGAN HASIL PRODUKSI

Dari hasil perhitungan tiga alternatif pola tanam dapat diketahui keuntungan hasil produksi per tahun yaitu :

Tabel 5. Rekap Hasil Keuntungan Produksi Musim

Tanam

Keuntungan Produksi (juta) PTT Eksisting PTT Alternatif I PTT Alternatif II PTT Alternatif III I 5.076 5.076 5.076 5.076 II 2.526 3.801 4.439 5.076 III 2.526 2.526 2.526 2.526 TOTAL 10.129 11.403 12.041 12.678

Dari perhitungan keuntungan

produksi tersebut PTT Alternatif III bisa memberikan keuntungan yang lebih dari sisi ekonomi dan juga dengan pola tanam alternatif III yaitu padi-padi-palawija para petani bisa memberikan cukup air dengan sistem pemberian air rotasi 4 blok tanpa merusak kondisi sumur dan mendapatkan

keuntungan produksi yang maksimal.

Sehingga alternatif III dipilih karena lebih efektif dan efisien dan juga dapat meningkatkan hasil produksi dan dapat memberikan keuntungan dari segi ekonomi terhadap para petani.

5. KESIMPULAN

Berdasarkan hasil penelitian ini, maka diapatkan kesimpulan sebagai berikut : 1. Besar debit optimum Sumur SDPS – 093

di Desa Watestani, Kecamatan Nguling, Kabupaten Pasuruan adalah 28 l/dtk. Debit tersebut didapat dari hasil

perhitungan pengujian sumur dan

selanjutnya debit optimum sumur

(8)

2. Perhitungan nilai kebutuhan air irigasi di sawah (NFR) menggunakan tiga alternatif pola tata tanam dengan metode kriteria perencanaan PU didapat nilai kebutuhan air irigasi yang sama yaitu 1,640 lt/dt/ha. 3. Dengan luas layanan sumur 47 ha dan

debit optimum 28 l/dtk, perencanaan sistem pemberian air yang sesuai didasarkan pada hasil analisa neraca air adalah sistem pemberian air rotasi atau giliran dengan pembagian blok tersier menjadi 4 blok.

4. Pola tata tanam di daerah layanan irigasi dapat dikembangkan menjadi padi-padi-palawija. Dan dari hasil pengembangan

pola tanam tersebut didapatkan

keuntungan pada hasil produksi. Dengan keuntungan hasil produksi per tahun :  Eksisting = Rp 10.128.500.000,-  Alternatif 1= Rp 11.403.375.000,-  Alternatif 2= Rp 12.040.812.500,-  Alternatif 3= Rp 12.678.250.000,- DAFTAR PUSTAKA

Allen, Richard G. 1998. Crop

Evapotranspiration – Guidelines For Computing Crop Water Requirements.

Amerika: Food And Agriculture

Organization (FAO).

Anonim, 1986. Buku Petunjuk Perencanaan Irigasi, Bagian Penunjang Untuk Standar Perencanaan Irigasi. Bandung: C.V. Galang Persada.

Anonim. 1986. Standar Perencanaan Irigasi, Kriteria Perencanaan Bagian Jaringan Irigasi KP-01. Bandung: C.V. Galang Persada.

Bentley. 2007. User Guide WaterCAD ver 8 XM Edition. Watertown CT, USA. Bisri, Mohammad. 1991. Aliran Air Tanah.

Malang: Bagian Penerbitan Fakultas Teknik Universitas Brawijaya.

Giatman. 2005. Ekonomi Teknik. Jakarta: PT. Raja Grafindo Persada.

Linsley, Ray K. Max A. Kohler dan Joseph L. H. Paulhus. 1996. Hidrologi Untuk Insinyur. Edisi ketiga, terjemahan Ir. Yandi Hermawan. Jakarta: Erlangga.

Sari, Santi. 2007. Studi Perencanaan Irigasi

Tetes Pada Lahan Kering

Menggunakan Tanaman Cabai Rawit (Capsicum Frutescens L.). Skripsi tidak dipublikasikan. Malang: Fakultas Teknik Universitas Brawijaya.

Soemarto, C.D. 1987. Hidrologi Teknik. Surabaya: Usaha Nasional.

Sosrodarsono, Suyono dan Kensaku Takeda. 1983. Hidrologi Untuk Pengairan. Jakarta: Pradyna Paramita.

Sudjarwadi. 1990. Teori dan Praktek Irigasi. Yogyakarta: Universitas Gajah Mada. Suhardjono. 1994. Kebutuhan Air Tanaman.

(9)

Gambar 3. Grafik Kebutuhan Air Irigasi Alternatif I

Gambar 4. Grafik Kebutuhan Air Irigasi Alternatif II

Gambar 5. Grafik Kebutuhan Air Irigasi Alternatif III

PADI I (100%) PADI II (50%) JAGUNG II (100%)

PADI I (100%) PADI II (75%) JAGUNG II (100%)

PADI I (100%) PADI II (100%) JAGUNG II (100%)

ALTERNATIF I

ALTERNATIF II

(10)

Gambar 6. Grafik Analisa Neraca Air Alternatif I

Gambar 7. Grafik Analisa Neraca Air Alternatif II

Gambar 8. Grafik Analisa Neraca Air Alternatif III JAGUNG (50%) JAGUNG 100% JAGUNG 100% ALTERNATIF I ALTERNATIF II ALTERNATIF III

Gambar

Gambar 1. Grafik hubungan Q dan Sw/Q  Berdasarkan hasil faktor development  (Fd)  sumur  SDPS  –  093  merupakan  sumur  dengan  kondisi  yang  sangat  baik  dan  mempunyai produktifitas yang tinggi
Gambar 2.  Grafik Step Drawdown Test Sumur  SDPS 093
Tabel 2. Kebutuhan Air Irigasi Alternatif I
Tabel 4. Kebutuhan Air Irigasi Alternatif III
+3

Referensi

Dokumen terkait

Menurut Peraturan Walikota Semarang Nomor 22 Tahun 2011 Tentang Pelaksanaan Hari Bebas Kendaraan Bermotor (HBKB) car free day bertujuan untuk mewujudkan udara yang

Sebagai contoh, dengan adanya fenomena menjamurnya lembaga non struktural, nantinya perlu dipilah peran yang dapat dilakukan lembaga non struktural sehingga tidak mengambil

Dalam hal ini pengangguran tidak kentara masih termasuk dalam kegiatan bekerja, karena mereka masih memenuhi dari persyaratan yang termasuk golongan bekerja.

Kepekaan pernafasan Dibawah kondisi normal untuk penggunaan yang dimaksud, bahan ini diharapkan tidak berbahaya bagi penghirupan. Gangguan kesehatan tidak diketahui atau

Dalam Novel Saman karya Ayu Utami, terdapat berbagai ragam kalimat, antara lain kalimat Tanya, kalimat perintah, kalimat berita, kalimat seru, dan kalimat

Zamandaşlık, akan ve geçici, “düşük” şimdi -“başlangıcı veya sonu olmayan” bu “yaşam” yalnızca düşük türlerde bir temsil ko­ nusuydu. En önemlisi

Laporan penelitian ini merupakan hasil penelitian yang telah penulis lakukan pada Dinas Perhubungan Komunikasi dan Informatika Kabupaten Majalengka. Berdasarkan hasil