• Tidak ada hasil yang ditemukan

jenis saluran terbuka Dan Penggolongann

N/A
N/A
Protected

Academic year: 2018

Membagikan "jenis saluran terbuka Dan Penggolongann"

Copied!
10
0
0

Teks penuh

(1)

A. Jenis Saluran Terbuka

Saluran terbuka adalah saluran yang mengalirkan air dengan suatu permukaan bebas. Meurut asalanya, saluran dapat digolongkan menjadi :

1. Saluran alam (natural)

a. Geometri saluran tidak teratur

b. Material saluran bervariasi – kekasaran berubah-ubah

c. Lebih sulit memperoleh hasil yang akurat dibandingkan dengan analisis aliran saluran buatan.

d. Perlu pembatasan masalah, bila tidak analisis menjadi lebih kompleks (misal erosi dan sedimen)

e. Meliputi semua alur air yang terdapat secara alamiah dibumi, mulai anak selokan kecil dipegunungan, selokan kecil, kali, sungai kecil dan sungai

c. Umumnya memiliki geometri saluran yang tetap (tidak menyempit/melebar) d. Dibangun menggunakan beton, semen, besi

e. Memiliki kekasaran yang dapat ditentukan

f. Analisis saluran yang telah ditentukan memberikan hasil yang relatif akurat

Klasifikasi saluran terbuka berdasarkan konsistensi bentuk penampang dan kemiringin dasar, yaitu :

a. Saluran prismatik (prismatic channel)

Yaitu saluran yang bentuk penampang melintang dan kemiringan dasarnya tetap. Contoh saluran drainase dan saluran irigasi.

b. Saluran non-prismatik (non-prismatic channel)

Yaitu saluran yang bentuk penampang melintang dan kemiringan dasarnya berubah-ubah. Contohnya sungai

Klasifikasi saluran terbuka berdasarkan geometri penampang melintang: a. Saluran berpenampang segi empat

(2)

d. Saluran berpenampang lingkaran e. Saluran berpenampang parabola

f. Saluran berpenampang segi empat dengan ujung dibulatkan (diberi filet berjari-jari tertentu)

g. Saluran berpenampang segi tiga dengan ujung dibulatkan (diberi filet berjari-jari tertentu).

Di lapangan, saluran terbuka buatan (artificial channel) dapat berupa:

i. Canal (saluran) : biasanya panjang dan merupakan saluran selokan landai yang dibuat ditanah, dapat dilapisi pasangan batu maupun tidak, atau beton, semen, kayu maupun aspal

ii. Talang (flume) : merupakan selokan dari kayu, logam, beton atau pasangan batu, biasanya disangga atau terletak diatas permukaan tanah, untuk mengalirkan air berdasarkan perbedaan tinggi tekan

iii. Got miring (chute) : selokan yang kemiringan dasar relatif curam

iv. Terjunan (drop) : selokan dengan kemiringan yang tajam namun perubahan tinggi air terjadi dalam jarak pendek

v. Gorong-gorong (culvert) : merupakan selokan tertutup yang pendek, dipakai untuk mengalirkan air melalui tanggul jalan kereta api maupun jalan raya.

vi. Terowongan air terbuka (open-flow-tunnel) : selokan tertutup yang cukup panjang, dipakai untuk mengalirkan air menembus bukit atau setiap gundukan tanah

B. Geometri Saluran

Unsur-unsur geometrik adalah sifat-sifat suatu penampang saluran yang dapat diuraikan seluruhnya berdasarkan geometri penampang dan kedalam aliran.

1. Kedalaman aliran y (depth of flow) : jarak vertical titik terendah dasar saluran hingga permukaan air

2. Kedalaman penampang aliran d (depth of flow section) : kedalam penampang aliran, tegak lurus arah aliran, atau tinggi penampang saluran yang diliputi air

3. Taraf (stage) : elevasi atau jarak vertical dari permukaan bebas diatas suatu bidang persamaan

(3)

5. Luas basah A (water area) : luas penampang melintang aliran yang tegak lurus arah aliran

6. Lebar dasar B (bed width) : luas penampang melintang bagian bawah (dasar)

7. Kemiringan dinding m (slide slope) : angka penyebut pada perbandingan antara sisi horizontal terhadap vertical

8. Keliling basah P (wetted perimeter) adalah panjang garis perpotongan dari permukaan basah saluran dengan bidang penampang melintang yang tegak lurus arah aliran

9. Jari-jari hidraulik R (hydraulic radius) adalah rasio luas basah dengan keliling basah, atau

10. Kedalaman hidraulik D (hydraulic depth) adalah rasio luas basah dengan lebar puncak, atau

(4)

12. Faktor penampang untuk perhitungan aliran seragam adalah hasil perkalian luas basah dan akar pangkat dua pertiga dari jari-jari hidrolik

(5)

C. Distribusi Kecepatan pada Penampang Saluran

Dengan adanya suatu permukaan bebas dan gesekan di sepanjang dinding saluran, maka kecepatan dalam saluran tidak terbagi merata dalam penampang saluran. Kecepatan maksimum dalam saluran biasa biasanya terjadi dibawah permukaan bebas sedalam 0,05 sampai 0,25 kali kedalamanya, makin dekat ke tepi berarti makin dalam dan mencapai maksimum. Gambar dibawah ini menggambarkan pola umum distribusi kecepatan pada berbagai penampang vertical dan horizontal untuk saluran berpenampang persegi panjang dan kurvan kecepatan yang sama pada penampang melintangnya.

(6)

Faktor-faktor Yang Mempengaruhi Distribusi Kecepatan antara lain:

 Bentuk saluran

 Kekasaran dinding saluran

 Debit aliran

D. Penentuan Koefisien Distribusi Kecepatan

Penentuan koefisien distribusi kecepatan dapat dilakukan dengan menganggap sebagai bagian luas dari luas air keseluruhan A, dan adalah beratisi air, lalu berat air melalui per satuan waktu dengan kecepatan v adalah wv . Energi kinetic air yang melalui per satuan waktu adalah /2g Nilai ini sama dengan gabungan berat wv dan tinggi kecepatan v2/2g. Jumlah energi kinetic

untuk luas air keseluruhan sama dengan /2g Berikut adalah rumus untuk koofesien,

1. Untuk menentukan energi kinetic total

2. Untuk luas keseluruhan

3. Koefisien energi dan momentum dapat dihitungan dengan persamaan :

E. Distribusi tekanan pada penampang saluran

(7)

tekanan hidrosrtatik dipenampang melintang pada aliran sejajar.Hukum hidrostatik juga berlaku untuk aliran lambat laun, karena perubahan kedalaman air sangat perlahan sehingga aliran tidak melengkung atau memencar secara berarti. Artinya pelengkungan dan pemencaran itu sangat kecil sehingga akibat dari unsure percepatan pada bidang penampang melintang dapat diabaikan. Aliran kurvilinear adalah bila kelengkungan aliran cukup jelas, maksudnya kelengkungan ini menimbulkan unsure percepatan yang cukup nyata atau gaya sentrifugal tegak lurus arah aliran. Sebab itu distribusi kecepatan pada penampang tidak lagi secara hidrostatik. Bila timbul aliran kurvilinear pada bidang vertikal. Pada aliran melengkung cekung gaya sentrifugal mengarah ke bawah, memperkuat gaya tarik bumi, sehingga tekanan yang timbul lebih besar dibandingkan dengan tekanan hidrostatik aliran sejajar. Pada aliran melengkung cembung, gaya sentrifugal mengarah keatas melawan gaya tarik bumi, sehingga tekanan yang timbul lebih kecil daripada tekanan hidrostatik aliran sejajar. Bila pemencaran aliran cukup besar, maka timbul unsure percepatan tegak lurus aliran, distribusi tekanan hidrostatik akan terpengaruh.

Tekanan sesungguhnya atau tinggi pizometric Keterangan: h merupakan tinggi pizometric

Hs merupakan tinggi hidrostatik C merupakan aliran kurvilinear

Bila penampang memanjang saluran tersebut melengkung, tekanan sentrifugal daapat dihitung

Keterangan : w merupakan berat isi air g merupakan gaya berat v merupakan kecepatan aliran r merupakan jari-jari kelengkungan Untuk koreksi tinggi tekan rumusnya adalah :

Keterangan: c merupakan koreksi tinggi tekan d merupakan kedalaman aliran

(8)

r merupakan jari-jari kelengkungan dasar

Untuk aliran melengkung cekung c adalah positive, untuk aliran melengkung cembung c adalah negative. Sedangkan untuk aliran sejajar c samadengan nol.

F. Pengaruh Kemiringan Terhadap Distribusi Tekanan

Berdasarkan keadaan saluran lurus yang miring dengan sudut kemiringan , berat persatuan lebar dari bagian air yang diarsir sepanjang dL adalah sama dengan wy cos dL. Tekanan akibat berat ini adalah wy cos2 dL. Sebab itu

tekanan satuan sama dengan wy cos2 dan tinggi1 adalah

h= y cos2

Persamaan diatas menunjukan bahwa tinggi tekan pada setiap kedalaman vertikal adalah sama dengan kedalaman tersebut dikalikan dengan suatu factor koreksi cos2 . Bila sudut cukup kecil, factor ini mendekati nilai 1

h= d cos

Dengan d = y cos , merupakan kedalaman yang diukur tegak lurus dari muka air.

Bila saluran dengan kemiringan besar, memiliki penampang memanjang vertikal yang cukup melengkung, tinggi tekan harus dikoreksi, akibat kelengkungan alirannya. Tinggi tekan dapat dinyatakan sebagai

dengan adalah kooefisien tekanan. Jika saluran dengan kemiringan kecil, maksudnya kemiringan dapat diabaikan.

(9)

RINGKASAN MATERI

MEKANIKA FLUIDA II

OLEH:

KELOMPOK 12

BELANI NAWARIATE K.

(1310941020)

GUSTINA LUSIANI

(1310941048)

DOSEN PEMBIMBING :

VERA SURTIA BACHTIAR, PhD

JURUSAN TEKNIK LINGKUNGAN

FAKULTAS TEKNIK UNIVERSITAS ANDALAS

PADANG

(10)

DAFTAR PUSTAKA

Referensi

Dokumen terkait

Untuk itulah kami menganggap perlu diadakannya kegiatan pelatihan serta workshop penyusunan RPP Kurikulum 2013 dan pelatihan pembuatan media pembelajaran berbasis

[r]

1. Apply mathematics, science and engineering to the Industrial Engineering domain.. Design a system, component, or process to meet desired needs within realistic constraints.

Dari Campuran Sabut Kelapa dan Kayu Mahoni Dengan Berbagai Variasi.. Kadar Perekat

Hasil analisis deskriptif menunjukan bahwa selama periode penelitian bahwa rata-rata non perfoming loan cenderung mengalami penurunan dan peningkatan diakhir

Siswa melakukan finishing pada pembuatan kerajinan bahan lunak alam yang dibuatnya secara benar 2.Siswa mengamati produk kemasan yang cocok untuk produk kerajinan yang dibuatnya

Antara berikut yang manakah yang menjawab soalan, "Apakah maklumat yang diperlukan untuk menangani keadaan ini?"a.

Sedangkan gagasan Reinventing Government yang dicetuskan oleh David osborne dan Ted Gaebler (1992) adalah gagasan mutakhir yang mengkritisi dan memperbaiki konsep- konsep