• Tidak ada hasil yang ditemukan

paper 06-17-2009. 116KB Jun 04 2011 12:03:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "paper 06-17-2009. 116KB Jun 04 2011 12:03:06 AM"

Copied!
12
0
0

Teks penuh

(1)

LINEAR OPERATORS ASSOCIATED WITH A SUBCLASS OF HYPERGEOMETRIC MEROMORPHIC UNIFORMLY

CONVEX FUNCTIONS

Firas Ghanim and Maslina Darus

Abstract. Making use of certain linear operator, we define a new subclass of meromorphically uniformly convex functions with positive coefficients and obtain coefficient estimates, growth and distortion theorem, extreme points, closure theorems and radii of starlikeness and convexity for the new subclass.

2000 Mathematics Subject Classification: 30C45, 33C05.

Key words: Hypergeometric functions, Meromorphic functions, Uniformly starlike functions,Uniformly convex functions, Hadamard product.

1. Introduction

Let Σ denote the class of meromorphic functions f normalized by

f(z) = 1

z +

∞ X

n=1

anzn, (1)

which are analytic and univalent in the punctured unit diskU ={z : 0<|z|<1}. For 0 ≤β, we denote by S∗(β) and k(β), the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order β and convex of order β inU (cf. e.g., [1, 2, 4, 12]).

For functions fj(z)(j = 1; 2) defined by

fj(z) = 1

z +

∞ X

n=1

an,jzn, (2)

we denote the Hadamard product (or convolution) of f1(z) andf2(z) by

(f1∗f2) = 1

z +

∞ X

n=1

(2)

Let us define the function ˜φ(a, c;z) by

˜

φ(a, c;z) = 1

z +

∞ X

n=0

(a)n+1 (c)n+1

anzn, (4)

forc6= 0,−1,−2, ..., anda∈C/{0}, where (λ)n=λ(λ+1)n+1is the

Pochham-mer symbol. We note that ˜

φ(a, c;z) = 1

z2F1(1, a, c;z)

where

2F1(b, a, c;z) =

∞ X

n=0

(b)n(a)n (c)n

zn

n!

is the well-known Gaussian hypergeometric function. Corresponding to the function ˜φ(a, c;z), using the Hadamard product for f ∈ Σ, we define a new linear operator L∗(a, c) on Σ by

L∗(a, c)f(z) = ˜φ(a, c;z)∗f(z) = 1

z +

∞ X

n=1

(a)n+1 (c)n+1

anzn. (5)

The meromorphic functions with the generalised hypergeometric functions were considered recently by Dziok and Srivastava [5], [6], Liu [8], Liu and Srivastava [9], [10], [11], Cho and Kim [3].

For a function f ∈L∗(a, c)f(z) we define

I0(L(a, c)f(z)) =L(a, c)f(z), and for k = 1,2,3, ...,

Ik(L∗(a, c)f(z)) = zIk−1L∗(a, c)f(z)′+ 2

z

= 1

z +

∞ X

n=1 nk

(a)n+1 (c)n+1

(3)

We note that Ik(L(a, a)f(z)) studied by Frasin and Darus [7]. Also, it follows from (6) that

z(L(a, c)f(z))′ =aL(a+ 1, c)f(z)−(a+ 1)L(a, c)f(z).

Now, forα(−1≤α <1) and β(β ≥1), we let Σ∗(α, β, k) be the subclass ofA consisting of the form (1) and satisfying the analytic criterion

(

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −α )

> β

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1

, z ∈U (7)

where L∗(a, c)f(z) is given by (5).

The main objective of this paper is to obtain necessary and sufficient conditions for the functions f ∈ Σ∗(α, β, k). Furthermore, we obtain extreme points, growth and distortion bounds and closure properties for the class Σ∗(α, β, k).

2.Basic properties

In this section we obtain necessary and sufficient conditions for functions f in the class Σ∗(α, β, k).

Theorem 1. A function f of the form (1) is in Σ∗(α, β, k) if

X

n=1

nk[n(1 +β)−(β+α)] (a)n+1

(c)n+1

|an| ≤1−α (8)

−1≤α <1 and β ≥1.

Proof. It suffices to show that

β

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1

− ℜ

(

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1 )

(4)

We have

β

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1

− ℜ

(

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1 )

≤(1 +β)

Ik+1L(a, c)f(z)

IkL(a, c)f(z) −1

(1 +β) P∞ n=1n

k(n1)|(a)n+1|

|(c)n+1|

|an| |z|n

1

|z| − ∞ P n=1n

k|(a)n+1|

|(c)n+1|

an|z|n

Letting z →1 along the real axis, we obtain

(1 +β) P∞ n=1n

k(n1)|(a)n+1|

|(c)n+1|

|an| 1− P∞

n=1n

k|(a)n+1|

|(c)n+1|

|an|

This last expression is bounded above by (1−α) if ∞

X

n=1

nk[n(1 +β)(β+α)] (a)n+1

(c)n+1

|an| ≤1−α

Hence the theorem.

Our assertion in Theorem 1 is sharp for functions of the form

fn(z) = 1

z +

∞ X

n=1

(1−α) (c)n+1

nk[n(1 +β)(β+α)] (a)n+1

zn, (9)

(n≥1;k ∈N0).

Corollary 1. Let the functions f be defined by (5) and letf ∈A, then

an ≤

(1−α) (c)n+1

nk[n(1 +β)(β+α)] (a) n+1

, (10)

(5)

Theorem 2. Let f define by (1) and g(z) = 1z + P∞ n=1bnz

n be in the class Σ∗(α, β, k). Then the function h defined by

h(z) = (1−λ)f(z) +λg(z) = 1

z +

∞ X

n=1

qnzn, (11)

where qn = (1−λ)an+λbn, 0≤λ <1 is also in the class Σ∗(α, β, k).

3.Growth and Distortion Theorem

Theorem 3. Let the function f defined by (6) be in the class Σ∗(α, β, k).

Then

1

r −r ≤ |f(z)| ≤

1

r +r (12)

Equality holds for the function

f(z) = 1

z +z. Proof. Since f ∈S∗(α, β, k), by Theorem 1,

∞ X

n=1

nk[n(1 +β)−(β+α)] (a)n+1

(c)n+1

|an| ≤1−α

Now

(1−α) ∞ X

n=1

(a)n+1

(c)n+1

an= ∞ X

n=1

(1−α) (a)n+1

(c)n+1

an≤

∞ X

n=1

nk[n(1 +β)(β+α)]

(a)n+1

(c)n+1

|an| ≤1−α

and therefore

∞ X

n=1

(a)n+1

(c)n+1

(6)

Since f(z) = 1z + P∞ n=1

|(a)n+1|

|(c)n+1|

anzn,

|f(z)|= 1 z + ∞ X n=1

(a)n+1 (c)n+1anz

n ≤ 1 |z| +

∞ X

n=1

(a)n+1

(c)n+1

an|z|n

≤ 1

r +r

∞ X

n=1

(a)n+1

(c)n+1

an ≤ 1

r +r

and

|f(z)|= 1 z − ∞ X n=1

(a)n+1 (c)n+1anz

n ≥ 1 |z| −

∞ X

n=1

(a)n+1

(c)n+1

an|z| n

≥ 1

r −r

∞ X

n=1

(a)n+1

(c)n+1

an ≥ 1

r −r

which yields the theorem.

Theorem 4. Let the function f defined by (6) be in the class Σ∗(α, β, k). Then

1

r2 −1≤ |f

(z)| ≤ 1

r2 + 1, (13)

Equality holds for the functionf(z) = 1z +z.

Proof. we have

|f′(z)|= −1

z2 +

∞ X

n=1

n(a)n+1

(c)n+1anz n−1 ≤ 1 |z|2 −

∞ X n=1 n (a)n+1

(c)n+1

an|z|n−1

≤ 1

r2 −

∞ X

n=1

(a)n+1

(c)n+1

(7)

Since f(z)∈Σ∗(α, β, k), we have

(1−α) ∞ X

n=1

(a)n+1

(c)n+1

nan ≤ ∞ X

n=1

nk−1[n(1 +β)−(β+α)]

(a)n+1

(c)n+1

nan ≤1−α

Hence,

∞ X

n=1

(a)n+1

(c)n+1

nan≤1. (15)

Substituting (14) in (15), we get

|f′(z)| ≤ 1

r2 + 1

|f′(z)| ≥ 1

r2 −1

This completes the proof.

4.Radii Of Starlikeness and Convexity

The radii of Starlikeness and convexity for the class for the class Σ∗(α, β, k) is given by the following theorems.

Theorem 5. If the functionf be defined by (6) is in the classΣ∗(α, β, k) then

f is meromorphically starlike of orderδ(0≤δ <1)in |z−p|<|z|< r1, where

r1 =r1(α, β, k) = inf n≥1

(

nk(1δ) [n(1 +β)(β+α)] (n+ 2−δ) (1−α)

)n+11

. (16)

The result is sharp for the function f given by (9).

Proof. It suffices to prove that

zIkf(z)

Ikf(z) + 1

(8)

for |z|< r1. The left hand side we have

zIkf(z)

Ikf(z) + 1 = ∞ P n=1n

k(n+ 1)|(a)n+1|

|(c)n+1|

anzn

1

z + ∞ P n=1n

k|(a)n+1|

|(c)n+1|

anzn ≤ ∞ P n=1n

k(n+ 1)|(a)n+1|

|(c)n+1|

an|z| n

1

|z|− ∞ P n=1n

k|(a)n+1|

|(c)n+1|

an|z|

n (18)

The last expression is less than 1−δ if ∞

X

n=1

nk(n+ 1)

(a)n+1

(c)n+1

an|z|n ≤(1−δ) 

 1

|z| −

∞ X n=1 nk

(a)n+1

(c)n+1

an|z|n   (19) or ∞ X n=1

nk(n+ 2−δ)

(1−δ) (a)n+1

(c)n+1

|z|n+1 ≤1 (20)

with the aid of (8) and (20) is true if ∞

X

n=1

nk(n+ 2−δ) (1−δ) |z|

n+1

≤ n

k[n(1 +β)(β+α)]

(1−α) (21)

n≥1.

Solving (21) for |z|, we obtain

|z|<

(

nk(1δ) [n(1 +β)(β+α)] (n+ 2−δ) (1−α)

(a)n+1 (c)n+1

)n+11

.

This completes the proof of Theorem 5.

Theorem 6. If the functionf be defined by (6) is in the classΣ∗(α, β, k) then

f(z) is meromorphically convex of order δ(0≤δ <1) in |z|< r2, where r2 =r2(α, β, k) =

inf n≥1

(

nk−1(1δ) [n(1 +β)(β+α)]

(n+ 2−δ) (1−α)

)n+11

(9)

The result is sharp for the function f given by (9).

Proof. By using the technique employed in the proof of Theorem , we can show that

zf′′(z)

f′(z) + 2

≤(1−δ) (23) for|z|< r2, with the aid of Theorem 1. Thus we have the assertion of Theorem

6.

5.Convex Linear Combinations

Our next result involves linear combinations of several functions of the type (9).

Theorem 7. Let

f0(z) = 1

z (24)

and

fn(z) = 1

z +

(1−α) (c)n+1

nk[n(1 +β)(β+α)] (a)n+1

zn, (25)

n≥1,−1< α≤1, β ≥0 and k ≥0.

Then f(z)∈S∗(α, β, k) if and only if it can be expressed in the form

f(z) = ∞ X

n=0

λnfn(z) (26)

where λn ≥0 and ∞ P

n=0λn= 1.

Proof. From (24), (25) and (26), it is easily seen that

f(z) = ∞ X

n=0

λnfn(z) =

λ0 z +

∞ X

n=1

λn(1−α) (c)n+1

nk[n(1 +β)(β+α)] (a)n+1

(10)

Since ∞ X

n=1

nk[n(1 +β)(β+α)] (a)n+1

(1−α)

(c)n+1

. λn(1−α)

(c)n+1

nk[n(1 +β)(β+α)] (a)n+1

= ∞ X

n=1

λn= 1−λ0 ≤1. It follows from Theorem 1 that f ∈S∗(α, β, k).

Conversely, let us suppose that f ∈S∗(α, β, k). Since

an ≤

(1−α)(c) n+1

nk[n(1 +β)(β+α)] (a)n+1

,

n≥1,−1< α≤1,β ≥0 and k≥0. Setting λn=

nk

[n(1+β)−(β+α)]|(a)n+1|

(1−α)|(c)n+1|

, n≥1, k ≥0 andλ0 = 1− P∞ n=1λn.

It follows that f(z) = P∞

n=0λnfn(z). This completes the proof of the theorem.

Finally, we prove the following:

Theorem 8. The classS∗(α, β, k)is closed under convex linear combinations.

Proof. Suppose that the function f1(z) and f2(z) defined by

fj(z) = 1

z −

∞ X

n=1

(a)n+1

(c)n+1

an,jzn, (j = 1,2; z ∈U). (28)

are in the class S∗(α, β, k). Setting

f(z) = µf1(z) + (1−µ)f2(z), (0≤µ <1) (29)

we find from (28) that

f(z) = 1

z +

∞ X

n=1

(a)n+1

(c)n+1

(11)

(0≤µ <1, z∈U).

In view of Theorem 1, we have ∞

X

n=0

nk[n(1 +β)(β+α)] (a)n+1

(c)n+1

{µan,1+ (1−µ)an,2}

∞ X

n=1

nk[n(1 +β)−(β+α)] (a)n+1

(c)n+1

an,1

+ (1−µ) ∞ X

n=1

nk[n(1 +β)(β+α)]

(a)n+1

(c)n+1

an,2

≤µ(1−α) + (1−µ) (1−α) = (1−α).

which shows that f(z)∈S∗(α, β, k). Hence the theorem.

Acknowledgement: The work presented here was fully supported by Research Grant: MOSTI, eScienceFund: 04-01-02-SF0425.

References

[1] M. K. Aouf, On certain class of meromorphic univalent functions with positve coefficient, Rend. Mat. Appl. , 7(11), No.2,(1991), 209- 219.

[2] S. K. Bajpai, A note on a class of meromorphic univalent functions,

Rev. Roumaine Math. Pures Appl., 22 (1977), no.3, 295-297.

[3] N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric func-tion, Appl. Math. and Compu.,187 (2007), 115-121.

[4] N. E. Cho, S. H. Lee, and S. Owa, A class of meromorphic univalent functions with positive coefficients,Kobe J. Math., 4, No.1,(1987), 43-50.

(12)

[6] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions as-sociated with the generalized hypergeometric function, Trans. Spec. Funct., 14, No.1, (2003), 7-18.

[7] B.A. Frasin and M.Darus, On certain meromorphic functions with pos-itive coefficients, South East Asian Bulletin of Math., 28, (2004), 615-623.

[8] J. L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Institute Math. Academia Sinica, 31 (2003), 23-32.

[9] J. L. Liu, H.M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259, (2001), 566-581.

[10] J. L. Liu, H.M. Srivastava, Certain properties of the Dziok-Srivastava operator, Appl. Math. Comput., 159, (2004), 485-493.

[11] J. L. Liu, H.M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function,Math. Com-put. Modell.,39, No.1, (2004), 21-34.

[12] B. A. Uralegaddi and M. D. Ganigi, A certain class Of meromorphically starlike functions with positive coefficients, Pure Appl. Math. Sci.,26 (1987), 75-80.

Authors:

Firas Ghanim

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Bangi 43600 Selangor D. Ehsan, Malaysia email:Firas.Zangnaa@Gmail.com

Maslina Darus

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia

Referensi

Dokumen terkait

Table 38 shows that majority of the participants who believe that the images posted on Facebook influenced their presiden- tial preference also believed that the social media is

Hipotesis penelitian kedua yang menyatakan bahwa komitmen organisasional memiliki pengaruh terhadap kinerja karyawan bagian produksi di PT Rajawali Citramas

Adapun saran yang dapat diberikan oleh peneliti berdasarkan hasil penelitian ini kepada CV Supratex yaitu diharapkan dapat lebih menaruh perhatian lebih kepada tingkat

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai berikut:..

Seringkali perusahaan dihadapkan pada permasalahan karyawan yang beragam, misalnya karyawan sering kali tidak memberikan hasil yang sesuai dengan kewajiban yang ada

Pokja lll ULP pada Pemerintah Kabupaten Hulu Sungai Selatan akan melaksanakan Pemilihan Langsung dengan pascakualifikasi paket pekerjaan konstruksi sebagai

Dari hasil penelitian yang telah dilakukan pada perusahaan ini terkait dengan proses penerapan prinsip good corporate governance, dapat disimpulkan bahwa

Para karyawan di P.T. Graha Cendana Abadi Mitra yang akan mengikuti pelatihan, telah memiliki ketrampilan dasar sebelumnya, yang meliputi dapat membaca, menulis,