• Tidak ada hasil yang ditemukan

Pengembangan Algoritma Penentuan Titik Awal Dalam Metode Clustering Algoritma Fuzzy C-Means

N/A
N/A
Protected

Academic year: 2017

Membagikan "Pengembangan Algoritma Penentuan Titik Awal Dalam Metode Clustering Algoritma Fuzzy C-Means"

Copied!
3
0
0

Teks penuh

(1)

61

DAFTAR PUSTAKA

Ackerman, Marcel.R, Blommer,J, Daniel Kuntze & Sohler,C. 2014. Analysis of Agglomerative Clustering.Algorithmica69, Issue 1, pp 184-215. DOI :10.1007/s00453-012-9717-4

Agarwal, C. C. & Reddy, C.K. 2014 (Editor). Data Clustering Algorithms and Applications, Chapman & Hall/CRC Book,. CRC Press, Taylor and Francis Group: Data Mining and Knowledge Discovery Series., ISBN-13: 978-1-4665-5822-9.

Beevi, S.Z., Satik, M.M & Senthamaraikannan,K. 2010. A Robush Fuzzy Clustering Tehnique with Spacial Neighborhood Information for Effective Medical Image Segmentation.(IJCSIS) International Journal of Computer Science and Information Security7. Issue 3, March 2010 pp 132-138.

Bezdek, J. C. 1981. Pattern Recognition With Fuzzy Objective Function Algorithm, Utah State University.,Logan, Utah: Library of Congress Cataloging in Publication Data.,DOI 10.1007/978-1-4757-0450-1.

Bezdek,J.C., Ehlrich,R., & Full, W. 1984. FCM: The Fuzzy c-Means Clustering Algorithm. Computer and GeoSciences10. Issue 2-3, pp 191-203. Pergamon Press Ltd.U.S.A.

Cheng, T.W., Goldgof, D.B & Hall, L.O. 1998. Fast Fuzzy Clustering,. Journal of Fuzzy Sets and Systems93, Issue 1(January 1998) pp 49-56.

Das, A. 2013. Pattern Recognition Using Fuzzy C-Means Tehnique. Information of Communications. International Journal of Energy4, Issue 1 (February 2013) pp 1-14.

Everitt, B.S., Landau,S., Leese,M. & Stahl, D. 2011. Cluster Analysis 5th Edition. King’s College, London. Willey Series in Probability and Statistics. Jhon Willey & Sons, Ltd. UK.

Freitas, F.D.A. & Perez, S.M. 2014. Gramatical Facial Expressions Data Set,. Machine Learning Repositori, UCI,. https://archive.ics.uci.edu/ml/datasets/ Grammatical+Facial+Expressions, (Download, 5 Desember 2014).

Freitas, F.D.A. & Perez, S.M. 2014. Gramatical Facial Expressions Recognition with Machine Learning.Proceeding of The Twenty Seventh International Florida Artificial Intelegence Research Society Conference. Florida. pp 180-185.

Hastie, T., Tibshirani, R. & Friedman, J. 2010. The Element of Statistical Learning, Data Mining, Inference and Prediction 2nd Edition. Springer Series in Statistics. Springer,2010.

(2)

62

Karlina, T., Afrida, H & Arifin, F, 2006. Pengembangan Algoritma K-Modes pada Penentuan Titik Pusat Awal untuk Mengelompokkan Penyakit pada Kacang Kedelai. Prosiding IES-2006-Politeknik Elektronika Negeri Surabaya-ITS, pp 253-259.

Khan, S. S. & Ahmad, A. 2004. Cluster Center Initialisation Algorithm for K-Means Clustering, Pattern Recognition Letters25, Issue 11(August 2004) pp 1293-1302.

Maimon, O,. & Rokach, L. (Editor). 2010. Data Mining and Knowledge Discovery Handbook Second Edition. Springer, DOI 10.1007/978-0-387-09823-4.

Oliveira, J.V.D & Pedrycz,W (Editor). 2007. Advance in Fuzzy Clustering., The Atrium, Southern Gate, Chichester. British Library Cataloguing in Publication Data. .Jhon Willey and Son,Ltd. England.

Pal, N.L., Pal, K., Keller, J.M. & Bezdek, J.C. 2005. A Possibilistic Fuzzy c-Means Clustering Algorithm. IEEE Transactions On Fuzzy Systems3, Issue 4, August 2005.

Parker, J.K. 2013.Accelerated Fuzzy Clustering. Dissertation Ph.D. University of South Florida.

Sembiring, R.W., Zain, J.M & Embong, A. 2010. A Comparative Agglomerative Hierarchical Clustering Method to Cluster Implemented Course. Jurnal of Computing2. Issue 12,. December 2010.

Su, X.,Wang,X., Wang, Z. & Xiao,Y. 2010. An New Fuzzy Clustering Algorithm Base on Entrophy Weighting,. Journal of Computational Information System6. Issue 1(October 2010) pp 3319-3326.

Saad, F.M & Alimi,A.M, 2009. Modified Fuzzy Possibilistic C-means,. IMECS Hongkong: Proceedings of International Multi Conference of Engineers and Computer Scientists Vol 1,. pp 23-27.

Sugeno,M & Yasukawa,T. 1993. A Fuzzy-Logic-Based Approach to Qualitative Modeling. Transactions of Fuzzy Systems1., Issue 1, 1 February 1993 pp 7-31. Valarmathie.P., MP, Srinath., Ravichandran, T. & Dinakaran,K,. 2009. Hybrid Fuzzy

C-Means Clustering Technique for Gene Expression Data, International Journal of Research and Reviews in Applied Sciences1, Issue 1(Oct 2009), pp 33-37.

Yatracos, Y.G. 1998. Variance and Clustering. Proceeding of The American Mathematical Society126. Issue 4,. April 1998,. Pp 1177-1179.

Yang, H.,Han,Y & Yu,F. 2005. Improve Fuzzy C-Means Clustering Algorithm Base on Sample Density,. Journal of Theoretical and Applied Information Technology48. Issue 1 (February 2005) pp 210-214.

(3)

63

Referensi

Dokumen terkait

Pada awal hingga akhir penelitian Optimasi PSO Untuk Metode Clustering Fuzzy C-Means Dalam Pengelompokan Kelas dengan variabel nilai akademik dan variabel nilai perilaku atau

Pada artikel ini dengan menggunakan teknik fuzzy c-means clustering akan mencoba mengelompokan objek para lulusan yang akan dibagi kedalam 3 cluster, adapun besar

Perluasan yang menarik untuk model Fuzzy C-means adalah algoritma Gustafson- Kessel clustering yang diusulkan oleh Gustafson dan Kessel (1979), Fuzzy clustering dengan

Algoritma fuzzy clustering yang umum digunakan adalah Fuzzy C- means (FCM) dan algoritma yang dikembangkan lebih lanjut oleh Gath dan Geva (GG), yang mampu mendeteksi kelompok

Abstract — The Multiple Prototype Fuzzy Clustering Model (FCMP), introduced by Nascimento, Mirkin and Moura-Pires (1999), proposes a framework for partitional fuzzy clustering

2326-9865 Video Segmentation with Multilevel Thresholding Using Fuzzy C- Mean Clustering Algorithm Rahul Bhatt1, Mukesh Rajput2, Kuldeep Bahuguna3 1Assistant Professor, Computer

Nonetheless, the basic FCM algorithm remains one of the most useful general purpose fuzzy clustering routines, and is the one utilized in the FUZZY QMODEL algorithms discussed by Full,

Image Enhancement Method based on an Improved Fuzzy C-Means Clustering ABSTRACT Image enhancement is an important method in the process of image processing.. This paper proposes an