Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ubes20 Download by: [Universitas Maritim Raja Ali Haji], [UNIVERSITAS MARITIM RAJA ALI HAJI
TANJUNGPINANG, KEPULAUAN RIAU] Date: 11 January 2016, At: 20:46
Journal of Business & Economic Statistics
ISSN: 0735-0015 (Print) 1537-2707 (Online) Journal homepage: http://www.tandfonline.com/loi/ubes20
Comment
Shiqing Ling & Ke Zhu
To cite this article: Shiqing Ling & Ke Zhu (2014) Comment, Journal of Business & Economic Statistics, 32:2, 202-203, DOI: 10.1080/07350015.2014.907059
To link to this article: http://dx.doi.org/10.1080/07350015.2014.907059
Published online: 16 May 2014.
Submit your article to this journal
Article views: 67
View related articles
202 Journal of Business & Economic Statistics, April 2014
Comment
Shiqing L
INGDepartment of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China ([email protected])
Ke Z
HUAcademy of Mathematics and Systems Science, Chinese Academy of Sciences, HaiDian District, Beijing, China ([email protected])
1. DISCUSSIONS
Congratulation to authors because of their interesting es-timation approach. In this discussion, we compare the fi-nite performance of the non-Gaussian quasi maximum likeli-hood estimator (NGQMLE) with that of the Laplacian QMLE (LQMLE). Suppose that the data sample {yt}nt=1 is
gener-distribution, the log-likelihood function (ignoring some con-stants) can be written as
Ln( ˜θ)=
where ˜vt( ˜θ) satisfies the following iteration:
˜
Then, the LQMLE is defined as
˜
θn=arg min
˜
θ
Ln( ˜θ),
see, for example, Berkes and Horv´ath (2004) and Zhu and Ling (2011). Unlike the NGQMLE, the LQMLE requires that E|ε˜t| =1 for its identification, and only needs the finite
sec-ond moment of ˜εt for its asymptotically normal distribution.
In view of the relationship between θ and ˜θ, the LQMLE of
θisθn=(σn, a1n, . . . , apn, b1n, . . . , bqn), whereσn=√w˜n/r,
ain=α˜in/ω˜n, andbj n=β˜j n.
We generate 1000 replications of sample size n=500 and 1000 from models (1.1)–(1.2) with the true parameter (σ, a1, b1)=(0.5,0.6,0.3), where the innovationsεtare chosen
as Student’stand generalized Gaussian distributions such that Eεt =0 and var(εt)=1.Table 1reports the sample bias and
root mean square error (RMSE) of each estimator. To make our comparison feasible, we use the true value ofrin all calcula-tions. FromTable 1, we find that the LQMLE is more efficient than the NGQMLE for the cases thatεt ∼gg1 andgg0.8. This is because the LQMLE is an efficient estimator whenεt ∼gg1. For the remaining cases, the NGQMLE is more efficient than the LQMLE due to the adaption property of the NGQMLE. But the difference seems not to be very large except for very few cases.
ACKNOWLEDGMENT
The authors thank the funding support in part from Hong Kong RGC Grants (numbered HKUST641912 and 603413) and National Natural Science Foundation of China (No. 11201459).
REFERENCES
Berkes, I., and Horv´ath, L. (2004), “The Efficiency of the Estimators of the Parameters in GARCH Processes,”The Annals of Statistics, 32, 633–655. [202]
Zhu, K., and Ling, S. (2011), “Global Self-Weighted and Local Quasi-Maximum Exponential Likelihood Estimators for ARMA-GARCH/IGARCH Models,”
The Annals of Statistics, 39, 2131–2163. [202]
© 2014American Statistical Association Journal of Business & Economic Statistics April 2014, Vol. 32, No. 2 DOI:10.1080/07350015.2014.907059
Ling and Zhu: Comment 203
Table 1. Estimation results for LQMLE and NGQMLE
LQMLE NGQMLE
εt n σn a1n b1n σˆn aˆ1n bˆ1n
t20 500 Bias 0.0051 0.0402 −0.0324 0.0031 0.0348 −0.0305
RMSE 0.1016 0.3573 0.2290 0.1008 0.3472 0.2283 1000 Bias 0.0039 0.0187 −0.0223 0.0029 0.0162 −0.0209 RMSE 0.0826 0.2495 0.1932 0.0822 0.2432 0.1924
t9 500 Bias 0.0082 0.0358 −0.0418 0.0042 0.0303 −0.0354
RMSE 0.1017 0.3578 0.2294 0.1010 0.3499 0.2310 1000 Bias 0.0080 0.0157 −0.0315 0.0068 0.0119 −0.0306 RMSE 0.0782 0.2441 0.1832 0.0781 0.2397 0.1832
t6 500 Bias −0.0028 0.0500 −0.0149 −0.0071 0.0423 −0.0088
RMSE 0.1035 0.3685 0.2350 0.1049 0.3607 0.2385 1000 Bias 0.0031 0.0080 −0.0186 0.0023 0.0055 −0.0186 RMSE 0.0816 0.2501 0.1904 0.0816 0.2461 0.1906
t4 500 Bias −0.0018 0.0621 −0.0217 −0.0062 0.0532 −0.0179
RMSE 0.1064 0.4036 0.2416 0.1062 0.3794 0.2398 1000 Bias 0.0024 0.0352 −0.0211 −0.0033 0.0314 −0.0137 RMSE 0.0789 0.2706 0.1879 0.0789 0.2541 0.1874
t3 500 Bias −0.0042 0.1031 −0.0194 −0.0178 0.0808 −0.0058
RMSE 0.1037 0.5075 0.2414 0.1025 0.4087 0.2359 1000 Bias −0.0003 0.0507 −0.0166 −0.0063 0.0405 −0.0126 RMSE 0.0809 0.3433 0.1968 0.0806 0.2908 0.1900
gg4 500 Bias 0.0075 0.0207 −0.0351 0.0075 0.0099 −0.0341
RMSE 0.1030 0.3509 0.2318 0.0999 0.3194 0.2266 1000 Bias 0.0068 0.0251 −0.0315 0.0076 0.0169 −0.0322 RMSE 0.0832 0.2384 0.1918 0.0792 0.2204 0.1840
gg2 500 Bias 0.0013 0.0461 −0.0255 −0.0010 0.0408 −0.0209
RMSE 0.1027 0.3540 0.2323 0.1025 0.3425 0.2328 1000 Bias 0.0026 0.0393 −0.0223 0.0021 0.0350 −0.0218 RMSE 0.0825 0.2536 0.1878 0.0805 0.2428 0.1848
gg1 500 Bias −0.0024 0.0446 −0.0160 −0.0092 0.0489 −0.0071
RMSE 0.1077 0.4059 0.2429 0.1111 0.4150 0.2507 1000 Bias 0.0002 0.0240 −0.0165 −0.0017 0.0237 −0.0152 RMSE 0.0900 0.2649 0.2065 0.0917 0.2686 0.2098
gg0.8 500 Bias −0.0072 0.0819 −0.0117 −0.0153 0.0900 −0.0020
RMSE 0.1111 0.4370 0.2521 0.1136 0.4533 0.2564 1000 Bias −0.0021 0.0405 −0.0116 −0.0089 0.0456 −0.0006 RMSE 0.0886 0.2929 0.02047 0.0914 0.2983 0.2105
gg0.4 500 Bias −0.0106 0.2216 −0.0219 −0.0378 0.2403 0.0103
RMSE 0.1274 0.8502 0.2827 0.1276 0.7976 0.2821 1000 Bias −0.0035 0.1032 −0.0195 −0.0214 0.1272 0.0036 RMSE 0.1011 0.4935 0.2361 0.1021 0.4581 0.2358