• Tidak ada hasil yang ditemukan

Grosan Teodor.. 123KB Jun 04 2011 12:08:43 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Grosan Teodor.. 123KB Jun 04 2011 12:08:43 AM"

Copied!
6
0
0

Teks penuh

(1)

A CLASS OF SINGULAR PERTURBATED BILOCAL

LINEAR PROBLEMS

by

Mihaela Jaradat and Teodor Groşan

Abstract. This paper presents the algorithms for solving a boundary layer bilocal singular perturbated problem when the boundary layer is situated in origin. The solving of this problem has very good results when approximative methods are used. For this problem a uniform first order expansion was obtained.

Key word: boundary layer, uniform expansion, outer and inner expansion, maching.

As it is known from literature there are many methods to determine the uniform solution for the singular perturbated problems attached to same bilocal problems. The study of this kind of singular perturbated problems attached to some ordinary differential equation of high order has good results if we use approximative methods. Thus for these problems we will search asymptotic solutions using the maching asymptotic expansion methods.

Let’s consider the following bilocal linear problem:

0

= − ′ +

′′ x y x y

y n m

ε (1a)

( )

0 =α, y

( )

1 =β

y (1b)

for which we obtain a first order uniform expansion considering the boundary layer situated in origin.

We suppose that the boundary layer is situated in origin. Thus the outer expansion must satisfy the right limit condition and the inner expansion must satisfy the left limit condition and if there is only one distinct limit then the inner and outer expansion must be mached.

From equation (1a) we can see that the small parameter ε multiply the second order derivative, thus the boundary layer position depend by the coefficient xn and because the value of y depend by the limits α and β, the position of the boundary layer will depend also by this parameters.

(2)

K

and using in equation (1a) and in the rights limit condition, y(1) = β, after equalization of the coefficients of ε0 we have:

which have the solution:

1

To determine the inner expansion, we introduce the stretching transformation :

0 , >

= λ

ε

ξ xλ

in equation (1a) and we obtain

(3)

corresponding to λ = 1 / (n+1), and respectively

2 0

, 0 2

2

− ≠ >

− =

+ y if n m and m d

y

d m i

i ξ ξ

(iii)

corresponding to λ = 1 / (m+2). We can see that the limits are not distinct and the boundary layer in origin don’t exist when n = -1 and m = -2, n = -1 and m > -2 or m = -2 and n> -1.

In case (i) the distinct limit is the same like in the original problem and no simplification was made; thus for case n = m+1 it is necessary to solve the original problem.

In case (ii) the general solution of the problem is:

2 0

1 1

1

exp d c

n c

y

n

i +

  

 + −

=

ξ τ + τ (6)

for n = -1. For n < -1 the integral do to not exist and for y(i) (0) finite c1 = 0. Thus, in the second case, do not exist boundary layer in origin. In the first case, because the inner develop must satisfy the limit condition in origin and for x = 0 correspond to ξ = 0, yi (0) = α and we obtain c2 = α.

α τ τ

ξ

+   

 + −

=

+

0

1 1

1

exp d

n c

y

n i

(7)

To obtain c1 we mach (4b) and (7). We have:

( )

  

 

+ − − =

1 1 exp

0

n m

y i β

(8a)

( )

 τ  τ +α

+ − =

∞ +

0

1 1

0

1

exp d

n c

y

n i

(8b)

Taking t

n

n

= +

+

1 1

τ we have nd dt

=

τ

(4)

( )

1

( )

1

[

1/

( )

1

]

Adding (4b) and (9b), and subtracting (8a) we obtain the uniform develop:

( )

For (iii) the solution of the problem is:

(5)

( )

( )

, 0 2

1 2 1

~  →

    

Γ zfor z z

K

ν

ν ν

we have

( ) ξ

( )

ν ξ( )

( )

ν

ξ

ξ ν ν  νΓ

    

+ =

  

 + Γ

  

 +

− −

+ +

2 1 2 1 2

1 2

1 ~ 2

2 2 /2 2 /2

m m

m

K m m

Thus imposing the condition that yi (0) = α we obtain

(

) ( )

ν

α

νΓ

+ =

2 2 2

m c

Therefore

(

+

) ( )

Γ  + ( ) 

= +2 /2

2 2 2

2 m

i

m K m

y ξ ξ

ν α

ν ν

(11)

Because (y0)i = 0 and (yi)0 = 0 it is possible to mach the inner develop and the outer develop. Adding (4b) and (11) we obtain the uniform develop:

(

+

) ( )

Γ  + ( )  +

  

+ − −

= − + +2 /2

1

2 2 2

2 1

1

exp m

n m c

m K m

n m x

y ξ ξ

ν α

β ν ν

(12)

in the case (n-m) > 1 and m ≠ -2.

Thus we determine a first order uniform expansion considering the boundary layer situated in origin.

References

[1]Van Dyke, M., Perturbation methods in fluid mechanics. Acad. Press, New York, 1964; the parabolic Press Stanford, California 1975.

[2]Georgescu, A., Aproximaţii asimptotice, Editura tehnică, Bucureşti, 1989.

(6)

[4]Nayfed, A. H., Problems in perturbation. John & Sons, New York, Chichester, Brisbane, Toronto, Singapore, 1985

Authors: Jaradat Mihaela

“Bogdan Vodă” University, Faculty of Economic Sciences, Cluj Napoca. Groşan Teodor,

Referensi

Dokumen terkait

Hal ini sejalan dengan penelitian Dinata Ta- hun 2009 bahwa kepadatan hunian berhubungan dengan kejadian TB Paru dan buku pedoman teknis penilaian rumah sehat

[r]

Pasal 52 UU Telekomunikasi juga mengatur pelanggaran dimana tidak ada sertifikasi pada alat dan perangkat telekomunikasi, yaitu barang siapa memperdagangkan, membuat,

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh mineral Zinc (Zn), Selenium (Se) dan Magnesium (Mg) terhadap kelimpahan, tingkat kekeruhan serta

Ketepatan analisis SOP dan rancangan bisnis, kemampuan menerjemahkan SOP dan rancangan bisnis ke dalam diagram alur proses aplikasi, kemampuan merancang diagram aplikasi, dan

The financial costs of getting this interaction wrong can be significant – a recent major study of business costs resulting from conflict found, for example, that “ company-

Belum lagi dia harus dikenakan PBB (pajak bumi dan bangunan) karena memiliki tanah dan rumah.. 80 | Volume IV/ Edisi 2/November 2013 Kondisi seperti ini dirasa

Pada hari ini, Kamis tanggal Lima belas bulan januari tahun dua ribu lima belas (15-1-2015) , kami yang bertanda tangan dibawah ini Pokja Konstruksi, Pengadaan Barang,