• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:DM:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:DM:"

Copied!
14
0
0

Teks penuh

(1)

On hypergeometric functions

and Pochhammer

k

-symbol

Sobre funciones hipergeom´

etricas y el

k

-s´ımbolo de Pochhammer

Rafael D´ıaz

Departamento de Matem´aticas. Universidad Central de Venezuela. Caracas. Venezuela.

Eddy Pariguan

Departamento de Matem´aticas. Universidad Central de Venezuela. Caracas. Venezuela.

Abstract

We introduce thek-generalized gamma function Γk, beta function Bk and Pochhammerk-symbol (x)n,k. We prove several identities

gen-eralizing those satisfied by the classical gamma function, beta function and Pochhammer symbol. We provide integral representation for the Γk andBk functions.

Key words and phrases: hypergeometric functions, Pochhammer symbol, gamma function, beta function.

Resumen

Introducimos la funci´on gammak-generalizada Γk, la funci´on beta Bk y el k-s´ımbolo de Pochhammer (x)n,k. Demostramos varias

identi-dades que generalizan las que satisfacen las funciones gamma, beta y el s´ımbolo de Pochhammer cl´asicos. Damos representaciones integrales para las funciones Γk yBk.

Palabras y frases clave:funciones hipergeom´etricas, s´ımbolo de Po-chhammer, func´on gamma, func´on beta.

(2)

1

Introduction

The main goal of this paper is to introduce thek-gamma function Γk which

is a one parameter deformation of the classical gamma function such that Γk →Γ as k→1. Our motivation to introduce Γk comes from the repeated

appearance of expressions of the form

x(x+k)(x+ 2k). . .(x+ (n1)k) (1)

in a variety of contexts, such as, the combinatorics of creation and annihila-tion operators [5], [6] and the perturbative computaannihila-tion of Feynman integrals, see [3]. The function of variable xgiven by formula (1) will be denoted by (x)n,k, and will be called the Pochhammer k-symbol. Settingk= 1 one

ob-tains the usual Pochhammer symbol (x)n, also known as the raising factorial

[9], [10]. It is in principle possible to study the Pochhammer k-symbol using the gamma function, just as it is done for the casek= 1, however one of the main purposes of this paper is to show that it is most natural to relate the Pochhammerk-symbol to thek-gamma function Γk to be introduce in section

2. Γk is given by the formula

Γk(x) = lim n→∞

n!kn(nk)x k−1

(x)n,k

, k >0, xC rkZ−.

The function Γk restricted to (0,∞) is characterized by the following

proper-ties 1) Γk(x+k) =xΓk(x), 2) Γk(k) = 1 and 3) Γk(x) is logaritmically convex.

Notice that the characterization above is indeed a generalization of the Bohr-Mollerup theorem [2]. Just as for the usual Γ the function Γk admits an

infinite product expression given by

1 Γk(x)

=xk−xke x kγ

Y

n=1

³³

1 + x

nk

´

e−xnk

´

. (2)

For Re(x)>0, the function Γk is given by the integral

Γk(x) =

Z ∞

0

tx−1e−tk k dt.

We deduce from the steepest descent theorem ak-generalization of the famous Stirling’s formula

Γk(x+ 1) = (2π)

1

2(kx)−12x

x+1

k e− x k +O

µ1

x

(3)

It is an interesting problem to understand how the function Γk changes as

the parameter k varies. Theorem 11 on section 2 shows that the function

ψ(k, x) = log Γk(x) is a solution of the non-linear partial differential equation

−kx2∂2xψ+k3∂2kψ+ 2k2∂kψ=−x(k+ 1).

In the last section of this article we study hypergeometric functions from the point of view of the Pochhammerk-symbol. Wek-generalize some well-known identities for hypergeometric functions such as: for any a Cp, k

∈(R+)p,

s(R+)q,b= (b

1, . . . , bq)∈Cq such thatbi∈C rsiZ−the following identity

holds

F(a, k, b, s)(x) =

p+1

Y

j=1

1 Γkj(aj)

Z

(R+)p+1 p+1

Y

j=1

e

tkjj kj taj−1

j

 

X

n=0

1 (b)n,s

(xtk1

1 . . . t kp+1 p+1 )n

n!

 dt,

(3) where (b)n,s = (b1)n,s1. . .(bq)n,sq, dt=dt1. . . dtp+1, p≤q, Re(aj) >0 for

all 1≤jp+ 1, and term-by-term integration is permitted. Our final result Theorem 25 provides combinatorial interpretation in terms of planar forest for the coefficients of hypergeometric functions.

2

Pochhammer

k

-symbol and

k

-gamma

func-tion

In this section we present the definition of the Pochhammer k-symbol and introduce thek-analogue of the gamma function. We provided representations for the Γkfunction in term of limits, integrals, recursive formulae, and infinite

products, as well as a generalization of the Stirling’s formula.

Definition 1. Let xC, kR andnN+, the Pochhammer k-symbol is

given by

(x)n,k=x(x+k)(x+ 2k). . .(x+ (n−1)k).

Given s, n N with 0 s n, the s-th elementary symmetric function

X

1≤i1<...<is≤n

xi1. . . xis on variables x1, . . . , xn is denoted by e

n

s(x1, . . . , xn).

Part (1) of the next proposition provides a formula for the Pochhammer k -symbol in terms of the elementary symmetric functions.

Proposition 2. The following identities hold

1. (x)n,k= n−1

X

s=0

ens−1(1,2, . . . , n−1)k s

(4)

2. ∂

Proof. Part (1) follows by induction on n, using the well-known identity for elementary symmetric functions

en−1

s (x1, . . . , xn−1) +nens−−11(x1, . . . , xn−1) =ens(x1, . . . , xn).

Part (2) follows using the logarithmic derivative.

Definition 3. Fork >0, the k-gamma functionΓk is given by

Γk(x) = lim

Proof. By Definition 3

Γk(x) =

The following recursive formula is proven using integration by parts

(5)

Therefore,

An,n(x) =

n!kn(nk)x k−1

(x)n,k¡1 + nk

,

and

Γk(x) = lim

n→∞An,n(x) = limn→∞

n!kn(nk)x k−1

(x)n,k

.

Notice that the casek= 2 is of particular interest since

Γ2(x) =

Z ∞

0

tx−1e−t

2 2 dt

is the Gaussian integral.

Proposition 6. The k-gamma functionΓk(x)satisfies the following

proper-ties

1. Γk(x+k) =xΓk(x).

2. (x)n,k=

Γk(x+nk)

Γk(x)

.

3. Γk(k) = 1.

4. Γk(x) is logarithmically convex, forx∈R.

5. Γk(x) =a

x k

Z ∞

0

tx−1e−ktkadt, for a∈R.

6. 1

Γk(x)

=xk−xke x kγ

Y

n=1

³³

1 + x

nk

´

e−nkx

´

, where

γ= lim

n→∞(1 +· · ·+

1

n−log(n)).

7. Γk(x)Γk(k−x) =

π

sin¡πx k

¢.

Proof. Properties 2), 3) and 5) follow directly from definition. Property 4) is Corollary 12 below. 1), 6) and 7) follows from Γk(x) =k

x k−1Γ

³x

k

´

.

(6)

Theorem 7. Letf(x)be a positive valued function defined on(0,). Assume

Sincef is logarithmically convex the following inequality holds

1

(7)

Theorem 8. Assume that f : (a, b)−→R, witha, b[0,)attains a global

As promised in the introduction, we now provide an analogue of the Stirling’s formula for Γk.

Theorem 9. ForRe(x)>0, the following identity holds

Γk(x+ 1) = (2π)

txe−tkkdt.Consider the following change

of variablest=x1kv, we get

Using Theorem 8, we have

Z ∞

Proposition 10 and Theorem 11 bellow provide information on the dependence of Γk on the parameterk.

Proposition 10. ForRe(x)>0, the following identity holds

∂kΓk(x+ 1) =

Proof. Follows from formula

Γk(x+ 1) =

Z ∞

0

(8)

Theorem 11. Forx > 0, the function ψ(k, x) = log Γk(x) is a solution of

the non-linear partial differential equation

−kx2∂2xψ+k 3

∂2kψ+ 2k 2

∂kψ=−x(k+ 1).

Proof. Starting from

1

The following equations can be proven easily.

ψ(k, x) = −log(x) +x

The third equation above shows

Corollary 12. Thek-gamma functionΓkis logarithmically convex on(0,∞).

We remark that the q-analogues of the k-gamma and k-beta functions has been introduced in [4].

3

k

-beta and

k

-zeta functions

In this section, we introduce thek-beta functionBk and the k-zeta function

ζk. We provide explicit formulae that relate thek-betaBk andk-gamma Γk,

(9)

Definition 13. The k-beta functionBk(x, y)is given by the formula

Bk(x, y) =

Γk(x)Γk(y)

Γk(x+y)

, Re(x)>0, Re(y)>0.

Proposition 14. Thek-beta function satisfies the following identities

1. Bk(x, y) =

Theorem 16. Thek-zeta function satisfies the following identities

1. ζk(x,2) =∂x2(log Γk(x)).

Proof. Follows from equations

(10)

4

Hypergeometric Functions

In this section we strongly follow the ideas and notations of [1]. We study hypergeometric functions, see [1] and [8] for an introduction, from the point of view of the Pochhammerk-symbol.

Definition 17. Given aCp,k

∈(R+)p,s

∈(R+)q, b= (b

1, . . . , bq)∈Cq

such thatbi∈C rsiZ−. The hypergeometric functionF(a, k, b, s)is given by

the formal power series

F(a, k, b, s)(x) =

X

n=0

(a1)n,k1(a2)n,k2. . .(ap)n,kp

(b1)n,s1(b2)n,s2. . .(bq)n,sq

xn

n!. (5)

Givenx= (x1, . . . , xn)∈Rn, we set x=x1. . . xn. Using the radio test one

can show that the series (5) converges for allxifpq. Ifp > q+ 1 the series diverges, and ifp=q+ 1, it converges for allxsuch that|x|< s1. . . sq

k1. . . kp

. Also

it is easy to check that the hypergeometric function y(x) = F(a, k, b, s)(x) solves the equation

D(s1D+b1−s1). . .(sqD+bq−sq)(y) =x(k1D+a1). . .(kpD+ap)(y),

where D=x∂x.

Notice that hypergeometric functionF(a,1, b,1) is given by

F(a,1, b,1)(x) =

X

n=0

(a1)n. . .(ap)n

(b1)n. . .(bq)n

xn

n!,

and thus agrees with the classical expression for hypergeometric functions. We now show how to transfer from the classical notation for hypergeometric functions to our notation using the Pochhammer k-symbol.

Proposition 18. GivenaCp,k

∈(R+)p,s

∈(R+)q,b= (b

1, . . . , bq)∈Cq

such that bi ∈C rsiZ−, the following identity holds

F(a, k, b, s)(x) =F

µ

a k,1,

b s,1

¶ µ

xk s

,

where a k =

µ

a1

k1

, . . . ,ap kp

, b s =

µ

b1

s1

, . . . ,bq sq

(11)

Proof.

k, the following identity holds

We next provide an integral representation for the hypergeometric function

F(a, k, b, s). Let us first prove a proposition that we will be needed to obtain the integral representation. Given x= (x1, . . . , xn) ∈ Cn we denote x≤i =

(x1, . . . , xi).

Proposition 20. Let a, k, b, sbe as in Definition 17. The following identity holds

Theorem 21. For anya, k, b, sbe as in Definition 17. The following formula holds

all 1≤jp+ 1, and term-by-term integration is permitted.

(12)

Example 22. Fork= (2, . . . ,2), the hypergeometric functionF(a,2, b, s)(x)

is given by

F(a,2, b, s) =

p+1

Y

j=1 1 Γ2(aj)

Z

(R+)p+1

p+1

Y

j=1

e−

t2j

2taj−1

j

à ∞

X

n=0 1 (b)n,s

(xt21. . . t2p+1)n

n!

!

dt,

wheredt=dt1. . . dtn,(b)n,s= (b1)n,s1. . .(bq)n,sq,Re(aj)>0 for all1≤j≤

p+ 1 and term-by-term integration is permitted

We now proceed to study the combinatorial interpretation of the coefficient of hypergeometric functions.

Definition 23. A planar forestF consist of the following data:

1. A finite totally order set Vr(F) ={r1 < . . . < rm} whose elements are

called roots.

2. A finite totally order set Vi(F) ={v1 < . . . < vn} whose elements are

called internal vertices.

3. A finite setVt(F)whose elements are called tail vertices.

4. A mapN :V(T)→V(T).

5. Total order onN−1(v)for eachv

∈V(F) :=Vr(F)⊔Vi(F)⊔Vt(F).

These data satisfies the following properties:

• N(rj) =rj, for all j= 1, . . . , m andNk(v) =rj for some j= 1, . . . , m

and anyk >>1.

• N(V(F))Vt(F) =∅.

• For any rj ∈ Vr(F), there is an unique v ∈ V(F), v 6= rj such that

N(v) =rj.

Definition 24. a) For any a, kN+,Ga

n,k denotes the set of isomorphisms

classes of planar forest F such that

1. Vr(F) ={r1< . . . < ra}.

2. Vi(F) ={v1< . . . < vn}.

3. |N−1(v

i)|=k+ 1 for allvi∈Vi(F).

(13)

1

2 4

5

6 8

9 7 3

Figure 1: Example of a forest inG39,2.

b) For anya, k(N+)p, we setGa n,k=G

a1

n,k1× · · · ×G

ap

n,kp.

Figure 1 provides an example of an element ofG3 9,2

Theorem 25. Givena, k(N+)p,b, s

∈(N+)q andn

∈N+, we have

∂n

∂xnF(a, k, b, s)(x)

¯ ¯ ¯x=0=

|Gn a,k|

|Gn b,s|

.

Proof. It enough to show that (a)n,k = |Gn,ka |, for any a, k, n ∈ N+. We

use induction onn. Since (a)1,k=aand (a)n+1,k = (a)n,k(a+nk), we have

to check that |Ga

1,k| = a, which is obvious from Figure 2, and |G a

n+1,k| =

|Ga

n,k|(a+nk). It should be clear the any forest inG a

n+1,k is obtained from

a forestF in Ga

n,k, by attaching a new vertexvn+1 to a tail ofF, see Figure 3. One can prove easily that |Vt(F)|=a+nk, for all F ∈Gan,k. Therefore

|Ga

n+1,k|=|G a

n,k|(a+nk).

. . .

. . .

rj

5

r1 ra

Figure 2: Example of a forest inGa 1,4.

References

(14)

n+1

Figure 3: Attaching vertexvn+1 to a forest inGan,k

.

[2] J. B. Conway, Functions of one complex variable, 2nd ed., Springer-Velarg, New York, 1978.

[3] P. Deligne, P. Etingof, D. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, E. Witten, Quantum fields and strings: A course for mathe-maticians, American Mathematical Society, 1999.

[4] R. D´ıaz, C. Teruel,q, k-Generalized Gamma and Beta Functions, Journal of Non-Linear Mathematical Physics,12(1) (2005), 118–134.

[5] R. D´ıaz, E. Pariguan. Quantum symmetric functions, Communications in Algebra,6(33)(2005), 1947–1978.

[6] R. D´ıaz, E. Pariguan,Symmetric quantum Weyl algebras, Annales Math-ematiques Blaise Pascal,11(2004), 187–203.

[7] P. Etingof, Mathematical ideas and notions of quantum field theory, Preprint.

[8] G. Gasper, M. Rahman,Basic hypergeometric series, Cambridge Univer-sity Press, New York, 1990.

[9] S. A. Joni, G. C Rota, B. Sagan,From sets to functions: Three elementery examples, Discrete Mathematics,37(1981), 193–202.

Gambar

Figure 2: Example of a forest in Ga1,4.
Figure 3: Attaching vertex vn+1 to a forest in Gan,k

Referensi

Dokumen terkait

1.Dapat menggantikan tepung ikan, dapat diternak secara massal 2.Cara pembuatan: cacing tanah di keringkan lalu di giling. 3.Kandungan protein nya 72% dan mudah di serap

Anda perlu bekerja rapat dengan agen berkenaan untuk menyediakan maklumat yang diperlukan oleh pihak berkuasa, kerana organisasi anda pada akhirnya yang bertanggungjawab

Sehingga siswa dengan usia yang masih muda memiliki kecerdasan ekologis dapat menjadi generasi yang senantiasa menjaga kelestarian lingkungan hidup berdasarkan

Hasil penelitian menunjukkan bahwa karakteristik responden dan asupan gizi pada masing-masing perlakuan tidak berbeda bermakna dan sebagian besar responden asupan gizinya kurang dari

Penelitian ini merupakan penelitian kuantitatif dengan desain studi potong lintang. Sebagai variabel independen yaitu asupan energi, karbohidrat, protein, lemak,

mengelompokkan bentuk bangun datar sederhana pada kelompok kontrol mengalami perubahan, namun paling menonjol terjadi pada kemampuan mengelompokkan bentuk bangun datar

Seperti apa yang telah dijelaskan di bagian atas, bahwa ciri –ciri bibit ( bakalan ) yang sapi pedaging adalah : tubuh dalam dan besar, berbentuk balok atau segi empat,

Ditemukan profil sifat fisis gel sunscreen ekstrak etanol Curcuma mangga pada respon daya sebar, viskositas dan perubahan viskositas. Ditemukan area optimum komposisi