• Tidak ada hasil yang ditemukan

Elektronika Dasar Field Effect Transistor

N/A
N/A
Protected

Academic year: 2017

Membagikan "Elektronika Dasar Field Effect Transistor"

Copied!
19
0
0

Teks penuh

(1)

3.Field-Effect Transistor (FET)

Junction Field-Effect Transistor (JFET)

n-channel JFET

V

GS = 0 V and VDS positive value

When VGS=0V and C some positive value,the upper region of the p-type material will be reverse biased higher than the lower region(the greater the reverse bias,the wider the depletion region).

As the voltage VDS is increased from 0 to a few volts,the current will increase as determined by Ohm’s law and The depletion region will widen,causing a noticeable reduction in channel widht.If VDS is increased to a level where it appears that the two depletion regions would “touch”, a condition referred to as pinch-off will result.The level of VDS that

establishes this condition is referred to as pinch-off voltage Vp (when VGS=0V and VDS>Vp IDSS). Input resistance > 108

(2)

VGS < 0V

Shockley’s Equation:

Voltage-Controlled Resistor:

where ro is the resistance with VGS _ 0 V and rd the resistance at a particular level of VGS.

(3)

p-channel JFET

PD = |VD|ID

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) Or Insulated-Gate FET (IGFET)

(4)

When VGS=0V,the drain current is IDSS.

The negative potential at the gate will tend to pressure electrons toward the p-type substrate and attract holes from the p-type substrate.The drain current is therefore reduce with increasing negative bias for VGS.

The positive potential at the gate will draw additional electrons (free carrier) from the p-type substrate due to the reverse leakage current,reveals that the drain current will increase.

(5)

p-channel D-MOSFET

Enhachement-Type MOSFET (E-MOSFET) n-channel E-MOSFET

(6)

VT VGS(ON) VGS

VD(ON)

p-channel E-MOSFET

(7)

Complementary MOSFET (CMOS)

(8)

FET Biasing

For de analysis,the coupling capacitors are open cicuits. Fixed-Bias Configuration

Graphical Approach:

Self-Bias Configuration Graphical Approach:

(9)

Voltage-Divinder Biasing Graphical Approach:

Depletion-Type MOSFET

Graphical Approach:

(10)

Graphical Approach:

p-channel FET

V

GS

=

V

DS

=

V

DD

I

D

R

D

=

12

V

I

D

(

2

K

Ω)

I

D

=

0

V

GS

=

12

V

V

GS

=

0

I

D

=

6

mA

I

DQ

=

2.75

mA

V

GS

=

V

DS
(11)

Graphical Approach:

VGS=VG+IDRS=−4.55V+ID(1 .8KΩ)

(12)

FET Small-Signal Model mS V mA V I g V V mS V mA V I g V V mS V mA V I g V V GS D m Q GS GS D m Q GS GS D m Q GS 4 . 1 1 . 1 5 . 1 5 . 2 4 . 2 75 . 0 8 . 1 5 . 1 3 . 3 6 . 0 2 5 . 0 = = D D = ® -= = = D D = ® -= = = D D = ® -= At At At D

I

D

V

GS

I

D

Output resistance:

FET ac equivalent model:

ID=IDSS

(

1−VGS

VP

)

2

gm=yfs=ΔID

ΔVGS|VDS=const=

2IDSS

|VP|

(

1−

VGS

(13)

Input Impedance of the FET:

(the typical values: JFET

Output impedance of the FET:

rd=ΔVDs

ΔID =

7V

0 . 5mA=14kΩ

Zi(FET)=∞

¿

10

9

Ω

, MOSFET

10

12

10

15

Ω)

Zo(FET)=rd= 1

(14)

FET Small-Signal Analysis Common-Source Circuit

Output resistance: FET ac equivalent model:

+VDD

+VDD

RD

C2

C1 R1

R2

Rs Cs

V = 0i Z = R ||ro D d

Z

i

=

R

1

||

R

2

V

o

=−(

g

m

V

gs

)(

R

D

||

r

d

)=−(

g

m

V

i

)(

R

D

||

r

d

)→

A

v

=

V

o
(15)

+VDD

RG Rs

RD Vi d s o r V V -Io Vo D

r

d

=∞

s

V

gs

=

V

i

g

m

V

gs

Ralignl

¿¿

¿

¿

V

i

=

V

gs

(

1

+

g

m

R

s

)

¿

V

o

=−(

g

m

V

gs

)

R

D

¿

A

v

=

V

o

V

i

=−

g

m

R

D

1

+

g

m

R

s

¿¿

r

d

≠∞

Vgs=ViIoRs Io=gmVgs+VoVs

rd =gmVgs+

IoRDIoRs rd

¿gm(ViIoRs)+−IoRDIoRs

rd

Io=gmVi

1+gmRs+(RD+Rs)

rd Vo=−IoRD=−gmRDVi

1+gmRs+(RD+Rs)

rd

Av=Vo

Vi =− gmRD

1+gmRs+(RD+Rs)

(16)

Common-Drain (Source-Follower) Circuit

G S

Zi=RG

Vi=0→Zo=RS||rd||1

gm

Common-Gate Circuit

Vo=−(gmVgs)RD=−gm(−Vi)RDAV=Vo

Vi=gmRD

Zi=RS||1

gm

Vi=0→Zo=RD||rd

Enhancemen MOSFET Amplifier

Vo=gmVgs(RS||rd)=gm(ViVo)(RS||rd)→Av=Vo

Vi=

gm(RS||rd)

2+g

(17)

2 ) ( ) ( )

( GS ON h

ON D V V I k T

-= (typically 0.3 mA/V )2

Vo=(I1gmVgs)(RD||rd)=(ViVo

RGgmVi)(RD||rd)

AV=Vo

Vi =

(1−gmRG)(RD||rd)

RG+RD||rd (for

g

m

R

G

>>1

)

(for

R

G

>>

R

D or

r

d

¿−gmRG(RD||rd)

RG+RD||rd =−gm(RG||RD||rd)

¿−gm(RD||rd)

Ii=ViVo

RG =

Vi(1−Vo

Vi )

RGZi=

Vi Ii =

RG

1−AV = RG

1−(−gm(RD||rd))=

RG

1+gm(RD||rd))

Vi=0→RD||rd||RGRD||rd

(18)

Bypassed Source Resistance

) || ( L D

m i

o

V g R R

V V A = =

-Unbypassed Source Resistance

(19)

Common Gate

)

||

(

L D

m i o

V

g

R

R

V

V

Referensi

Dokumen terkait

This TCAD simulation tools is used to plan, design and test the device structure such as MOSFET before the actual fabrication process. This test is important in order to

In carbon nanotube field effect transistor CNTFET, quantum capacitance needs to be considered because Cq is comparable to the oxide capacitance Cox and defined as [18]; 1 Where Va