3.Field-Effect Transistor (FET)
Junction Field-Effect Transistor (JFET)
n-channel JFET
V
GS = 0 V and VDS positive value
When VGS=0V and C some positive value,the upper region of the p-type material will be reverse biased higher than the lower region(the greater the reverse bias,the wider the depletion region).
As the voltage VDS is increased from 0 to a few volts,the current will increase as determined by Ohm’s law and The depletion region will widen,causing a noticeable reduction in channel widht.If VDS is increased to a level where it appears that the two depletion regions would “touch”, a condition referred to as pinch-off will result.The level of VDS that
establishes this condition is referred to as pinch-off voltage Vp (when VGS=0V and VDS>Vp IDSS). Input resistance > 108
VGS < 0V
Shockley’s Equation:
Voltage-Controlled Resistor:
where ro is the resistance with VGS _ 0 V and rd the resistance at a particular level of VGS.
p-channel JFET
PD = |VD|ID
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) Or Insulated-Gate FET (IGFET)
When VGS=0V,the drain current is IDSS.
The negative potential at the gate will tend to pressure electrons toward the p-type substrate and attract holes from the p-type substrate.The drain current is therefore reduce with increasing negative bias for VGS.
The positive potential at the gate will draw additional electrons (free carrier) from the p-type substrate due to the reverse leakage current,reveals that the drain current will increase.
p-channel D-MOSFET
Enhachement-Type MOSFET (E-MOSFET) n-channel E-MOSFET
VT VGS(ON) VGS
VD(ON)
p-channel E-MOSFET
Complementary MOSFET (CMOS)
FET Biasing
For de analysis,the coupling capacitors are open cicuits. Fixed-Bias Configuration
Graphical Approach:
Self-Bias Configuration Graphical Approach:
Voltage-Divinder Biasing Graphical Approach:
Depletion-Type MOSFET
Graphical Approach:
Graphical Approach:
p-channel FET
V
GS=
V
DS=
V
DD−
I
DR
D=
12
V
−
I
D(
2
K
Ω)
I
D=
0
→
V
GS=
12
V
V
GS=
0
→
I
D=
6
mA
I
DQ=
2.75
mA
V
GS=
V
DSGraphical Approach:
→VGS=VG+IDRS=−4.55V+ID(1 .8KΩ)
FET Small-Signal Model mS V mA V I g V V mS V mA V I g V V mS V mA V I g V V GS D m Q GS GS D m Q GS GS D m Q GS 4 . 1 1 . 1 5 . 1 5 . 2 4 . 2 75 . 0 8 . 1 5 . 1 3 . 3 6 . 0 2 5 . 0 = = D D = ® -= = = D D = ® -= = = D D = ® -= At At At D
I
DV
GSI
DOutput resistance:
FET ac equivalent model:
ID=IDSS
(
1−VGSVP
)
2
gm=yfs=ΔID
ΔVGS|VDS=const=
2IDSS
|VP|
(
1−VGS
Input Impedance of the FET:
(the typical values: JFET
Output impedance of the FET:
rd=ΔVDs
ΔID =
7V
0 . 5mA=14kΩ
Zi(FET)=∞
¿
10
9Ω
, MOSFET
≃
10
12−
10
15Ω)
Zo(FET)=rd= 1
FET Small-Signal Analysis Common-Source Circuit
Output resistance: FET ac equivalent model:
+VDD
+VDD
RD
C2
C1 R1
R2
Rs Cs
V = 0i Z = R ||ro D d
Z
i=
R
1||
R
2V
o=−(
g
mV
gs)(
R
D||
r
d)=−(
g
mV
i)(
R
D||
r
d)→
A
v=
V
o+VDD
RG Rs
RD Vi d s o r V V -Io Vo D
r
d=∞
s
V
gs=
V
i−
g
mV
gsRalignl
¿¿
¿¿
→
V
i=
V
gs(
1
+
g
mR
s)
¿
V
o=−(
g
mV
gs)
R
D¿
A
v=
V
oV
i=−
g
mR
D1
+
g
mR
s¿¿
r
d≠∞
Vgs=Vi−IoRs Io=gmVgs+Vo−Vs
rd =gmVgs+
−IoRD−IoRs rd
¿gm(Vi−IoRs)+−IoRD−IoRs
rd
→Io=gmVi
1+gmRs+(RD+Rs)
rd Vo=−IoRD=−gmRDVi
1+gmRs+(RD+Rs)
rd
→Av=Vo
Vi =− gmRD
1+gmRs+(RD+Rs)
Common-Drain (Source-Follower) Circuit
G S
Zi=RG
Vi=0→Zo=RS||rd||1
gm
Common-Gate Circuit
Vo=−(gmVgs)RD=−gm(−Vi)RD→AV=Vo
Vi=gmRD
Zi=RS||1
gm
Vi=0→Zo=RD||rd
Enhancemen MOSFET Amplifier
Vo=gmVgs(RS||rd)=gm(Vi−Vo)(RS||rd)→Av=Vo
Vi=
gm(RS||rd)
2+g
2 ) ( ) ( )
( GS ON h
ON D V V I k T
-= (typically 0.3 mA/V )2
Vo=(I1−gmVgs)(RD||rd)=(Vi−Vo
RG −gmVi)(RD||rd)
→AV=Vo
Vi =
(1−gmRG)(RD||rd)
RG+RD||rd (for
g
mR
G>>1
)
(for
R
G>>
R
D orr
d
¿−gmRG(RD||rd)
RG+RD||rd =−gm(RG||RD||rd)
¿−gm(RD||rd)
Ii=Vi−Vo
RG =
Vi(1−Vo
Vi )
RG →Zi=
Vi Ii =
RG
1−AV = RG
1−(−gm(RD||rd))=
RG
1+gm(RD||rd))
Vi=0→RD||rd||RG≃RD||rd
Bypassed Source Resistance
) || ( L D
m i
o
V g R R
V V A = =
-Unbypassed Source Resistance
Common Gate
)
||
(
L Dm i o
V
g
R
R
V
V