ITP530/2015 phariyadi.staff.ipb.a.id ITP530
PEMBEKUAN PANGAN
Purwiyatno Hariyadi
phariyadi.staff.ipb.ac.idAspek engineering
Design (keperluan refrigerasi, T)
Laju pembekuan (the rate at which freezing
progress
)
Mutu produk
Produktivitas
PEMBEKUAN
PEMBEKUAN
ITP530/2015 phariyadi.staff.ipb.a.id
• Penyimpanan produk pada T < suhu beku
• Umumnya pada T < 28 °F (-2 °C), atau khususnya
pada < 0 °F (-18 °C)
• Sebagian besar air (~95%) beku
• daya awet produk beku ` bbrp bulan --- tahun
• Laju pembekuan dipengaruhi oleh bbrp faktor : perlu dikendalikan
• Pertumbuhan mikroorganisme dihambat, bbrp
bahkan inaktif
PurwiyatnoHariyadi/IPN/ITP/Fateta/IPBPEMBEKUAN
PEMBEKUAN
Things to notice:
• Pressure and temperature
both affect the phase of
matter.
• All three phases of matter
exist at the triple point
Melting/Freezing Boiling/CondensatingPEMBEKUAN
PEMBEKUAN
pembekuanITP530/2015 phariyadi.staff.ipb.a.id
PENGARUH POSITI
F
• Menurunkan/menghambat pertumbuhan m.o.
• Menurunkan laju reaksi kimia/biokimia
• Meningkatkan daya simpan produk
• (3-40 lipat untuk setiap penurunan suhu 10°C)
PENGARUH NEGATIF
• Kerusakan kimia
• Kerusakan fisik (textural)
PEMBEKUAN
– pengaruhnya pd produk pangan
PEMBEKUAN
– pengaruhnya pd produk pangan
– Freezer burn
?
• Package properly
• Control temperature fluctuations in storage.
– Oxidation?
• Off‐flavors
• Vitamin loss
• Browning
– Recrystallization?
PEMBEKUAN
– pengaruhnya pd produk pangan
PEMBEKUAN
ITP530/2015 phariyadi.staff.ipb.a.id
- Penurunan titik beku = f (konsentrasi, BM)
m . K T  m . BM T R T f A 2 0 A g f    
 
kg kJ 335 air kg kJ , pembekuan laten panas  K . mol J 314 . 8 gas ta tan kons R K 273 , K air ) A ( murni pelarut beku titik T . pelarut mg 1000 solut mol molalitas m g 0 A                 dimana:BMA= Berat Molekul pelarut K = konstanta molal titik beku
Lar. X dlm air Tf= (1.86 m)oC A A 0 A g 1 X ln T 1 T 1 R           
XA= fraksi mol air
1= panas laten pembekuan
Sifat Produk Pangan Beku
Sifat Produk Pangan Beku
Ice cream mix dengan komposisi sbb: 10% butterfat 12% solid-not-fat (54.5%: laktosa) 15% sukrosa 0.22% stabilizer 37.22% Air = 62.78% Ditanya Tf= ? L m . BM T R T A 2 0 A g f   m = ? solven kg solut mol m  Solut? sukrosa BM = 342 laktosa BM = 342 solut lain diabaikan !! Asumsi bahwa hanya gula (laktosa + fruktosa) yang memp. Efek
menurunkan titik beku) !!
Sifat Produk Pangan Beku
Sifat Produk Pangan Beku
ITP530/2015 phariyadi.staff.ipb.a.id
 Fraksi gula = 0.15 + 0.12 (0.545) = 0.2154 g/g Fraksi air = 0.6278
Konsentrasi gula dlm air =
air g 1000 gula g 1 , 343  air g gula g 3431 . 0 6278 . 0 2154 . 0  m 003 . 1 air g 1000 gula mol 342 1 . 343 m  
kg J 335 . 1000 kg mol 003 . 1 mol g 18 K 273 g 18 mol 1 K . mol J 314 . 8 T 2 f                           Tf= 1,86 KSifat Produk Pangan Beku
Sifat Produk Pangan Beku
Contoh (lanjutan):
Air murni  = 335
Larutan solid x dlm air  = (335 mw)
kg kJ
kgkJ
mw= Fraksi massa air
Contoh: Kadar air  Selada 94.8 316.3 Strawberi 90.8 289.6 Kacang panjang 88.9 297.0 Kentang 77.8 258.0 Daging kambing 58.0 194.0
Kacang merah, biji kering 12.5 41.9
Kurma kering 24.0 79.0       kg kJ Perhitungan berdasarkan pd rumus  = 335 mw kg kJ Air: mol J 6030 mol 1 10 18 kg J 10 335 kg kJ 335  3 3          
Panas Laten Pembekuan
Panas Laten Pembekuan
ITP530/2015 phariyadi.staff.ipb.a.id
T-t Diagram : A schematic freezing curve for water, displaying sensible heat loss (Regions I and III) and latent heat loss (Region II).
Kurva Pembekuan :
….. untuk Air Murni
Kurva Pembekuan :
….. untuk Air Murni
Removal of heat (Q) from Region I (sensible heat), II (latent heat), and III (sensible heat) :
(1) Q1= mCp1T1
m = weight of food
Cp1=specific heat of food above freezing
T = temperature difference
ENERGY REMOVAL ASSOCIATED WITH FREEZING
(2) Q2= mw  ...> m
w= weight of water ...>  = latent heat
(3) Q3= mCp2T3 ...> m = weight of food ...> C
p2= specific heat of frozen food ...> T
ITP530/2015 phariyadi.staff.ipb.a.id
Titik Beku air
Super cooling
Titik eutetik Air
Larutan Suhu
Waktu
Titik beku = f(waktu)
Driving force for nucleation/crystallization (i.e. T = T – Tf)
Kurva Pembekuan
Kurva Pembekuan
Removal of latent heat Removal of
sensible heat
3-21
Kurva Pembekuan
Kurva Pembekuan
ITP530/2015 phariyadi.staff.ipb.a.id
Ti Tf
T
t
Setelah terjadi pembekuan, konsentrasi solute pada sisa larutan menjadi lebih tinggi
...> penurunan titik beku lebih besar ...> T f
()
Kurva Pembekuan :
….. untuk Produk Pangan
Kurva Pembekuan :
….. untuk Produk Pangan
You can’t freeze all of the water
(Still have unfrozen (unfreezable) water : 5-10%)
You can’t freeze all of the water
(Still have unfrozen (unfreezable) water : 5-10%)
Kurva Pembekuan :
….. untuk Produk Pangan
Kurva Pembekuan :
ITP530/2015 phariyadi.staff.ipb.a.id
Kurva Pembekuan …. for Fish
Kurva Pembekuan …. for Fish
Kurva Pembekuan …. for Fish
Kurva Pembekuan …. for Fish
ITP530/2015 phariyadi.staff.ipb.a.id
Buah anggur (grape) ...> kadar air 84.7% ...> T f= -1.8oC (271.2oK) A A 0 A g 1 X ln T 1 T 1 R           1= 6003 Rg= 8.314 K . molJ molJ XA=? A X ln K 2 . 271 1 K 273 1 K . mol J 314 , 8 mol J 6003       Ln XA= - 0.01755
XA= 0.9826 (effective mol fraction of water )
ml grape m
INTITIAL FREEZING TEMPERATURE
XA= fraksi mol air = 0.9826
XA= 0.9826 = E BM 3 . 15 18 7 . 84 18 7 . 84  BME= 183.61
Juice anggur dapat dianggap bertingkah laku mirip/sama dgn - lar. x dlm air - BMx = 183.61 - XA= 09826 - Xx= ... dst mol g
ITP530/2015 phariyadi.staff.ipb.a.id
INTITIAL FREEZING TEMPERATURE
100 0 - 40oC 0oC % air beku Suhu
Hubungan antara % air beku vs. suhu
PRODUK BEKU?
ITP530/2015 phariyadi.staff.ipb.a.id
Hubungan antara % air beku vs. suhu
PRODUK BEKU?
•
EQUIPMENT RELATED•
rate of heat transfer•
size of refrigeration unit•
FOOD/PRODUCT QUALITY•
slow freezing•
result in formation of few, large ice crystals•
damaging to cell structure/quality•
rapid freezing•
results in many small ice crystals•
gives best product quality•
water  ice: ~ 9% increase in volumeITP530/2015 phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
LAJU PEMBEKUAN
ITP530/2015 phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
Rapid Freezing
ITP530/2015 phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
ITP530/2015 phariyadi.staff.ipb.a.id
- Pendugaan keperluan pembekuan
ukuran sistem “mechanical
compression”
evaluasi beban refrigerasi/pembekuan
- Disain peralatan + proses, untuk :
memperoleh pembekuan yg diinginkan
- koef pindah panas
- laju pembekuan
PERHITUNGAN WAKTU PEMBEKUAN
•
Time-temperature method•
Time required to freeze between two temperatures (usually T = -5oC or –10oC)•
Velocity of ice front-
rate of freezing-
must be able to see ice front•
Appearance of specimen-
internal conditions•
Thermal methods-
calorimetric techniques-
not real-world condition+
Time-temp. methods most common
+
many people use time to freeze to – 10oC as standard.ITP530/2015 phariyadi.staff.ipb.a.id
•
panas laten adalah energi utama yang hrs
diperhitungkan pada proses pembekuan
•
~ 75% total energi pd proses pembekuan
333.3 kJ/kg air
144 BTU/lb air
•
Terjadi perubahan sifat fisik bahan selama proses
pembekuan ~ f (T,m)
PERHITUNGAN WAKTU PEMBEKUAN
PERHITUNGAN WAKTU PEMBEKUAN:
Plank’s Method (for infinite slab)
Plank’s equation is an approximate analytical solution
for a simplified phase-change model.
• Plank assumed that the freezing process:
(a) commences with all of the food unfrozen
but at its freezing temperature.
(b) occurs sufficiently slowly for heat transfer
in the frozen layer to take place under
steady-state conditions.
ITP530/2015 phariyadi.staff.ipb.a.id
Tf
T1
PERHITUNGAN WAKTU PEMBEKUAN:
Plank’s Method (for infinite slab)
x frozen frozen Tf Tf Ts T1 Ts T1 q q unfrozen a
PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id Convection: q       hr BTU = Qt = h (Ts– T1) ... Pers. 1
h = convective heat transfer coeff. at the product surface. Conduction:
f s
f T T x A . k q  ... Pers. 2 Tf= initial freezing pointx = x (t) Combine 1&2:
h 1 k x T T q f 1 f    ... Pers. 3PERHITUNGAN WAKTU PEMBEKUAN:
Plank’s Method (for infinite slab)
Jumlah energi yang dibebaskan selama proses pembekuan qdt = mif= fdV f qdt = ffA dx so, q = ffA dx/dt ... Pers. 4 Ingat Pers 3 :
h 1 k x T T q f 1 f   PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
T T
dt dx h 1 k x 1 f f f f           
            Tf 0 1 f 2 a 0 f f f h dx T T dt 1 k x            h 2 a k 8 a T T t 2 i f f f fPembekuan selesai lempeng jika x = a/2
Ti = Suhu Pembekuan Suhu ruang pembeku
h 1 k x A T T dt dx A f 1 f f f      Kombinasi Pers. 3 dan 4 ……….>PERHITUNGAN WAKTU PEMBEKUAN:
Plank’s Method (for infinite slab)
T
T
Ra
k
Pa
h
t
f 2 i f f f f Where:Infinite slab Sphere Infinite sylinder Cube
P 1/2 1/6 1/4 1/8
R 1/8 1/24 1/6 1/24
a Thickness Diameter Diameter Edge
 f= latent heat of fusion [=] kJ kg kg kJ  water = 333.22 = 144 lb BTU
PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
a
b c
P dan R untuk bentuk bata a : dimensi terpendek c : dimensi terpanjang B2= c/a
B1= b/a
Lihat chart/diagram :
dengan diketahui nilai B2dan B1maka dapat dibaca nilai P dan R
PERHITUNGAN WAKTU PEMBEKUAN:
General Plank’s Equation
PERHITUNGAN WAKTU PEMBEKUAN:
General Plank’s Equation
In this figure,
β1and β2are the ratios of the two longest sides to the shortest.
It does not matter in what order they are taken.
ITP530/2015 phariyadi.staff.ipb.a.id
Limitation of Plank’s method:
• no superheating or supercooling
• thermal properties are constant
• can’t incorporate a variable heat transfer
coeff.
• can’t handle varying freezing point
PERHITUNGAN WAKTU PEMBEKUAN:
General Plank’s Equation
Pham (1986): improved Plank’s equation :
• The mean freezing temperature is defined as
a c fm
T
T
T
1
.
8
0
.
263
0
.
105
 
2
1
2 2 1 1 Bi f c FN
T
H
T
H
h
E
d
t
where T
cis final center temperature and T
ais
freezing medium temperature. The freezing time is
given by
PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
where dc= characteristic dimension ‘r’ or shortest distance Ef = a shape factor (‘1’ for slab, ‘2’ for cylinder and
‘3’ for sphere)
)
(
1 uc
uT
iT
fmH
)]
(
[
2 fL
fc
fT
fmT
cH
a fm i T T T T          2 1 a fm T T T    2ΔH1 = Enthalpy change during pre-cooling, J/m3
ΔH2= Enthalpy change during phase change and post-cooling period, J/m3
PERHITUNGAN WAKTU PEMBEKUAN:
Pham’s Equation
 
2
1
2 2 1 1 Bi f c FN
T
H
T
H
h
E
d
t
In Pham’s method, the value of Efis adjusted (Eq. 7.16): Ef= G1+ G2E1+ G3E2
where the values of G1, G2and G3are given in Table 7.1 and E1 and E2are calculated from Eqs. 7.17 & 7.19 and Eqs. 7.18 & 7.20, respectively.
We can now follow Example 7.2 (Singh and Heldman) and compare the freezing time calculations based on Pham’s approach and Plank’s equation.
PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
• Alternate approach to determine the shape factor Efin the calculation of freezing time:
– For infinite slab, the shape factor E = 1 (since 1=infinite, 2=infinite) – For an infinite cylinder, the shape factor E=2 (since 1=1, 2=infinite) – For a sphere, the shape factor, E = 3 (1=1, 2=1)
)
2
(
)
2
1
(
)
2
(
)
2
1
(
1
2 2 2 1 2 1 Bi Bi Bi BiN
N
N
N
E
PERHITUNGAN WAKTU PEMBEKUAN:
Pham’s Equation
• For different shapes e.g. ellipsoid, rectangular brick, finite cylinder etc., the shape factor can be calculated: • Same characteristic dimension R: shortage distance from thermal center to the surface of the object. • Smallest cross‐sectional area A ; the smallest cross‐section that incorporates R. • Same volume V • 1and 2can be determined: ) 2 ( ) 2 1 ( ) 2 ( ) 2 1 ( 1 2 2 2 1 2 1 Bi Bi Bi Bi N N N N E            2 1 R A    ) 3 4 ( 3 1 2 R V     k R h N c Bi PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
Lean beef with 74.5% moisture content and 1 m length, 0.6 m width, and 0.25 m thickness is being frozen in an air‐blast freezer with hc= 30 W/m2.K and air temperature of ‐30 oC. If the
initial product temperature is 5 oC. Estimate the time required to reduce the product
temperature to ‐10 oC. An initial freezing temperature of ‐1.75 oC has been measured for the
product. The thermal conductivity of frozen beef is 1.5 W/m.K, and the specific heat of unfrozen beef is 3.5 kJ/kg.K. A product density of 1050 kg/m3 can be assumed, and a specific heat of 1.8 kJ/kg.K for frozen beef can be estimated from properties of ice. – Product length d2= 1 m – Product width d1= 0.6 m – Product thickness a = 0.25 m – Convective heat‐transfer coefficient hc= 30 W/m2.k – Air temperature T= ‐30 oC – Initial product temperature Ti= 5 oC – Initial freezing temperature TF= ‐1.75 oC – Product density  = 1050 kg/m3 – Enthalpy change (H) = 0.745333.22 kJ/kg = 248.25 kJ/kg (estimate) – Thermal conductivity k of frozen product = 1.5 W/m.K – Specific heat of product (Cpu) = 3.5 kJ/kg.K – Specific heat of frozen product (Cpf) = 1.8 kJ/kg.
PERHITUNGAN WAKTU PEMBEKUAN:
CONTOH
(1) Determine shape factor: (2) The Biot number is : (3) Shape factor E: 056 . 3 ) 125 . 0 ( 6 . 0 25 . 0 ) 2 25 . 0 ( 6 . 0 25 . 0 2 2 2 1           R A 999 . 5 ) 125 . 0 ( 3 4 056 . 3 1 6 . 0 25 . 0 ) 3 4 ( 3 3 1 2            R V 5 . 2 5 . 1 125 . 0 30    k R h NBi c 197 . 1 ) 5 . 2 999 . 5 2 999 . 5 ( ) 5 . 2 2 1 ( ) 5 . 2 056 . 3 2 056 . 3 ( ) 5 . 2 2 1 ( 1 ) 2 ( ) 2 1 ( ) 2 ( ) 2 1 ( 1 2 2 2 2 2 1 2 1                  Bi Bi N N N N E    PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id (4) T3 : (5) H1: Cu(Ti‐T3) (6) T1and T2: C T3  1.80.263(10)0.105(30) 3.98 o 3 3 3 1 / 33001500 ] ) 98 . 3 ( 5 [ ) / 1050 ( ) . / 3500 ( ) ( m J C m kg K kg J T T C H u i o         
3 3 3 3 2 / 145 , 039 , 272 )) 10 ( 98 . 3 ( ) / 1050 ( . / 1800 ) / 1050 ( ) 745 . 0 ( ) / 1000 / 22 . 333 ( ) ( m J m kg K kg J m kg kJ J kg kJ T T C L H f f               C T T T C T T T T o a o a i 02 . 26 ) 30 ( 98 . 3 51 . 30 ) 30 ( 2 ) 98 . 3 5 ( 2 ) ( 3 2 3 1                 PERHITUNGAN WAKTU PEMBEKUAN:
CONTOH/CEK!!!
(7) tslab : (8) t = tslab/E; s N T H T H h R t Bi slab 156 , 108 ) 2 5 . 2 1 ]( 02 . 26 272039145 51 . 30 33001500 [ 30 125 . 0 ) 2 1 ]( [ 2 2 1 1            hr s E t t slab 90355 25.1 197 . 1 156 , 108    Required time for lean beef (1 m  0.6m 0.25 m) will be 25.1 hours to freeze.
PERHITUNGAN WAKTU PEMBEKUAN:
ITP530/2015 phariyadi.staff.ipb.a.id
METODE PEMBEKUAN
1. AIR FREEZING - Products frozen by either "still" or "blast" forced air.
• cheapest (investment)
• "still" slowest, more changes in product • "blast" faster, more commonly used
2. INDIRECT CONTACT - Food placed in direct contact with cooled metal surface.
• relatively faster • more expensive
3. DIRECT CONTACT - Food placed in direct contact with
refrigerant (liquid nitrogen, "green" freon, carbon dioxide snow) • faster
• expensive
• freeze individual food particles
• Blast freezing – a very cold air blasted on
the food cools food very quickly.
• Close indirect contact – food is placed in a
multi‐plate freezer and is rapidly frozen.
• Immersion – food is placed into a very cold
liquid (usually salt water – brine) or liquid
nitrogen, this is known as cryonic freezing.
ITP530/2015 phariyadi.staff.ipb.a.id
• Mechanical Freezers
‐ Evaporate and compress the refrigerant in
a continuous cycle
• Cryogenic Systems
‐ Use solid and liquid CO
2, N
2directly in
contact with the food
METODE PEMBEKUAN --- freezing equipment
• Slow Freezers 0.2 cm/h
‐ Still air and cold stores
• Quick Freezers 0.5‐3 cm/h
‐ Air blast and plate freezers
• Rapid Freezers 5‐10 cm/h
‐ Fluidized bed freezers
• Ultra rapid Freezers 10‐100 cm/h
‐ Cryogenic freezers
KLASIFIKASI PEMBEKUAN
ITP530/2015 phariyadi.staff.ipb.a.id
ALAT PEMBEKU
A typical fluidized bed freezer
ALAT PEMBEKU
ITP530/2015 phariyadi.staff.ipb.a.id
ALAT PEMBEKU
Batch Freezer
Source: Unit operations for food the food industries by: W.A. Gould
Blast Type
ITP530/2015 Source: Unit operations for food the food industries by: W.A. Gouldphariyadi.staff.ipb.a.id
Hydraulic
Pump Top Pressure plate Connecting Linkage Corner Headers Refrigerant hoses Trays Contact plates
Polyurethane and polystyrene insulated doors
ALAT PEMBEKU
ITP530/2015 phariyadi.staff.ipb.a.id
ALAT PEMBEKU
ITP530/2015 phariyadi.staff.ipb.a.id