• Tidak ada hasil yang ditemukan

On the Boundedness of a Generalized Fractional Integral on Generalized Morrey Spaces

N/A
N/A
Protected

Academic year: 2018

Membagikan "On the Boundedness of a Generalized Fractional Integral on Generalized Morrey Spaces"

Copied!
7
0
0

Teks penuh

(1)

On the Boundedness of a Generalized Fractional

Integral on Generalized Morrey Spaces

Eridani

Department of Mathematics Airlangga University, Surabaya

[email protected]

Abstract

In this paper we extend Nakai’s result on the boundedness of a general-ized fractional integral operator from a generalgeneral-ized Morrey space to another generalized Morrey or Campanato space.

keywords: Generalized fractional integrals, generalized Morrey spaces, ge-neralized Campanato spaces

1. Introduction and Main results

For a given function ρ : (0,∞) −→ (0,∞), let Tρ be the generalized fractional

integral operator, given by

Tρf(x) =

Z

Rn

f(y)ρ(|x−y|) |x−y|n dy, and put

e

Tρf(x) =

Z

Rn

f(y)

µ

ρ(|x−y|) |x−y|n −

ρ(|y|)(1−χBo(y))

|y|n

dy,

(2)

the modified version ofTρ, whereBo is the unit ball about the origin, andχBo is

the characteristic function ofBo.

In [4], Nakai proved the boundedness of the operatorsTeρandTρfrom a

general-ized Morrey spaceM1,φto another generalized Morrey spaceM1,ψ or generalized

Campanato spaceL1,ψ.More precisely, he proved that

kTρfkM1,ψ ≤CkfkM1,φ and kTeρfkL1,ψ ≤CkfkM1,φ,

whereC >0,with some appropriate conditions onρ, φandψ.Using the techniques developed by Kurataet.al.[1], we investigate the boundedness of these operators from generalized Morrey spacesMp,φ to generalized Morrey spacesMp,ψ or

gen-eralized Campanato spacesLp,ψ for 1< p <∞.

The generalized Morrey and Campanato spaces are defined as follows. For a given functionφ: (0,∞)−→(0,∞),and 1< p <∞,let

the Morrey spaceMp,φby

Mp,φ={f ∈Lploc(R n) :kfk

Mp,φ <∞},

and the Campanato spaceLp,φ by

Lp,φ={f ∈Lploc(R n) :kfk

Lp,φ <∞}.

Our results are the following:

(3)

Theorem 1.2 If ρ, φ, ψ: (0,∞)−→(0,∞) satisfying the conditions below

1 2 ≤

t r ≤2⇒

1

A1

≤ φ(t)

φ(r) ≤A1, and 1

A2

≤ ρ(t)

ρ(r) ≤A2 (4)

Z 1

0

ρ(t)

t dt <∞,and for allr >0,we have

Z ∞

r

φ(t)p

t dt≤A3φ(r)

p

, (5)

|ρ(r)

rn −

ρ(t)

tn | ≤A4|r−t|

ρ(r)

rn+1, f or

1 2 ≤

t

r ≤2, (6) φ(r)

Z r

0

ρ(t)

t dt+r

Z ∞

r

ρ(t)φ(t)

t2 dt≤A5ψ(r),for allr >0, (7)

where Ai > 0 are independent of t, r > 0, then for each 1 < p < ∞ there exists

Cp>0 such that

kTeρfkLp,ψ ≤CpkfkMp,φ.

2. Proof of the Theorems

To prove the theorems, we shall use the following result of Nakai [2] (in a slightly modified version) about the boundedness of the standard maximal functionM fon a generalized Morrey spaceMp,φ.The standard maximal functionM f is defined

by

M f(x) = sup

B∋x

1 |B|

Z

B

|f(y)|dy, x∈Rn,

where the supremum is taken over all open ballsB containingx.

Theorem 2.1 (Nakai).Ifφ: (0,∞)−→(0,∞)satisfying the conditions below :

(a). 12 ≤ t r ≤2⇒

1

A1 ≤

φ(t)

φ(r)≤A1,

(b). Rr∞φ(tt)pdt≤A2φ(r)p,for all r >0,

where Ai > 0 are independent of t, r > 0, then for each 1 < p < ∞ there exists

Cp>0 such that

kM fkMp,φ ≤CpkfkMp,φ.

From now on, C andCp will denote positive constants, which may vary from

(4)

Proof of Theorem 1.1

Forx∈Rn,and r >0,write

Tρf(x) =

Z

|x−y|<r

f(y)ρ(|x−y|) |x−y|n dy+

Z

|x−y|≥r

f(y)ρ(|x−y|)

|x−y|n dy=I1(x) +I2(x).

Note that, fort∈[2kr,2k+1r],there exist constantsC

i>0 such that

ρ(2kr)≤C1 Z 2k+1

r

2kr

ρ(t)

t dt

and

ρ(2kr)φ(2kr)≤C2 Z 2k+1

r

2kr

ρ(t)φ(t)

t dt.

So, we have

|I1(x)| ≤ Z

|x−y|<r

|f(y)|ρ(|x−y|) |x−y|n dy

≤ −1 X

k=−∞ Z

2kr≤|xy|<2k+1r

|f(y)|ρ(|x−y|) |x−y|n dy

≤C

−1 X

k=−∞

ρ(2kr)

(2kr)n

Z

|x−y|<2k+1r

|f(y)|dy

≤C

−1 X

k=−∞

ρ(2kr)M f(x)

≤CM f(x) −1 X

k=−∞ Z 2k+1

r

2kr

ρ(t)

t dy

≤CM f(x)

Z r

0

ρ(t)

t dy

(5)

Meanwhile,

Combining the two estimates, we obtain

1

ψ(r)p|B|

Z

B

|Tρf(x)|pdx≤CpkfkpMp,φ,

and the result follows. ¤

Proof of Theorem 1.2

(6)

EB1(x) =

With the same technique as in the proof of the previous theorem, we have

|EB1(x)| ≤

and the result follows as before. ¤

3. Remark

We also suspect thatTeρ, the modified version ofTρ, is bounded fromLp,φtoLp,ψ

(7)

References

[1] K. Kurata, S. Nishigaki, and S. Sugano,Boundedness of integral operators on generalized Morrey spaces and its application to Schr¨odinger operators,Proc. Amer. Math. Soc.128(1999), 1125-1134.

[2] E. Nakai,Hardy-Littlewood maximal operator, singular integral operators, and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166(1994),

95-103.

[3] E. Nakai,On generalized fractional integrals, Proceedings of the International Conference on Mathematical Analysis and its Applications 2000 (Kaohsiung, Taiwan), Taiwanese J. Math.5(2001), 587-602.

[4] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces,

BM Oφ, the Morrey spaces and the Campanato spaces, Proceedings of the

Referensi

Dokumen terkait

1. Kepala Sekolah hendaknya bisa menerapkan kombinasi kedua gaya kepemimpinan baik Transformasional maupun Transaksional sesuai dengan situasi dan sifat tugas

Penyusunan dokumen pengadaan Nomor : 007/RS-ULP/LSPBM-BBRVBD/04/2016 tanggal 26 April 2016 yang didalamnya memuat pengumuman pelengalangan sederhana dengan

Salah satunya adalah dengan menggunakan ekstrak bunga cengkeh (Syzygium aromaticum L.) yang mengandung carvone, terpinen-4-ol, fenchone, eugenol dan.. quercetine

Menyerahkan surat pernyataan yang ditandatangani Wajib Pajak atau kuasa Wajib Pajak yang menyatakan bahwa peredaran bruto usaha yang diterima atau diperoleh termasuk

Dari keseluruhan laporan kerja praktek dapat disimpulkan bahwa Infografis merupakan bagian penting dalam suatu berita, terutama pada suatu kejadian yang memang

Setelah melakukan wawancara kepada para informan, dan para informan menjawab bahwa persepsi atau pengalaman tentang culinary night di Kecamatan Lengkong yaitu masyarakat

Kuesioner digunakan untuk mengetahui jawaban narasumber pada metode Delphi dan dalam memperoleh persepsi masyarakat terhadap aspek yang menjadi kendala

Maka Kelompok Kerja (Pokja) I ULP Kabupaten Hulu Sungai Selatan dengan berpedoman pada peraturan yang berlaku telah menetapkan Pemenang Lelang untuk pekerjaan di atas