• Tidak ada hasil yang ditemukan

ENDRIKA WIDYASTUTI FOOD SCIENCE AND TECHNOLOGY AGRICULTURAL TECHNOLOGY BRAWIJAYA UNIVERSITY 2012

N/A
N/A
Protected

Academic year: 2022

Membagikan "ENDRIKA WIDYASTUTI FOOD SCIENCE AND TECHNOLOGY AGRICULTURAL TECHNOLOGY BRAWIJAYA UNIVERSITY 2012"

Copied!
67
0
0

Teks penuh

(1)

1

FOOD SCIENCE AND TECHNOLOGY AGRICULTURAL TECHNOLOGY BRAWIJAYA UNIVERSITY 2012

ENDRIKA WIDYASTUTI

(2)

09/03/2012 2

(3)

Starch Ingredients

Must be cooked

Gel slowly

Show syneresis

Break down under shear

Break down under acid conditions

Forms complexes

(4)

Amaranth starch (Bar: 1 µm)

Arrowroot starch (Bar: 20 µm)

Buckwheat starch (Bar: 5 µm)

Cassava starch (Bar: 10 µm)

Corn starch (Bar: 10 µm)

Oat starch (Bar: 5 µm)

Potato starch (Bar: 50 µm)

Rice starch (Bar: 2 µm)

Kidney bean starch (Bar: 20 µm)

(5)

Unheated starch granule

Heated starch granule

(6)

What is STARCH ?

Complex carbohydrate made up of two components

Components:

Amylose (linier chain)

Amylopectin (branched chain)

Properties(viscosity) depend on amounts of the components

(7)

Amylose

Linear component of starch

Contains 1,4-alpha- glucosidic bonds

Molecular weight:

less than 0.5 million

Can form coils which will trap iodine and turn blue

(8)

Branched component of starch

Contains 1,4-alpha- glucosidic as well as 1,6-alpha-glucosidic bonds

Molecular weight: 50- 500 million

Limited coiling causes purplish-red color

when iodine added

Amylopectin

(9)

Amylopectin in

Granules

(10)

Amylopectin structure (Chaplin, 2004)

(11)
(12)

Amylopectin General Structure

(13)

Amylose vs. Amylopectin

Starches usually contain more amylopectin than amylose

Generally roots/tubers contain more amylopectin than cereals

Roots/Tubers: 80% amylopectin

Cereals: 75% amylopectin

Waxy corn and rice contain virtually all amylopectin

(14)

Characteristics of Amylose and Amylopectin

FORM Essentially linear Branched

LINKAGE -1,4 (some -1,6) -1,4; -1,6

POLYMER UNITS 200-2,000 Up to 2,000,000 MOLECULAR WEIGHT Generally <0.5 million 50-500 million GEL FORMATION Firm Non-gelling to soft

CHARACTERISTIC AMYLOSE AMYLOSPECTIN

(15)

Starch Composition

Starch % amylose % amylopectin

Tapioca 17% 83%

Potato ~20% ~80%

Wheat 25-26% ~75%

Corn 24-28% ~75

Waxy corn ~0% ~100%

Hi amylose Rice

~ 75%

22%

~ 25%

78%

(16)

Starch Granule

Made in the cytoplasm of plant cells

Amylopectin forms in concentric circles with amylose dispersed in between

Held together by hydrogen bonds

The granule swells when heated in water

(17)

Starch Granule

(18)

Granule Structure

(19)

Functions

Gelatinization

Structure in baked products

Thickener in sauces, soups, and dressings

Dextrinization

Gelation

Pie filling

(20)

Gelation

As a starch paste cools, a gel is formed

Free amylose molecules lose energy as the temperature decreases and form hydrogen bonds

The bonds create a network that holds the swelled granules in place

(21)

Gelatinization

When starch is heated in water

Hydrogen bonds break, allowing water to enter the granule and the granule swells

Amylose migrates out of the granule

H-bonding between water and amylopectin increases

Reduced free water changes the viscosity of the starch mixture, thickening it

(22)
(23)

Gelatinization and Temperature

Gradually thicken with temperature

Can be heated to 100oC without much granule rupture

If held at 95oC will implode and lose viscosity

(24)

Gelatinization and Type of

Starch

Best thickening ability: potato starch

Worst thickening

ability: wheat starch

More

amylopectin=more translucent=more stringy

(25)

Gelation and Starch Source

The more amylopectin (less amylose), the softer the gel

Potato starch=high amylopectin=good thickening agent=soft gel

Corn starch=less amylopectin=less

effective thickening agent=strong gel

(26)

Viscosity and Type of Starch

(27)

Gelatinization and Sugar

Used together in pie fillings and puddings

Sugar competes with the starch for water so less water available for gelatinization

Delays gelatinization and decreases viscosity

Increases gelatinization temperature

The more sugar added, the longer the delay

Disaccharides have a stronger effect than monosaccharides

(28)

Gelatinization and Acid

Used together in fruit pie fillings, specifically lemon fillings

Acid breaks down starch molecules so the paste is thinner

Decreases viscosity

Acid effect can be minimized by adding after gelatinization or heating rapidly

(29)

Gelation and Other Effects

Heating

Moderate temperature and rate of heating

Enough amylose needs to be released from the granule without the granule bursting

Agitation

Agitation during cooling disrupts amylose network

Should mix flavorings immediately after removing from heat

(30)

Gelation and Other Effects

Sugar

Decreases gelatinization and amylose release

Softer gel

Acid

Decreases gelatinization by hydrolysis of granules

Softer gel

(31)

Aging Gels

Syneresis

Loss of water from a gel

Amylose molecules pull together, squeezing water out

Retrogradation

Realignment of amylose molecules

Hydrogen bonds break and reform into more orderly crystals

Can by reversed by gently heating

Examples: refrigerated pudding, stale bread

(32)

Dextrinization

When starch is heated without water

A higher temperature is reached than with water

Bonds break throughout the starch forming dextrins

(33)

How to compare starches?

Line spread test:

Measures thickening power

Poor heated starch into cylinder, lift cylinder and measure spread after specified time using concentric circles

Universal Texture Analyzer:

Measures gel strength

Percent sag:

Measures gel strength

Measure molded gel height and compare to unmolded gel height

Stronger gel=small % sag, weaker gel=large % sag

(34)

Visco/Amylo/Graph

(35)

ViscoAmyloGraph

Time

Viscosity

65oC

90oC 30oC

heating constant temperature

(36)

A m y lo s e

S w e llin g C o lla p s e A g g r e g a tio n C

V is c o s ity E

D

B

A

T im e

A = P a s te in itia tio n te m p e r a tu r e B = P e a k P a s te T im e

C = P e a k V is c o s it y D /C = S ta b ilit y r a tio E /D = S e t b a c k r a tio

5 0 6 5

T e m p 9 0 9 5 8 0

A m y lo s e

S w e llin g C o lla p s e A g g r e g a tio n C

V is c o s ity E

D

B

A

T im e

A = P a s te in itia tio n te m p e r a tu r e B = P e a k P a s te T im e

C = P e a k V is c o s it y D /C = S ta b ilit y r a tio E /D = S e t b a c k r a tio

5 0 6 5

T e m p 9 0 9 5 8 0

A m y lo s e

S w e llin g C o lla p s e A g g r e g a tio n C

V is c o s ity E

D

B

A

T im e

A = P a s te in itia tio n te m p e r a tu r e B = P e a k P a s te T im e

C = P e a k V is c o s it y D /C = S ta b ilit y r a tio E /D = S e t b a c k r a tio

A = P a s te in itia tio n te m p e r a tu r e B = P e a k P a s te T im e

C = P e a k V is c o s it y D /C = S ta b ilit y r a tio E /D = S e t b a c k r a tio

5 0 6 5

T e m p 5 0 6 5 9 0 9 5 8 0

T e m p 9 0 9 5 8 0

Starch Gelation and Pasting

(37)

Gelatinization and Pasting

“Starch gelatinisation is the collapse (disruption of

molecular order) within the starch granule, manifested in irreversible changes in properties such as granular swelling, native crystalline melting, loss of birefringence and starch solubilisation. The point of initial gelation and the range over which it occurs is governed by the starch type,

concentration, method of observation, granular type and heterogeneities within the granule population under

observation.”

“Pasting is the phenomenon following gelatinisation in the dissociation of starch. It involves granular swelling,

exudation of molecular components from the granule; and eventually the total disruption of the granules”

(38)

Pasting Cycle

(39)

Pasting characteristics of different native starches

(from Food Additives, 2nd Ed 2002, Brane et al. Eds)

(40)

Gelatinization of starches

Type % Amylopectin % Amylose Gelatinization Range °C Granule Size m

Corn 73 27 62-72 5-25 Waxy Corn 99 1 63-72 5-25 High Amylose 20-45 55-80 67-100+ 5-25 Potato 78 22 58-67 5-100 Rice 83 17 62-78 2-5 Tapioca 82 18 51-65 5-35 Wheat 76 24 58-64 11-41

(41)

Exogenous and Endogenous Effects on Starch Pasting Characteristics

Acid

pH

Sugar

Lipids

Proteins

Shear

(42)

Viscosity

T im e

C o r n s ta r c h + w a te r

C o r n s ta r c h + w a te r + 1 .7 % a c e tic a c id

Viscosity

T im e

C o r n s ta r c h + w a te r

C o r n s ta r c h + w a te r + 1 .7 % a c e tic a c id

Viscosity

T im e

C o r n s ta r c h + w a te r

C o r n s ta r c h + w a te r + 1 .7 % a c e tic a c id

Effect of Acid on Starch Pasting

(43)

p H 4

p H 1 0

p H 2 .5

Viscosity

T im e

p H 4

p H 1 0

p H 2 .5

Viscosity

T im e

Effect of pH on Pasting of Corn Starch

(44)

Effect of Sugars on Pasting of Corn Starch

(45)

Perubahan pati pada:

1.

Pra proses/pascapanen

2.

Selama proses

3.

Pasca proses/penyimpanan

09/03/2012 45

(46)

1.

Bahan hasil pertanian masih melakukan

respirasi

2.

Terjadi hidrolisis: (produk mjd lebih manis) Pati -> maltodekstrin dan gula

3.

Terjadi oksidasi:

Glukosa -> energi, CO2 dan air

46

(47)

4. Perubahan proporsi pati -> perubahan tekstur dan rasa bahan (menjadi manis) 5. Pengendalian perubahan dapat ditekan dengan perlakuan pendinginan (paling ekonomis)

09/03/2012 47

(48)

a.

Swelling

b.

Gelatinisasi

c.

Retrogradasi

d.

Esterifikasi

e.

Hidrolisis

f.

Isomerisasi

09/03/2012 48

(49)

09/03/2012 49

?

1. Pati bila diberi air akan mengalami pengembangan volume

2. Kekuatan swelling sebanding dengan

meningkatnya suhu larutan pati

(50)

1. Peristiwa rusaknya ikatan antarmolekul pada larutan pati

dengan naiknya suhu

2. Larutan pati mengalami gelatinisasi (kanji) dan viskositas menjadi tinggi (lebih kental).

09/03/2012 50

(51)

09/03/2012 51

(52)

09/03/2012 52

(53)

1. Terjadi ikatan balik (set back) pada

ikatan hidrogen antara gugus OH pada pati

2. Terjadi selama pendinginan.

3. Pati menjadi tidak terlarut.

09/03/2012 53

Amilosa

(54)

09/03/2012 54

4. Berhubungan dengan

jumlah cabang pada rantai pati

5. Pati ber-amilopektin

tinggi (jagung ketan) tidak mengalami retrogradasi

pada pendinginan/

pembekuan.

(55)

09/03/2012 55

2. Sifat larutan pati hasil esterifikasi:

a. lebih tahan terhadap panas b. kemampuan hidrolisis rendah c. stabil dalam pH rendah

d. swelling dapat dihambat meskipun dalam air panas atau mendidih.

1. Pati -> esterifikasi antara gugus OH -> panjang rantai dapat diatur

(56)

09/03/2012 56

3. Produk pati ini banyak digunakan sebagai:

a. makanan bayi b. salad dressing c. Stabiliser

d. pengental

(57)

09/03/2012 57

-Dilakukan dengan:

a. pH rendah

b. Pemanasan suhu tertentu (mempercepat kerja enzim)

c. tekanan tinggi

d. Penambahan enzim (amilase) -hasil dari proses:

pati --> dextrin  maltosa -> glukosa

(58)

09/03/2012 58

-Banyak digunakan dalam industri bahan pemanis dari tepung tapioka

-> industri HFS (High fructose syrup).

(59)

09/03/2012 59

(60)

09/03/2012 60

(61)

09/03/2012 61

(62)

09/03/2012 62

(63)

09/03/2012 63

a. Proses isomerisasi merupakan perubahan glukosa -> fruktosa b. Tingkat kemanisan fruktose

meningkat 3 kali lipat dibanding

glukosa

(64)

09/03/2012 64

3. Menggunakan enzim isomerase

4. Teknik yang digunakan adalah imobilized enzyme

-enzim diambil dari mikroba dan dijerap dalam matrik resin

-larutan glukosa dilewatkan kolom yang berisi imobilized enzim

(65)

1. Higroskopis,

Tepung yang mengandung gula reduksi cenderung mudah menyerap uap air,

kemasan harus kedap air, dan ruang RH rendah

2. Perubahan aroma

Timbulnya bau (jawa=apek) yang

dimulai dengan menyerap uap air atau penyimpanan yang terlalu lama

09/03/2012 65

(66)

3. Perubahan warna

Timbul warna kuning kecoklatan akibat oksidasi dan penyimpanan terlalu lama

4. Serangga dan Rodentia

Akibat sanitasi gudang dan kemasan yang kurang baik

09/03/2012 66

(67)

Sumber Pati Amilosa (%)

Ukuran Granula

(Um)

Rerata Ukuran

(Um)

Beras ketan 0 2 – 15 6

Jagung ketan 70 4 – 20 10

Jagung 28 5 – 25 14

Ubi kayu 17 3 – 30 14

Ubi jalar 18 4 – 40 7 dan 20

Gandum 26 3 – 35

Ubi garut 21 9 – 40 19

Sagu 26 15 – 50 23

Kentang 20 10 - 100 33

Referensi

Dokumen terkait