• Tidak ada hasil yang ditemukan

Kumpulan Soal Latihan

N/A
N/A
Protected

Academic year: 2021

Membagikan "Kumpulan Soal Latihan"

Copied!
32
0
0

Teks penuh

(1)

   

Institut Teknologi Bandung

 

September 2011

Kumpulan Soal Latihan  

Analisis Data – Statistika Dasar ‐ Biostatistika 

KK Statistika FMIPA ITB 

 

(2)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika A. STATISTIKA DESKRIPTIF

1. Seorang teknisi suatu pabrik paku melakukan kunjungan di bagian produksi. Ia mengambil 36 sampel paku yang akan dikemas dan kemudian mengukur diameter kepala paku tersebut (dalam satuan inci). Hasil pengukurannya adalah sebagai berikut.

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75 6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76 6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78 6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78 6.66 6.76 6.76 6.72 a. Buat diagram batang daun.

b. Hitung nilai ukuran-ukuran pemusatan datanya. c. Buatlah box plot untuk kasus di atas.

d. Apakah terdapat sampel paku yang sangat berbeda dari yang lainnya (pencilan). 2. Berikut adalah nilai koefisien variasi (CV) dari berbagai jenis endapan emas.

Nilai median dari CV tersebut adalah:

5,10 2,81 2,22 1,63 1,58 1,56 1,55 1,28 1,19 1,19 1,12 1,02 0,85 0,80 0,74 0,70 0,58 0,57 0,27 0,22 a. Gambarkan diagram batang daun yang sesuai.

b. Hitung nilai minimum, maksimum, kuartil bawah, median, dan kuartil atas dari nilai CV tersebut.

c. Buatlah box plot untuk kasus di atas. Apakah terdapat sampel nilai CV yang menjadi pencilan.

3. Data lama hidup (dalam tahun) dari 50 nasabah perusahaan asuransi XYZ setelah mendaftar pada tahun dan kategori umur yang sama di suatu kota, dinyatakan dalam diagram batang-daun berikut.

0 34 0 56667777777889999 1 0000001223333344 1 5566788899 2 034 2 7 3 2 Ket: batang (x10), daun (x100).

a. Hitung rata-rata dan simpangan baku lama hidup 50 nasabah tersebut.

b. Hitung nilai minimum, maksimum, kuartil satu (bawah), median dan kuartil tiga (atas) dari lama hidup 50 nasabah tersebut.

c. Apakah terdapat pencilan. Jika iya, tuliskan nilai yang menjadi pencilan dan jenisnya.

d. Gambarkan box-plot untuk kasus di atas.

4. Seseorang tertarik untuk melihat hubungan antara banyaknya alat elektronik yang dibeli dengan biaya (juta rupiah) yang dikeluarkan. Data sebagai berikut.

Bnyk alat elektronik 1 3 6 10 15 Biaya 55 52 46 32 25

a. Tentukan Range and Inter Quartile Range (IQR) dari banyak alat elektronik dan biaya.

b. Buatlah box plotnya.

5. Dari plot eksplorasi dan statistika deskriptif data Nilai Ujian (menggunakan software Minitab 14). Stem-and-leaf of X N = 60 Leaf Unit = 1.0 3 1 7 4 2 3 5 2 5 7 3 24 8 3 6 11 4 113 12 4 8 15 5 224 17 5 57 24 6 0012344

(3)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika 28 6 5779 (6) 7 012444 26 7 56678899 18 8 0001122344 8 8 5589 4 9 02 2 9 58

Tentukan suatu transformasi sehingga diperoleh bentuk baku/normal/simetris. 6. Berikut data umur (tahun) pompa minyak (menggunakan software Minitab 14).

Stem-and-leaf of X N = 30 Leaf Unit = 0.10 6 0 222334 8 0 57 11 1 023 14 1 558 (2) 2 03 14 2 5 13 3 03 11 3 11 4 0 10 4 57 8 5 0 7 5 569 4 6 000 1 6 5

Tentukan suatu transformasi sehingga diperoleh bentuk baku/normal/simetris. 7. Diagram batang dan daun dari diameter sejenis pohon di suatu hutan adalah sbb

(dalam mm) 44 3 5 43 9 9 43 0 0 1 2 2 3 3 42 5 6 6 6 6 8 8 8 9 9 9 9 9 42 0 1 1 1 2 2 3 3 4 41 5 6 7 8 8 9 9 41 2 3 3

Batang satuan, Daun sepersepuluhan

a. Tentukan ukuran pemusatan data (median dan rata-rata).

b. Tentukan ukuran penyebaran data (variansi dan standar deviasi). c. Selidiki adakah pencilan pada data diatas dan berikan penjelasan.

d. Buat diagram kotak dan titik.

8. Tabel berikut menyatakan lama waktu yang diperlukan (jam) untuk mengerjakan tiga tipe soal ujian yang berbeda yang diberikan pada 25 peserta kuliah Analisis Data tahun 2006.

Tipe Waktu pengerjaan (jam)

I 2,5 2 2,6 1,5 2,25 1,75 2,3 2

II 2,75 2,5 3,25 2,5 2,35 2,3 2,5 2 2,25 III 3 3,15 3,75 4 2,5 3,5 2,75 1,75 a. Hitung rataan dan variansi masing-masing tipe soal.

b. Dengan skala yang sama, buatlah boxplot untuk masing-masing tipe soal di atas, kemudian bandingkan. Berikan ulasan Anda.

9. Data curah hujan (dalam mm) di suatu kota di Indonesia dalam 25 hari

direpresentasikan dalam diagram batang daun berikut: (ket: batang: puluhan, daun: satuan)

0 | 3466 1 | 2225678 2 | 1134779999 3 | 0017

(4)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika B. PELUANG, PEUBAH ACAK DAN EKSPEKTASI

1. Misal f(x)= 3 16 , untuk - c < x < c, adalah fungsi : ∞, ∞ 0,1 .

a. Tentukan nilai konstanta c, sehingga fungsi f(x) merupakan fungsi kerapatan peluang untuk variabel acak X.

b. Gambarkan grafik f(x) tersebut.

c. Hitung peluang nilai peubah acak X terletak antara 0 dan 1. d. Tentukan dan gambarkan grafik fungsi distribusi F(x).

2. Prodi Matematika membeli beberapa alat untuk Lab Komputasi dan Statistika pada akhir tahun, yang banyaknya tergantung pada seringnya perbaikan pada tahun sebelumnya. Misalkan Y menyatakan banyaknya komputer, yang dibeli tiap tahun dengan distribusi peluang sbb:

Y 0 1 2 3

P(Y=y) 0,1 0,6 0,15 0,15

a.

Hitunglah rataan dan simpangan/deviasi baku dari banyaknya komputer yang dibeli.

b.

Hitung dan gambarkan fungsi distribusi F(y).

c.

Bila sepanjang tahun harga komputer tersebut tetap, 10 juta rupiah dan potongannya 0.05Y2 juta rupiah untuk setiap pembelian, berapa besar yang harus

dibayar Prodi untuk membeli komputer tersebut pada akhir tahun ini. 3. Misalkan peubah acak X memiliki mean µ dan variansi .

a. Tunjukan bahwa adalah fungsi dari b. b. Tentukan nilai b agar minimum. c. Tentukan nilai .

4. Suatu yayasan A mencoba mengumpulkan dana untuk bencana banjir di Jakarta. Yayasan tersebut mendapatkan informasi yang diperoleh dari pemasukan dana tahun lalu sebagai berikut (dalam seratus ribuan rupiah)

Besar sumbangan 5 10 25 50

Proporsi yang menyumbang 0,45 0,30 0,20 0,05 Tentukanlah :

a. Peluang seseorang akan menyumbang tidak kurang dari Rp 2.500.000,- b. Rataan dan variansi dari X.

5. Pernyataan berikut adalah benar mengenai sifat-sifat fungsi distribusi dari sebuah peubah acak X, F(x), kecuali:

a. Jika maka b. lim 1

c. lim 0

d. lim

6. Banyaknya jam, diukur dalam satuan 1 jam/hari, dari seorang anak SMA tidur siang dianggap variabel acak kontinu T dengan fungsi peluangnya sebagai berikut:

           lainnya t untuk 0 2 1 , 2 1 0 ) ( t t t t t f Tentukan:

a. Peluang (probabilitas) suatu siang anak itu akan tidur antara 0,5 dan 1 jam. b. Tentukan rataan dan variansi dari T, dan gambarkan pada f(t)

c. Carilah fungsi distribusinya dan gambarkan.

7. Jika peubah acak T mempunyai fungsi peluang sebagai berikut :

lainnya

untuk

,

0

1

1

-untuk

),

1

(

)

(

2 4 3

t

t

t

t

f

Cari E[ X2 ], E[ X-1], E[X].

8. Lamanya pemakaian sparepart (dalam bulan) dari suatu jenis motor Jepang, misalkan W, dianggap mempunyai fungsi distribusi peluang sebagai berikut :

0

0

0

)

(

2 /

w

w

Kwe

w

f

w

(5)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika a. Berapakah nilai K.

b. Hitung peluang sparepart tersebut sudah terpakai paling sedikit 5 bulan. c. Hitung harapan lamanya pemakaian sparepart tersebut.

d. Berapa simpangan baku dari lamanya pemakaian sparepart tersebut.

9. Misalkan X menyatakan waktu hidup (jam) sebuah alat elektronik dengan fungsi distribusi ,

 

10 1 10 F x , x x   

a. Tentukan peluang waktu hidup alat elektronik tersebut lebih dari 2 jam.

b. Berapa peluang setidaknya 3 dari 6 elektronik akan berfungsi lebih dari 15 jam. 10. Peluang bahwa jadwal keberangkatan (departs) regular sebuah maskapai penerbangan

tepat waktu adalah 0,83; peluang kedatangannya (arrives) tepat waktu adalah 0,82; dan peluang bahwa keberangkatan dan kedatangannya tepat waktu adalah 0,78. Peluang bahwa kedatangannya tepat waktu jika keberangkatannya tepat waktu dan peluang bahwa keberangkatannya tepat waktu jika kedatangannya tepat waktu berturut-turut adalah:

a. 0,95 dan 0,94 b. 0,94 dan 0,95 c. 0,99 dan 0,95 d. 0,95 dan 0,99

11. Suatu peubah acak X memiliki distribusi peluang sebagai berikut.

Tentukan, (a) Nilai p.

(b) Fungsi distribusi kumulatif peubah acak X. (c) Harapan nilai peubah acak X.

12. Suatu tipe komponen elektronik dikemas dalam 4 bagian. Misalkan Y menyatakan banyaknya pemasangan komponen yang berfungsi dengan baik dimana peluang bahwa tepat y pemasangan yang berfungsi dinyatakan sebagai,

1 2 3 4

0 lainnya

cy , y

, , ,

P Y

y

, y

 

dimana c konstan.

a. Hitung nilai c sehingga P(Y = y) merupakan fungsi massa peluang untuk Y. b. Berapa peluang lebih dari 2 pemasangan yang tidak berfungsi.

c. Hitung harapan banyaknya pemasangan yang berfungsi dengan baik.

13. Berapa banyak cara penyusunan huruf yang berbeda yang dapat dibuat dari huruf-huruf pada kata MATEMATIKA.

a. 10 9 8 7 6 5 4 3 2 b. 10 9 8 7 6 5

c. 10 9 8 7 d. 6 5 4 3 2

14. Misalkan panjang lintasan dari suatu area perkemahan ke sungai terdekat (x100m) dinyatakan sebagai L. Dari hasil beberapa surveyor, disimpulkan bahwa fungsi kepadatan peluang L adalah

2 4 (1 ), jika 0 1 ( ) 0 , untuk lainnya l l l f l l       

Berapa harapan (ekspektasi) seorang petualang menempuh lintasan dari area perkemahan ke sungai terdekat tidak lebih dari 70 m (Catatan jangan lupa dikalibrasi ukurannya).

(6)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika

15. Suatu perusahan yang bergerak di bidang investasi, menawarkan beberapa saham yang berkaitan dengan pemerintahan kepada nasabahnya. Misalkan T adalah peubah acak yang menyatakan lamanya waktu (tahun) sampai saham tersebut habis masa berlakunya. Fungsi distribusi T diberikan sbb:

0 ,        1 1 4, 1 3 1 2, 3 5 3 4, 5 7 1,        7 Hitung peluang bahwa masa berlaku saham tersebut habis, a) tepat 5 tahun

b) kurang dari 4 tahun, dan

c) dari 4 sampai 7 tahun berturut-turut.

16. Seorang peneliti mencatat bahwa dalam 6 bulan (180 hari) pada musim hujan di suatu daerah di Jawa Barat, hujan turun selama 150 hari. Dalam kurun waktu yang sama, banyaknya kejadian bahwa kecepatan angin di atas batas kecepatan normal adalah 120 hari. Sedangkan banyak kejadian bahwa kecepatan angin diatas batas normal jika hari hujan adalan 108 hari. Diasumsikan bahwa kejadian hujan maupun kejadian kecepatan angin yang diatas batas normal tersebut adalah sekali dalam sehari. Dalam 6 bulan musim hujan di tahun berikutnya, hitung:

a. Berturut-turut peluang hujan dan peluang kecepatan angin di atas batas normal. b. Apakah kejadian hari hujan dan kecepatan angin di atas batas normal adalah

saling bebas.

c. Peluang terjadinya hujan jika kecepatan angin di atas batas normal.

17. Seorang investor mengasuransikan lapangan eksplorasi migas sebesar US$ 10.000. Perusahaan asuransi AAA menaksir kerugian 100% (US$ 10.000) dengan peluang 0,002; kerugian 50% dengan peluang 0,01; kerugian 25% dengan peluang 0,1, sisanya dikategorikan sebagai tidak rugi. Selanjutnya jika X menyatakan besarnya kerugian, maka distribusi peluang X adalah

x US$ 10.000 US$ 5.000 US$ 2.500

P(X=x) 0,002 0,01 0,1

Tentukan:

a. Rataan dan variansi dari X.

b. Fungsi distribusi F(x) =

P X

x

dan gambarkan.

c. Besar premi yang diajukan oleh perusahaan asuransi AAA agar memperoleh keuntungan US$ 100.

18. [BENAR/SALAH] Jika X adalah peubah acak yang menyatakan kesalahan pengukuran diameter (satuan: mm) suatu jenis batu mulia yang mempunyai distribusi peluang, f(x) = (3/16) x2 untuk -2 < x < 2, maka peluang tidak terjadi kesalahan pengukuran adalah

0.

C. DISTRIBUSI DISKRIT

1. [BENAR/SALAH] Banyaknya kejadian angin tornado melanda suatu daerah dimodelkan sebagai suatu proses Poisson dengan parameter 4 per tahun. Variansi banyaknya kejadian angin tornado yang melanda daerah tersebut dalam 2 tahun kedepan adalah 2.

2. Misalkan hasil penelitian WHO menyatakan bahwa dari 20 orang pasien flu burung yang dapat sembuh kembali hanya 1 orang. Bila di Bandung ada 15 orang pasien flu burung, berapakah peluang

a) paling banyak 10 orang akan sembuh. b) tepat 5 orang yang sembuh.

(7)

Kumpulan Soal Latihan Analisis Data ‐ Statistika Dasar ‐ Biostatistika

3. Banyaknya customer yang memasuki sebuah Bank (misal X) dalam satu jam, berdistribusi Poisson dengan P(X=0)=0,05. Rata-rata banyaknya customer memasuki Bank tersebut dalam satu jam adalah:

a. 2 b. 3 c. 4 d. 5

4. Seorang petani mengeluh karena 2/3 dari panen jeruknya terserang sejenis virus. Cari probability-nya bahwa di antara 7 jeruk yang diperiksa dari hasil panen:

a) Empat jeruk terserang virus tersebut.

b) Paling banyak tiga jeruk yang terserang virus tersebut. c) Ada 3 jeruk yang tidak terserang virus tersebut.

d) Paling sedikit 3 jeruk yang tidak terserang virus tersebut.

5. Diketahui bahwa rata-rata 5 tiap 4500 orang melakukan kesalahan dalam hal pembayaran telepon di suatu bank.

a. berapa peluang di antara 5000 yang diambil acak terdapat 10 orang yang melakukan kesalahan dalam hal pembayaran telepon tersebut.

b. Berapa peluang di antara 8500 orang, dimana ternyata kurang dari 40 orang yang tidak melakukan kesalahan dalam pembayaran telepon.

6. Suatu hasil penelitian menyebutkan bahwa tingkat kematian bayi di Indonesia adalah 37 bayi dari 1000 kelahiran. Misalkan pada tanggal 13 Maret 2006 di RSHS ada 25 ibu yang mau melahirkan, berapakah peluang

a) tepat 20 bayi akan selamat.

b) bayi yang meninggal paling banyak 3 orang.

7. 1% dari hasil satu kali produksi suatu jenis komponen elektronik adalah cacat. Suatu perencanaan kontrol kualitas mengambil 100 sampel dari proses, dan menyatakan bahwa proses dapat dilanjutkan jika tidak ada cacat yang ditemukan.

a. Hitung harapan banyaknya cacat yang ditemukan dalam sekali proses produksi. b. Berapa peluang bahwa proses dapat dilanjutkan. Petunjuk: gunakan aproksimasi

normal.

c. Di bawah banyak sampel berapakah terdapat 99; 87% produksi tidak cacat.

d. Jika 10 sampel yang diambil (bukan 100), berapakah peluang bahwa sedikitnya ditemukan 8 sampel tidak cacat.

8. Dalam sebuah kolam terdapat 200 ekor ikan. Seorang peneliti menangkap 50 ekor ikan secara acak dan ikan tersebut diberi tanda, kemudian dikembalikan lagi ke dalam kolam. Sekitar 10 menit kemudian, peneliti tersebut menangkap 10 ekor ikan kembali secara acak.

a) Berapa probability tertangkap tepat tiga ikan yang bertanda.

b) Berapa probability tertangkap paling banyak lima ikan yang bertanda. c) Berapa probability tertangkap lima atau enam ikan yang bertanda.

d) Berapa probability tertangkap kurang dari tujuh ikan yang tidak bertanda. e) Berapa probability tertangkap paling sedikit empat ikan yang tidak bertanda. 9. E(X2) dari peubah acak X yang berdistribusi Poisson p(x; 3) = e-33x/x. , untuk x = 0, 1, 2,

... adalah,

a) 3 b) 9 c) 12 d) 6

10. Dalam suatu penelitian rasio buah melon yang terserang virus dan tidak adalah 2:3. Hitunglah peluang :

a. Kurang dari 4 dari 10 buah melon terserang virus tersebut. b. Buah melon yang baik tidak lebih dari 8 dari 10 buah melon.

c. Dari 100 buah melon, yang terserang antara 20 sampai dengan 75 buah.

11. Diketahui bahwa banyaknya kecelakaan pesawat komersial di seluruh dunia adalah 3,5 kecelakaan per bulan, tentukan bahwa

a) pada bulan depan, sedikitnya terjadi dua kecelakaan. b) pada bulan depan, paling banyak terjadi satu kecelakaan.

12. Seorang peneliti menyuntik 20 ekor kelinci, satu demi satu, dengan sejenis virus penyakit. Bila peluang seekor kelinci terserang penyakit tersebut 1/6, berapakah peluang bahwa delapan diantaranya akan terserang penyakit.

(8)

13. Dalam suatu produksi paku, diketahui bahwa dalam 100 paku yang diproduksi terdapat satu paku yang cacat (keluar dari spesifikasi). Secara periodik, di ambil delapan buah paku secara acak. Jika terdapat dua paku atau lebih yang cacat dari delapan paku tersebut, maka proses produksi harus diberhentikan dan disesuaikan. Berapa probability bahwa:

a) Proses akan diberhentikan jika proses tidak berubah.

b) Proses tidak akan diberhentikan meskipun proses produksi telah berubah menghasilkan 2% paku yang cacat (keluar dari spesifikasi).

14. Sebuah jenis permen, tertera pada label pembungkusnya bahwa berat permen tersebut 20.7 gram. Misal peluang sebuah permen yang beratnya lebih besar dari 20,7 gram adalah 0,85. Jika X menyatakan banyaknya permen yang beratnya lebih dari 20,7 gram yang diambil dari sebuah sampel acak yang berisi 8 buah permen.

a. Sebutkan distribusi X jika diasumsikan bebas. b. Hitung peluang semua permen beratnya lebih dari 20,7 gram.

c. Hitung peluang banyak permen yang beratnya lebih dari 20,7 gram, tidak lebih dari 6.

d. Jika terdapat 100 buah permen, hitung peluang banyaknya permen yang beratnya lebih dari 20,7 gram, antara 45 dan 70 buah.

15. Suatu alat elektronik bekerja baik bila melakukan kesalahan tidak lebih dari 20% per jam. Untuk menguji alat tersebut, dipilih selang 5 jam. Bila dalam selang 5 jam tidak lebih dari satu kesalahan maka alat dianggap memuaskan. Misalkan banyaknya kesalahan mengikuti proses Poisson. Berdasarkan prosedur pengujian ini, tentukan peluang,

a. alat yang memuaskan dinyatakan tidak memuaskan.

b. alat dinyatakan memuaskan padahal rataan banyaknya kesalahan 25%.

16. Suatu perusahaan yang bergerak di bidang pertambangan, berencana untuk mengganti merk ban yang digunakan truk-truk pengangkutnya saat ini, dengan merk ban A. Ban bermerk A ini diklaim oleh produsennya memiliki kemungkinan 0,01 untuk mengalami ban pecah setelah menempuh jarak kurang dari 10.000 km. Untuk mengujinya, perusahaan tersebut memasang 8 unit ban merk A di beberapa truknya. Truk-truk tersebut dipasang ban merk A di tempat yang sama dan memiliki rute perjalanan yang sama pula. Dalam selang jarang tempuh sampai 10.000 km, hitung:

a. Peluang bahwa tidak ada ban yang pecah.

b. Peluang bahwa 5 sampai 8 unit ban baik-baik saja.

c. Peluang kurang dari 5 unit ban pecah, jika perusahaan membeli 1000 unit ban merk A.

17. Suatu daerah di bagian timur Amerika Serikat, rata-rata diserang 6 angin topan per tahun. Berapakah peluang bahwa pada suatu tahun tertentu

a) Tidak sampai empat angin topan menyerang daerah tersebut b) Antara 6 sampai 8 angin topan akan menyerang daerah tersebut

D. FISTRIBUSI KONTINU

1. Panjang 1000 ekor jenis ikan terentu berdistribusi normal dengan rataan 17,5 cm dan simpangan baku 0,7 cm. Berapakah banyaknya ikan yang diharapkan mempunyai panjang

a. kurang dari 16 cm

b. lebih besar atau sama dengan 18,8 cm c. sama dengan 17,5 cm

2. Banyaknya peserta kuliah on line suatu mata kuliah tertentu dianggap berdistribusi normal dengan rataan 100 dan standar deviasi 25. Tentukan:

a. Peluang peserta on line mata kuliah tersebut lebih dari 175 orang.

b. Peluang peserta on line mata kuliah tersebut kurang dari 105 tapi tidak kurang dari 90 orang.

c. Di bawah banyak peserta berapakah terdapat 15% dari seluruh peserta kuliah tersebut.

(9)

3. Nilai ujian masuk suatu perguruan tinggi berdistribusi normal dengan variansi 2 64   . Suatu sample acak berukuran n = 20 memberikan s220,

a. Tentukan distribusi 2 S b. Tentukan nilai 2 ,975;19  dan 2 .025;19  c. Apakah   masih valid (sahih) 2 8

4. Umur suatu komponen elektronik berdistribusi eksponensial dengan tingkat kegagalan 2

  . Seratus alat dipasang pada sistem yang berlainan. Tentukan, a. model distribusi banyaknya alat yang rusak pada tahun pertama b. peluang paling banyak 5 gagal pada tahun pertama

5. Nilai ujian 5000 mahasiswa berdistribusi normal

2

N  74, 64 . Tentukan range nilai, (a) 5% tertinggi (b) 10% tertinggi dan 25% berikutnya

6. Gambaran penjualan bulanan dari suatu produk makanan cenderung berdistribusi normal dengan rataan 100 (dalam ribuan dolar) dan standar deviasi 25 (dalam ribuan dolar). Tentukan bahwa:

a. Peluang penjualannya lebih dari 200 ribu dolar.

b. Peluang penjualannya kurang dari 120 ribu dolar tapi tidak kurang dari 90 dolar. c. Di bawah penjualan berapakah terdapat 20% dari seluruh penjualan yang ada. 7. Diperkirakan 4 dari 10 penduduk memiliki alat komunikasi digital. Sampel 15

penduduk diambil secara acak, dan misalkan X menyatakan banyaknya yang memiliki alat komunikasi digital. Tentukan P X

4

menggunakan,

a. distribusi binomial. b. hampiran normal.

8. Misalkan rata-rata curah hujan di Bandung pada bulan Maret (dicatat keseperseratusan cm yang terdekat) adalah 9,22 cm. Bila distribusinya normal dengan simpangan baku 2,83 cm, tentukan peluang bahwa pada bulan Maret yang akan datang, curah hujan di Bandung

c) kurang dari 1,84 cm.

d) lebih dari 5 cm tapi kurang dari 7 cm. e) lebih dari 13,8 cm.

9. Peluang seseorang sembuh dari operasi jantung yang rumit adalah 0,9.

a. Dari 10 orang yang menjalani operasi, beberapa harapan seseorang sembuh. b. Dari 100 orang yang menjalani operasi yang sama, hitung peluang 5 sampai 10

orang tidak sembuh.

c. Dari 100 orang tersebut pada no.c, di bawah banyak orang berapakah terdapat 90% orang sembuh. Catt. Untuk hasil akhir, bulatkan ke bilangan bulat terdekat.

10. Sebuah jenis permen ,tertera pada label pembungkusnya bahwa berat permen tersebut 20.7 gram. Misal peluang sebuah permen yang beratnya lebih besar dari 20,7 gram adalah 0,85. Jika X menyatakan banyaknya permen yang beratnya lebih dari 20,7 gram yang diambil dari sebuah sampel acak yang berisi 8 buah permen.

a. Sebutkan distribusi X jika diasumsikan bebas. b. Hitung peluang semua permen beratnya lebih dari 20,7 gram.

c. Hitung peluang banyak permen yang beratnya lebih dari 20,7 gram, tidak lebih dari 6.

d. Jika terdapat 100 buah permen, hitung peluang banyaknya permen yang beratnya lebih dari 20,7 gram, antara 45 dan 70 buah.

11. Suatu percobaan menghitung banyaknya partikel–α yang luruh dalam selang 1 detik dari 1 gram radioaktif. Dari pengalaman sebelumnya diketahui bahwa rata-rata sebanyak 3,2 partikel– α yang akan luruh per detik. Berapakah taksiran peluangnya bahwa tidak lebih dari 2 partikel– α yang akan luruh .

12. Misalkan suatu sistem mengandung sejenis komponen yang daya tahannya dalam tahun dinyatakan oleh peubah acak T yang berdistribusi eksponensial dengan parameter waktu rata-rata sampai komponen tersebut rusak, 1 5

(10)

komponen tersebut dipasang dalam sistem yang berlainan, berapakah peluang paling sedikit 2 komponen masih akan berfungsi pada akhir tahun kedelapan .

13. Galat (error) dalam mengukur kelebihan/kekurangan volume minuman dingin (setelah dikalibrasi) dianggap berdistribusi normal dengan rataan 0 dan variansi 4 ml2. Peluang

bahwa galat pengukuran volume minuman dingin tersebut lebih dari 0 ml adalah, a. 0,125 b. O,250 c. 0,375 d. 0,500 e. 0,625

E. INFERERENSI STATISTIKA : PENAKSIRAN DAN UJI HIPOTESIS

1. Data berikut menyatakan waktu belajar (satuan: menit) peserta kuliah Statistika Dasar menjelang UTS.

Kelas 01 102,4 96,6 85,3 120,4 114,5 198,8 86,8

Kelas 02 92,3 86,5 88,5 100,1 110,7 94,6

a. Tentukan selang kepercayaan 90 % untuk selisih rataan waktu belajar mahasiswa kelas 01 dan kelas 02.

b. Ujilah hipotesis yang mengatakan bahwa beda rataan waktu belajar mahasiswa kelas 01 dan mahasiswa kelas 02 adalah 10 menit. Distribusi waktu belajar diasumsikan hampir normal. (petunjuk: gunakan  = 5 %)

c. Apakah rasio keragaman (variansi) waktu belajar mahasiswa kelas 01dan mahasiswa kelas 01 lebih dari 1. (petunjuk: gunakan  = 5 %)

2. 13 merk rokok yang dipilih secara acak dan kadar nikotinnya diukur dalam mg adalah sebagai berikut:

7,3 8,6 10,4 9,5 16,5 12,2 11,5 8,1 11,5 9,3 9,2 8,5 10,5 a. Tentukanlah selang kepercayaan 95% untuk rataan nikotin dalam rokok.

b. Dengan taraf signifikan 5%, ujilah hipotesis bahwa rataan kadar nikotin dalam rokok mlampaui 9, jika kadar nikotin rokok berdistribusi normal.

3. Seorang peneliti di UCLA menyatakan bahwa umur tikus dapat diperpanjang 25% bila kalori dalam makanannya dikurangi sebanyak 40%, sejak tikus itu disapih. Sampai tahap normal makanan tersebut kemudian diperkaya dengan vitamin dan protein. Dari penelitian terdahulu diketahui bahwa simpangan baku umur tikus dengan pola makan seperti itu adalah 5,8 bulan. Peneliti lain melakukan percobaan terhadap beberapa ekor tikus yang diambil secara acak dari populasi tikus tersebut dan ia ingin rataan umur tikus-tikus tersebut lebih lama 2 bulan dari rataan populasi. Jika tingkat keyakinan yang ia gunakan 99%, berapa ekor tikus yang harus dijadikan sampel.

4. Data berikut, dalam hari, menyatakan waktu yang diperlukan penderita sampai sembuh, penderita dipilih secara acak untuk mendapat salah satu dari dua obat yang dapat menyembuhkan infeksi berat pada saluran kencing:

Obat 1 n = 14 ,

x

117,

s

211,5

Obat 2 n = 16 ,

x

219 , 2 1,8

2

s

Apakah obat 2 memberikan waktu yang lebih lama dari obat 1.

5. Suatu riset dilakukan untuk membuktikan bhw: suhu pisau mempengaruhi kekuatan luka pada pemotongan dlm pembedahan. 8 anjing dipilih dan pembedahan dilakukan dgn pisau panas dan dingin pada setiap anjing dan kekuatannya diukur, hasilnya sbb

Anjing 1 2 3 4 5 6 7 8

Panas 5.120 10.000 10.000 10.000 10.000 7.900 510 1.020 Dingin 8.200 8.600 9.200 6.200 10.000 5.200 885 460 Uji perbedaan rata-rata kekuatan pemotongan panas terhadap dingin lebih dari 700, gunakan taraf keberartian 5%

(11)

6. Waktu reaksi dari sampel acak sebanyak 9 subjek terhadap suatu obat perangsang tercatat sebagai berikut (detik):

2,5 3,6 3,1 4,3 2,9 2,3 2,6 4,1 3,4

a. Tentukan selang kepercayaan 90% untuk rataan waktu reaksi obat perangsang di atas

b. Peneliti sebelumnya menyatakan bahwa rataan waktu reaksi tidak sama dengan 3 detik. Uji apakah data tersebut mendukung pendapat tersebut, gunakan  = 1%

8. Suatu percobaan untuk menentukan apakah atmosfer yang bercampur CO mempengaruhi kemampuan bernafas dilakukan terhadap 9 orang. Petugas dari Jurusan Pendidikan Jasmani Virginia Polytechnic Int. dan State Univ. menghubungkan setiap peserta dengan dua ruang pernafasan, yang salah satunya mengandung CO yang tinggi; dan ia mengukur pernafasan masing-masing peserta di setiap ruang dengan urutan acak. Data berikut adalah banyaknya pernafasan per menit:

Tanpa CO 32 25 27 37 30 51 43 42 32

Dengan CO 32 53 27 36 47 28 48 34 32

a. Menurut anda apakah dua kelompok tersebut berasal dari dua kelompok yang berpasangan atau bukan.

b. Dengan menggunakan  = 5%, selidiki apakah atmosfer yang bercampur CO meningkatkan banyaknya pernafasan sebesar 2 terhadap atmosfer yang bersih, tanpa CO.

Catatan: Distribusi banyaknya pernafasan permenit diasumsikan hampir normal. 9. Data berikut menyatakan banyaknya ngengat yang tertangkap pada malam hari,

masing-masing dengan cara A dan B

A 42 35 34 37 41 37

B 53 58 63 56 65 58 57 57

a. Tentukan selang kepercayaan 95 % untuk selisih kedua rataan dan rasio variansi antara cara A dan cara B.

b. Apakah Anda setuju jika ada ahli ekologi yang menyatakan bahwa beda ngengat yang tertangkap oleh metode A tidak lebih dari 10 terhadap metode B pada taraf signifikasi 5%.

10. Dua jenis mesin sedang dipertimbangkan untuk digunakan dalam pembuatan suatu sekrup. Mesin tersebut dibandingkan berdasarkan hasil diameter sekrup yang diproduksinya. Berikut pengukuran dari dua mesin diatas ( dalam mm) :

Mesin 1 1,98 1,90 1,99 2,00 2,01 1,98 2,10 1,89 1,95 1,99 Mesin 2 2,05 1,89 1,96 1,92 2,09 2,03 2,07 1,99

Dianggap variansi diameter sekrup yang diproduksi mesin 1 tidak berbeda dengan yang diproduksi mesin2.

a. Hitung selang kepercayaan 90% beda rataan populasi antara diameter sekrup mesin 2 dengan mesin 1.

b. Uji apakah rataan diameter mesin 2 lebih besar 0,78 mm daripada rataan diameter mesin 1 (gunakan =5%).

11. Diketahui data produksi volume minyak bumi beberapa sumur di Jatibarang Desember 1990 (satuan: m3) sbb :

150 203 259 269 137 135 140 144 161 136 86

Diasumsikan bahwa volume produksi minyak bumi berdistribusi hampir normal. a. Tentukan selang kepercayaan 95% untuk variansi data produksi minyak bumi. b. Apakah anda sependapat jika seorang ahli mengatakan bahwa rata-rata volume

produksi minyak bumi di reservoir Jatibarang kurang dari 165 m3. (gunakan

(12)

12. Suatu mesin oli mobil diatur sedemikian rupa sehingga volume oli yang dikeluarkannya berdistribusi hampir normal. Suatu sampel acak diambil dan hasilnya adalah sebagai berikut: (dalam desiliter)

2,1 2,2 2,4 2,2 2,0 2,1 2.3 2,0 2,2 a Tuliskan selang kepercayaan 95% masing-masing untuk rataan dan variansi

volume oli di atas.

b Sebelumnya suatu LSM melakukan percobaan yang serupa. Lalu dari hasil pangamatannya tersebut disimpulkan bahwa rataan dari volume oli di atas lebih dari 2 dl. Apakah anda setuju dengan pernyataan ini, gunakan taraf signifiknasi 5%.

13. Himpunan mahasiswa Matematika ITB hendak melakukan survey tentang perbedaan performa dua supermarket besar yang ada di wilayah Dago yang diukur berdasarkan tingkat kepuasan masyarakat sekitar daerah Dago terhadap keragaman produk di supermarket yang bersangkutan. Untuk itu, sebelumnya dilakukan pilot survey terhadap 17 responden yang dipilih secara acak. Responden diminta untuk memberi nilai dari skala 1-10 dimana angka 1 menyatakan rasa sangat tidak puas dan 10 adalah rasa sangat puas terhadap keragaman produk di kedua supermarket tersebut. Hasilnya dapat dilihat pada tabel berikut.

Supermarke t Responden 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 I 7 8 7 7 9 8 9 7 8 8 7 8 8 7 9 9 7 II 8 8 7 10 9 8 9 8 9 7 7 8 8 7 8 8 8 (Catatan: responden terpilih pernah mengunjungi kedua supermarket tersebut dan asumsikan bahwa nilai tingkat kepuasan responden berdistribusi hampir normal.)

a. Menurut anda apakah dua kelompok tersebut berasal dari dua kelompok yang berpasangan atau bukan.

b. Hitung selang kepercayaan 98% untuk selisih kepuasan masyarakat terhadap kedua supermarket tersebut.

c. Dengan menggunakan taraf signifikansi 5%, selidikilah apakah performa Supermarket I lebih baik dibandingkan Supermarket II.

14. Diberikan dua sampel acak berukuran

n

1

11

dan

n

2

14

dari dua populasi normal

bebas, dengan

x

1

75, x

2

60, s

1

6,1 dan s

2

5, 3

. Pada taraf keberartian 5%, ujilah

hipotesis, a. 2 2

1 2

   b.

  

1 2

15. Perbandingan keefektifan antara pembelajaran secara tradisional (tatap muka) dengan sistem online suatu mata kuliah tertentu, dilihat dari hasil ujian akhir dari 14 mahasiswa yang mengambil kuliah tatap muka dan 12 mahasiswa yang mengambil kelas online. Nilai ujian akhirnya adalah sebagai berikut:

Tatap muka 80 83 64 81 75 80 86 81 51 64 59 85 74 77

Online 66 75 85 64 88 77 74 91 72 69 77 83

Dengan taraf keberartian 2%, dari data tersebut :

a. Uji apakah variansi nilai ujian kelas tatap muka sama dengan variansi nilai ujian kelas online.

b. Uji apakah metode pembelajaran tatap muka lebih efektif daripada metode online. 16. Proporsi penduduk yang berpendidikan S1 disuatu kota diperkirakan p = 30%. Untuk

menguji dugaan ini diambil sampel acak n = 15. Bila banyaknya yang berpendidikan S1 diantara 2 dan 7, maka

H : p

0

30%

diterima; jika tidak disimpulkan p30%.

Tentukan,

(13)

b.

P menerima H | p

0

20%

17. Sampel selama 15 bulan menunjukkan bahwa rataan curah hujan bulanan di kabupaten A 4,93 cm dengan simpangan baku 1,14 cm. Di kabupaten B rataan curah hujan bulanan 2,64 cm dan simpangan baku 0,66 selama 10 bulan. Asumsikan pengamatan berasal dari populasi normal dengan variansi sama. Buatlah selang konfidensi 98% masing-masing untuk nisbah (ratio) variansi dan selisih mean curah hujan .

18. Konsentrasi dari zat-zat padat yang dikandung air sungai merupakan karakteristik lingkungan yang penting. Berdasarkan survey di beberapa lokasi di dua propinsi yang berbeda diperoleh konsentrasi zat padat`(dalam per million per parts atau ppm) untuk sungai-sungai tersebut adalah sebagai berikut:

Propinsi I 80 83 64 81 75 80 86 81 51 64 59 85 74

Propinsi II 66 75 85 64 88 77 74 91 72 69 77

Dengan taraf keberartian 2% dan di bawah asumsi normal, dari data tersebut:

a. Uji apakah variansi konsentrasi zat padat sungai-sungai di kedua propinsi itu berbeda.

b. Uji apakah konsentrasi zat padat sungai-sungai di Propinsi I tidak lebih besar dibandingkan Propinsi II.

19. Kadar asam askorbat plasma wanita hamil dibandingkan antara yang perokok dengan tidak. 16 wanita pada 3 bulan terakhir kehamilan, yang tidak menderita penyakit yg berarti, dipilih untuk diteliti. Dari 20 ml darah diambil dari setiap peserta yang berpuasa dahulu selama 10 jam, hasilnya sbb:

Nilai asam askorbat plasma (dlm mg per 100ml)

Takmerokok 1,0 1,32 0,9 1,2 0,8 1,2 0,6 0,7 1,3 Perokok 0,5 0,7 1,0 5,7 1,2 1,4 1,6

a. Hitung selang kepercayaan 99% beda rataan populasi antara kadar asam askorbat plasma perokok dan tidak.

b. Apakah ada perbedaan antara kadar asam askorbat plasma perokok dan tidak. (Gunakan uji hipotesis.)

20. Dua puluh siswa dibagi menjadi 10 pasang, tiap orang dalam pasangan mempunyai kecerdasan yang hampir sama. Seorang dari tiap pasangan dipilih secara acak dan dimasukkan ke kelompok perlakuan I. Anggota lainnya dimasukkan ke kelompok perlakuan II. Data hasil eksperimen tercatat:

X , X

1 2

: (76,81) (60,52) (85,87) (58,70)

(91,86) (75,77) (82,90) (64,63) (79,85) (88,83). a. Jelaskan desain eksperimen yang digunakan. b. Tentukan taksiran titik.

c. Tentukan 98% selang konfidensi selisih mean perlakuan I dan II

F. ANALISIS VARIANSI (ANOVA)

1. Seorang ahli biologi ingin melihat pengaruh vaksin dengan dosis berbeda pada seekor tikus sebut dosis A, dosis B, dan dosis C. Data di bawah ini adalah nilai akhir yang didapat

A 93 97 91 94

B 80 75 79

C 68 65 72 75 70

Diasumsikan bahwa nilai pengaruh vaksin berdistribusi normal dan percobaan dilakukan saling bebas. Gunakan taraf keberartian 0,05 untuk menguji pendapat peneliti lain bahwa dosis vaksin tidak mempunyai pengaruh yang berbeda.

(14)

2. Tiga angkatan Program Studi Matematika mendapatkan nilai Bahasa Inggris dengan silabus pembelajaran yang sama. Data mengenai rata-rata nilai akhir tercatat sbb.

2007 561 530 397 464 430

2008 461 464 464 364 697

2009 530 430 430 430 530 457 457

Asumsikan distribusi nilai adalah hampir normal, dan tiapangkatan saling bebas. Dengan menggunakan tingkat keberartian 0,01. Selidiki apakah terdapat perbedaan yang berarti dalam hasil pembelajaran bahasa Inggris di 3 angkatan di atas . Berikan tabel ANOVAnya.

3. Penelitian “Loss of Nitrogen Trhough Sweat by Preadololescent Boys Consuming Three Levels of Dietary Protein” telah dilakukan Virginia Polytechnique Institute and State University tahun 1975, untuk menentukan jumlah keringat nitrogen yang hilang pada berbagai taraf diet protein. Dua belas anak laki-laki berusia 7 tahun 8 bulan sampai 9 tahun 8 bulan yang dinilai cukup sehat, digunakan dalam percobaan itu. Tiap anak melakukan diet terkontrol dengan memakan salah satu dari tiga diet yang mengandung 29, 54, atau 84 gram protein per hari. Data berikut menggambarkan jumlah keringat nitrogen yang hilang, dalam mg, yang dikumpulkan selama 2 hari jangka waktu percobaan.

Taraf protein

29 gram 54 gram 84 gram 190 266 270 318 295 271 438 402 390 321 396 399

Dibawah asumsi normal dan kebebasan, benarkah dugaan si peneliti tersebut bahwa rataan kehilangan keringat nitrogen pada ketiga taraf protein, berbeda.

4. Telah terbukti bahwa pupuk magnesium amonium fosfat, MgNH4PO4, merupakan

pemasok makanan yang efektif yang diperlukan bagi pertumbuhan tanaman. Ramuan pupuk ini mudah larut dalam air sehingga langsung dapat digunakan pada permukaan tanah atau dicampur dengan substrat pertumbuhan sebelum dimasukkan dalam pot. Suatu penelitian mengenai “Effect of Magnessium Ammonium Phosphate on Height of Chrysanthemums” telah dilakukan di George Mason University tahun 1980. Pada penelitian tersebut, taraf pemupukan optimum ditentukan berdasarkan rangsangan respon pertumbuhan vertikal bunga krisan. Empat puluh bibit krisan dibagi 3 kelompok, masing-masing 6 tanaman, tiap kelompok ditanam dalam pot yang serupa dengan media yang sama. Pada tiap kelompok tanaman ditambahkan konsentrasi MgNH4PO4 yang meningkat, diukur dalam gram/goni. Keempat kelompok bunga

ditanam pada keadaan yang seragam dalam rumah kaca selama 4 minggu. Perlakuan dan perubahan tinggi masing-masing diukur dalam cm dan hasilnya adalah sebagai berikut:

50

g/goni g/goni 100 200 g/goni a. Tentukan selang kepercayaan 99% untuk perlakuan kedua b. Secara teori, konsentrasi MgNH4PO4 yang berlainan akan

mempengaruhi tinggi rata-rata yang dicapai oleh bunga krisan. Apakah hasil percobaan tersebut sesuai dengan teori yang diberikan, jika taraf signifikansi yang digunakan, 0,05 c. Selang kepercayaan 95% untuk beda rataan perlakuan 1 dan

2 13,2 12,4 12,8 17,2 13,0 14,0 16,0 12,6 14,8 13,0 14,0 23,6 7,8 14,4 20,0 15,8 17,0 27,0

5. Tabel berikut menyatakan waktu kesembuhan (jam) yang diakibatkan tiga merek obat sakit kepala yang berlainan yang diberikan pada 25 penderita demam.

Obat Waktu kesembuhan (jam)

A 5 4 8 6 3 3 5 2 B 9 7 8 6 9 3 7 4 1 C 7 6 9 4 7 2 3 4

(15)

Peneliti sebelumnya melaporkan bahwa jika menggunakan obat A, rataan waktu kesembuhannya kurang dari 6 jam dan jika dibandingkan dengan obat C perbedaan rataanya mencapai 1 jam. Sementara itu, rataan waktu kesembuhan menggunakan obat B dan obat C tidak berbeda secara signifikan

Peneliti tersebut juga menyebutkan bahwa untuk rataan lamanya kesembuhan yang diakibatkan oleh ketiga merek tablet, berbeda

Pertanyaan:

a. Tentukan selang kepercayaan 95% untuk rataan waktu kesembuhan jika menggunakan

i) obat A ii) obat B iii) obat C

b. Apakah hasil penelitian tersebut sesuai dengan hasil penelitian sebelumnya. Jelaskan alasannya.

6. Tiga metode pemberian pakan diterapkan pada sembilan ekor domba perahan (etawa) yang dikelompok menjadi tiga kelompok. Ujilah apakah terdapat perbedaan berat etawa yang dihasilkan oleh metode pemberian pakan yang berbeda jika berat etawa (dalam pon) yang dihasilkan setelah 2 bulan sejak penerapan metode pemberian pakan adalah sbb.

Metode A 84,6 83,3 85,1 Metode B 87,3 85,9 88,2 Metode C 87,2 86,0 86,3

Gunakan taraf signifikansi 1% dan 5% dan diasumsikan bahwa sebelum penerapan metode pemberian pakan yang berbeda, kesembilan domba tersebut memiliki berat yang sama.

7. Lima metode pemberian pakan diterapkan pada 16 ekor anak kambing yang dikelompok menjadi lima kelompok. Ujilah apakah terdapat perbedaan berat anak kambing yang dihasilkan oleh metode pemberian pakan yang berbeda jika berat anak kambing (dalam kg) yang dihasilkan setelah 2 bulan sejak penerapan metode pemberian pakan adalah sbb.

Treatment Berat Badan (kg)

A 5.21 4.65

B 5.59 2.69 7.57 5.16

C 6.24 5.94 6.41

D 6.85 9.18 4.94

E 4.04 3.29 4.52 3.75

Gunakan taraf signifikansi 1% dan 5% dan diasumsikan bahwa sebelum penerapan metode pemberian pakan yang berbeda, kenambelas anak kambing tersebut memiliki

berat yang sama.

8. Empat jurusan mendapatkan kuliah MA 2081 Statistika Dasar dengan silabus kuliah yang sama pada tahun 2001. Data mengenai rata-rata nilai akhir tercatat sbb :

Fisika 77 82 80 84 60

Tambang 86 70 77 69 72 70 80

Geologi 78 80 56 90 80 73

Selidiki apakah terdapat perbedaan yang berarti dalam hasil perkuliahan MA 2081 Statistika Dasar di keempat Jurusan .

9. Banyaknya bekteri dalam 6 tempat susu dicatat oleh 4 pengamat, misala Ana, Beni, Cici, dan Dedi. Hasil perhitungan mereka adalah sebagai berikut:

Ana 230 241 336 128 253 124 Beni 184 72 214 348 68 330 Cici 205 156 308 118 247 104 Dedi 196 210 284 312 125 99 a. Tuliskan model hipotesis yang sesuai jika ingin diuji apakah ada perbedaan cara

(16)

b. Jika diambil  = 0,05 apakah 4 pengamat di atas menghitung rata-rata banyaknya bakteri pada susu sama, Jika diasumsikan bahwa banyaknya bakteri berdistribusi hampir normal.

G. REGRESI LINIER SEDERHANA DAN KORELASI

1. Untuk suhu (0C) yang berlainan, banyaknya garam (gram) yang dihasilkan pada suatu

proses adalah

T (0C) 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0

Z (gram) 8,1 7,8 8,5 9,8 9,5 8,9 8,6 10,2 9,3 9,2 10,5 a. Tentukan variabel bebas dan variabel tak bebas untuk kasus di atas.

b. Taksir model liniernya.

c. Tentukan taksiran selang 95% untuk 0 dan 1.

d. Tentukan selang kepercayaan 99% untuk korelasinya.

e. Jika suhunya 2,2 0C, tentukan interval prediksinya (gunakan tingkat keberartian

5%)

2. Data berikut diperoleh dalam penelitian hubungan antara berat dan ukuran dada bayi yang baru lahir:

Berat (kg) 2,75 2,15 4,41 5,52 3,21 4,32 2,31 4,30 3,71 Ukuran dada (cm) 29,5 26,3 32,3 36,5 27,2 27,7 28,3 30,3 28,7 a. Tentukan titik potong dan gradien (slope) dari taksiran garis regresinya.

b. Hitung taksiran untuk variansi galat.

c. Tentukan selang kepercayaan 99% untuk gradien garis regresinya.

d. Apakah hasil penelitian tersebut sesuai dengan pernyataan “Bila berat bayi tersebut tepat 3 kg, maka ukuran dadanya diperkirakan sama dengan 29 cm”.

e. Apakah benar bahwa terdapat hubungan antara berat dan ukuran dada bayi yang baru lahir.

3. Data berikut menyatakan temperatur seekor kelinci (Z), yang diukur setelah Y jam, sejak kelinci tersebut diokulasi dengan riderpest virus

Y (jam) 24 32 48 56 72 80 96

Z (0F) 102,8 104,5 106,5 107,0 103,9 103,9 103,1

a. Dari kasus di atas, tentukan variabel respon (variabel tak bebas) dan variabel bebas.

b. Tentukan taksiran garis regresinya. c. Hitung simpangan baku dari galat.

d. Tentukan perkiraan temperatur kelinci tersebut, jika pengukuran dilakukan setelah 60 jam.

e. Berapa % kah variansi dalam Z yang disebabkan oleh hubungan liniernya dengan Y.

f. Apakah anda setuju dengan pernyataan bahwa garis regresi tersebut tidak melalui titik (0,0).

4. Dalam pengujian suatu bahan, tekanan normal yang diberikan terhadap bahan dianggap berkaitan secara fungsional dengan ketahanannya. Berikut hasil percobaan mengenai ketahanan bahan tersebut

Tekanan (kg/cm2) 26,8 25,4 28,9 23,6 27,7 23,9 24,7 28,1 26,9

Ketahanan 26,5 27,3 24,2 27,1 23,6 25,9 26,3 22,5 21,7 a. Taksir model regresi liniernya.

b. Hitung taksiran simpangan baku galatnya.

c. Tentukan taksiran selang untuk kemiringannya (slope).

d. Bila tekanan normal 24,5 kg/cm2, apakah benar bahwa perkiraan untuk

ketahanannya kurang dari 26 untuk taraf keberartian 1%. e. Uji hipotesis bahwa garis regresinya tidak konstan.

5. Menurut teori jika suatu bahan A dikeringkan maka pengurangan beratnya akan bertambah secara eksponensial terhadap lamanya pengeringan. Berikut data hasil percobaan

Lama pengeringan (jam) 4,4 4,5 4,8 5,5 5,7 5,9 6,3 6,9 7,5 7,8 Berat (gram) 2,01 2,45 2,81 3,01 3,32 3,67 3,88 4,03 4,59 5,06

(17)

a. Taksir model regresinya.

b. Bila lama pengeringan 8 jam kira-kira berapakah pengurangan beratnya. c. Tentukan taksiran selang 95% untuk koefisien-koefisiennya.

6. Diduga bahwa nilai yang diperoleh mahasiswa pada Ujian Tengah Semester (UTS) berpengaruh pada nilai yang diperoleh pada Ujian Akhir Semester. Nilai 9 siswa Tehnik Perminyakan yang mengambil Statistika Dasar pada UTS dan UAS seperti di bawah ini. Tentukanlah,

UTS 77 50 71 72 81 94 96 99 67

UAS 82 66 78 34 47 85 99 99 68

a. Ujian manakah yang dapat dipandang sebagai respon (peubah tak bebas) dan akseptor (peubah bebas) dari kasus diatas.

b. Apakah wajar jika difitkan model regresi linier sederhana Y =  + X + .. Jelaskan secara geometri.

c. Taksir model regresi linier sederhana dari kasus diatas.

d. Tentukan nilai UAS seorang siswa apabila ia mendapat nilai 85 pada UTS. e. Hitung koefisien korelasi antara UTS dan UAS.

7. Seorang pegawai Perhutani ingin menaksir volume (dalam feet3) pohon-pohon pada

suatu penjualan kayu. Dalam penelitiannya ia mengambil seorang asisten dan diminta untuk menaksir (estimasi) volume kayu. Ia memilih secara acak 9 kayu dan mengukut volume sebenarnya (aktual), sedangkan asistennya diminta untuk menaksir. Hasilnya sebagai berikut:

Taksiran 12 14 8 12 17 16 14 14 15 Aktual 13 14 9 15 19 20 16 15 17

Jika diambil taksiran sebagai peubah bebas model regresi linier sederhana dan aktual sebagai peubah tak bebas, hitung persamaan regresi dan juga korelasinya.

8. Berat yang berkurang bila suatu bahan dikeringkan pada jangka waktu yang berlainan adalah sbb.

Waktu (jam) 4,4 4,5 4,8 5,5 5,7 5,9 6,3 Berat (gram) 13,1 9,0 10,4 13,8 12,7 9,9 13,8 a. Tentukan variabel bebas dan variabel tak bebas untuk kasus di atas.

b. Tentukan taksiran titik dan taksiran selang 99% dari koefisien-koefisien regresinya. c. Tentukan selang prediksi 95% untuk berat yang berkurang jika bahan tersebut

dikeringkan selama 6 jam.

9. Dilakukan suatu penelitian mengenai banyaknya gula yang dihasilkan dalam suatu proses dengan temperatur yang berlainan. Data (setelah disandi) adalah sebagai berikut:

Suhu -1,265 -0,633 0 0.633 1.265

Gula yang dihasilkan -0,633 -1,265 0,633 1,265 0

a. Tentukan varibel bebas (independent) dan variabel tak bebas (independent, respons) pada masalah tersebut.

b. Plot diagram pencar

c. Tentukan model regresi linier sederhana

Y

0

1

X

untuk data tersebut. d. Taksirlah nilai gula yang dihasilkan jika suhu 0,6

.

REFERENSI

Hogg, Robert V., McKean J.W., Allen T. Craig. (2006). Introduction to Mathematical Statistics 6th. Prentice‐Hall, New Jersey.

Navidi, William. (2008). Statistics for Enginerres and Scientists 2nd. McGraw-Hill, New

York.

Rosner, Bernard. (2006). Fundamentals of Biostatistics 6th. Thomson Brooks, USA.

Walpole, Ronald E. dan Myers, Raymond H. (1995). Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan, Edisi 4. Penerbit ITB, Bandung.

Walpole, R.E., Myers, R.H., Myers S.L. dan Ye, Keying. (2006). Probability and Statistics for Engineers dan Scientists, 8th. Prentice‐Hall, New Jersey.

Wild C. J., Seber G.A.F. (2000). A First course in Data Analysis and Inference. John Wiley&Sons, New York.

(18)

Rekomendasi Nomor Soal Latihan

Rujukan Utama : Walpole, R.E., Myers, R.H., Myers S.L. dan Ye, Keying. (2006). Probability and Statistics for Engineers dan Scientists, 8th. Prentice‐Hall, New Jersey.

Bab 1: 1.2, 1.3, 1.4, 1.5,1.6, 1.8, 1.10, 1.12, 1.17, 1.18, 1.20, 1.23, 1.24, 1.27, 1.28 Bab 2: 2.3, 2.5, 2.10, 2.12, 2.14, 2.16, 2.20, 2.22, 2.28, 2.30, 2.31, 2.32, 2.37, 2.38, 2.41, 2.42, 2.43, 2.48, 2.54, 2.55, 2.58, 2.67, 2.70, 2.78, 2.79, 2.80, 2.84, 2.85, 2.89, 2.93, 2.99, 2.100, 2.128, 2.130, 2.134, 2.135 Bab 3: 3.1, 3.3, 3.4, 3.5, 3.7, 3.11, 3.12. 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.20, 3.21, 3.31, 3.36, 3.38, 3.40, 3.42, 3.45, 3.50, 3.52, 3.55, 3.58, 3.59, 3.60, 3.62 Bab 4: 4.6, 4.7, 4.10, 4.12, 4.23, 4.24, 4.32, 4.37, 4.45, 4.47, 4.50, 4.52, 4.53, 4.56, 4.57, 4.58, 4.64, 4.66, 4.68, 4.77, 4.78 Bab 5: 5.5, 5.6, 5.7, 5.9, 5.12, 5.17,5.18, 5.19, 5.23, 5.24, 5.51, 5.52, 5.54, 5.55, 5.56, 5.57, 5.59, 5.60, 5.64, 5.66, 5.67, 5.70, 5.71, 5.72, 5.74, 5.77, 5.78 Bab 6: 6.7, 6.10, 6.12, 6.14, 6.15, 6.22, 6.25, 6.26, 6.28, 6.32, 6.36, 6.38 Bab 7: - Bab 8: 8.18, 8.20, 8.22, 8.23, 8.25, 8.26, 8.27, 9.28, 8.30, 8.32, 8.35, 8.36, 8.43, 8.44, 8.48, 8.49, 8.50, 8.52, 8.53, 8.54, 8.59 Bab 9: 9.4, 9.7, 9.10, 9.13, 9.14, 9.15, 9.16, 9.39, 9.40, 9.41, 9.43, 9.44, 9.45, 9.46, 9.47, 9.48, 9.509.72, 9.73, 9.75, 9.76, 9.78, 9.79, 9.80 Bab 10: 10.23, 10.25, 10.28, 10.30, 10.34, 10.36, 10.40, 10.42, 10.43, 10.45, 10.46, 10.50, 10.51, 10.52, 10.53, 10.54

(19)

UJIAN TENGAH SEMESTER I  MATA KULIAH :  MA2191  Analisis Data  TANGGAL  :  Senin, 29 Oktober 2007  PROGRAM STUDI :   Matematika  WAKTU      :  13.00 – 15.00  (120 menit)  DOSEN       :  Dr. Udjianna S. Pasaribu          Drs. Sumanto W.H, M.Com  SIFAT         :  TUTUP BUKU , jawab dengan  ballpoint (tdk boleh memakai pensil)   RUANG      :  9231 (GKU Timur)       .  Tabel disediakan     Ujian terbagi 2 bagian, esei pendek (A) dan panjang (B).  A. Jawab dengan singkat (Total nilai : 20)  1. Tuliskan 2 perbedaan diagram batang‐daun dan histogram frekuensi!               (4)  2. Jelaskan yang Anda ketahui mengenai variabel acak dan beri sebuah contoh untuk kasus dikrit dan  sebuah contoh untuk kasus kontinu!                             (4)  3. Tuliskan 3 sifat yang dimiliki suatu fungsi distribusi, F(u)!                       (3)  4. Jelaskan dengan kata‐kata sederhana, apa yang Anda ketahui mengenai peluang dari suatu  kejadian!(3)  5. Banyaknya mobil yang mengisi bensin di suatu SPBU dapat dimodelkan sebagai suatu proses Poisson  dengan parameter 10 mobil per jam. Berapa harapan banyaknya mobil yang mengisi bensin di SPBU  tersebut dalam 30 menit?            (3)  6. Galat (error) dalam mengukur kelebihan/kekurangan volume minuman dingin (setelah dikalibrasi)  dianggap berdistribusi normal dengan rataan 0 dan variansi 4 ml2. Berapakah peluang bahwa galat  pengukuran volume minuman dingin tersebut lebih dari 0 ml?                (3)    B. Jawab dengan baik dan jelas. Kerjakan yang mudah dulu ((Total nilai : 80)  1. Diagram batang dan daun dari diameter sejenis pohon di suatu hutan adalah sbb (dalam mm)   44 3 5 43 9 9 43 0 0 1 2 2 3 3 42 5 6 6 6 6 8 8 8 9 9 9 9 9 42 0 1 1 1 2 2 3 3 4 41 5 6 7 8 8 9 9 41 2 3 3

Batang satuan, Daun sepersepuluhan

a. Tentukan ukuran pemusatan data (median dan rata-rata) (6) b. Tentukan ukuran penyebaran data (variansi dan standar deviasi) (6) c. Selidiki adakah pencilan pada data diatas dan berikan penjelasan. (6)

d. Buat diagram kotak dan titik (6)

2. Misalkan T ( dalam tahun ) adalah menyatakan usia pakai dari sebuah mesin dengan f.k.p adalah:   2 2 2 ( ) t exp t f t                  untuk t > 0   Jika P( T > 5 ) = 0.01 , tentukan:  a. Nilai 

.       (5)  b. Peluang bahwa usia pakai mesin tersebut tidak lebih dari 4 tahun tapi lebih dari 3 tahun! (6)  c. Berapakah harapan usia pakai dari mesin tersebut?      (4)  d. Tentukan fungsi distribusi, F(t) dan gambarnya!            (8)      3. Sebuah jenis permen ,tertera pada label pembungkusnya bahwa berat permen tersebut 20.7 gram.  Misal peluang sebuah permen yang beratnya lebih besar dari 20,7 gram adalah 0,85. Jika X  menyatakan banyaknya permen yang beratnya lebih dari 20,7 gram yang diambil dari sebuah  sampel acak yang berisi 8 buah permen.  a. Sebutkan distribusi X jika diasumsikan bebas.        (3)  b. Hitung peluang semua permen beratnya lebih dari 20,7 gram!        (3)  c. Hitung peluang banyaknya permen yang beratnya lebih dari 20,7 gram, tidak lebih dari 6!(3)  d. Jika terdapat 100 buah permen, hitung peluang banyaknya permen yang beratnya lebih dari  20,7 gram, antara 45 dan 70 buah!      (6)    4. Gambaran penjualan bulanan dari suatu produk makanan cenderung berdistribusi normal dengan  rataan 100 (dalam ribuan dolar) dan standar deviasi 25 (dalam ribuan dolar). Tentukan bahwa:  a. Peluang penjualannya lebih dari 200 ribu dolar.       (4)  b. Peluang penjualannya kurang dari 120 ribu dolar tapi tidak kurang dari 90 dolar.  (6) 

c.

Di bawah penjualan berapakah terdapat 20% dari seluruh penjualan yang ada..   (8)

(20)

UJIAN AKHIR SEMESTER

MATA KULIAH     :  MA2191 ANALISIS DATA TANGGAL  :  18 Desember 2007  PROGRAM STUDI :  MATEMATIKA  WAKTU      :  13.00 – 15.30  (150 menit) DOSEN      :  Dr. Udjianna S. P ,  Drs.Sumanto W.H SIFAT         :  TUTUP BUKU   RUANG UJIAN       : 9009      .   Semua tabel disediakan   a. Isian Singkat

2. Anda sudah mengenal dua metode dalam menganalisa data nyata, yaitu statistik deskriptif dan statistik inferensi. Jelaskan prinsip dasar dari statistik inferensi yang membedakannya dengan statistik deskriptif! (3)

3. Misalkan model regresi linier y = α+βx. Nilai β=0, memiliki 2 makna, yaitu ... (3) 4. Jelaskan apa yang diukur oleh statistik koefisien korelasi antara dua variabel acak, misal U dan V!

(2)

5. Selain untuk menguji variansi, uji chi square dapat digunakan juga untuk 3 hal yaitu ... (3) 6. Untuk mendapatkan taksiran koefisien regresi linier, apa yang harus diminimumkan? Jelaskan

jawaban Anda! (4) B. Esei Panjang 

1. Sebuah artikel ilmiah melaporkan hasil suatu penelitan yang menggambarkan mekanisme kerja  katalisator oksidasi udara basah pada aqueous phenol. Pada sekelompok penelitian, laju oksidasi  awal  (dalam  kg  phenol  per  kg  katalisator  per  jam)  dan  konsentrasi  oksigen  (dalam  mol/m3)  diukur yang hasilnya ditulis pada tabel berikut: 

Laju (y)  0,44  0,49  0,60  0,64  0,72  Konsentrasi O2 (x)  3,84  4,76  6,08  7,06  8,28 

Diketahui  bahwa  hubungan  x  dan  y  dinyatakan  dalam  bentuk  y  =  kxr,  dimana  r  adalah  orde  reaksi oksigen.  

a. Tentukan  transformasi  yang  sesuai  dengan  bentuk  persamaan  sehingga  dapat  dinyatakan  sebagai persamaan  regresi linier!      (4)  b. Estimasi  nilai  k  dan  r  sehingga  diperoleh  hubungan  yang  tepat  antara  laju  dengan 

konsentrasi O2!  (10) 

c. Berdasarkan data yang ada, apakah mungkin bahwa orde reaksi oksigen sama dengan 0,5?  Jelaskan!  (6) 

 

2. Misal 

X

1

,

X

2

,

,

X

n sebuah  sampel  acak  berukuran  n  dari  distribusi 

N

(

,

2

)

 dimana 

2

 diketahui. Tunjukkan  bahwa 

2

2 1

X

X

Y

 adalah taksiran tak bias dari 

!   (8)  3. Himpunan mahasiswa Matematika ITB hendak melakukan survey tentang perbedaan performa 

dua  supermarket  besar  yang  ada  di  wilayah  Dago  yang  diukur  berdasarkan  tingkat  kepuasan  masyarakat    sekitar  daerah  Dago  terhadap  keragaman  produk  di  supermarket  yang  bersangkutan. Untuk itu, sebelumnya dilakukan pilot survey terhadap 17 responden yang dipilih  secara  acak.  Responden  diminta  untuk  memberi  nilai  dari  skala  1‐10  dimana  angka  1  menyatakan  rasa  sangat  tidak  puas  dan  10  adalah  rasa  sangat  puas  terhadap  keragaman  produk di kedua supermarket tersebut. Hasilnya dapat dilihat pada tabel berikut. 

Supermarket Responden

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

I 7 8 7 7 9 8 9 7 8 8 7 8 8 7 9 9 7

II 8 8 7 10 9 8 9 8 9 7 7 8 8 7 8 8 8 (Catatan: responden terpilih pernah mengunjungi kedua supermarket tersebut dan asumsikan bahwa nilai tingkat kepuasan responden berdistribusi hampir normal.)

a. Menurut anda apakah dua kelompok tersebut berasal dari dua kelompok yang berpasangan  atau bukan?  (2) 

b. Hitung  selang  kepercayaan  98%  untuk  selisih  kepuasan  masyarakat  terhadap  kedua  supermarket tersebut!  (9) 

c. Dengan menggunakan taraf signifikansi 5%, selidikilah apakah performa Supermarket I lebih  baik dibandingkan Supermarket II!      (9)   

4. Tiga  metode  pemberian  pakan  diterapkan  pada  sembilan  ekor  domba  perahan  (etawa)  yang  dikelompok  menjadi  tiga  kelompok.  Ujilah  apakah  terdapat  perbedaan  berat  etawa  yang  dihasilkan  oleh  metode  pemberian  pakan  yang  berbeda  jika  berat  etawa  (dalam  pon)  yang  dihasilkan setelah 2 bulan sejak penerapan metode pemberian pakan adalah sbb. 

Metode A  84,6  83,3  85,1  Metode B  87,3  85,9  88,2  Metode C  87,2  86,0  86,3 

(21)

Gunakan  taraf  signifikansi  1%  dan  5%  dan  diasumsikan  bahwa  sebelum  penerapan  metode  pemberian pakan yang berbeda, kesembilan domba tersebut memiliki berat yang sama.  (14)    5. Dalam studi tentang pergerakan tanah yang diakibatkan oleh gempa bumi, kecepatan tertinggi  (m/s) dan percepatan puncak (m/s2) dicatat untuk lima gempa bumi yang terjadi.  Kecepatan  1,54  1,60  0,95  1,30  2,92  Percepatan  7,64  8,04  8,04  6,37  5,00  Ujilah apakah terdapat hubungan linier (korelasi) antara kecepatan puncak dengan percepatan  tertinggi?    (8)   

6. Perbandingan  keefektifan  antara  pembelajaran  secara  tradisional  (tatap  muka)  dengan  sistem  online  suatu  mata  kuliah  tertentu,  dilihat  dari  hasil  ujian  akhir  dari  14  mahasiswa  yang  mengambil  kuliah  tatap  muka  dan  12  mahasiswa  yang  mengambil  kelas  online.  Nilai  ujian  akhirnya adalah sebagai berikut:  Tatap muka  80  83  64  81  75  80  86  81  51  64  59  85  74  77  Online  66  75  85  64  88  77  74  91  72  69  77  83        Dengan taraf keberartian 2%, dari data tersebut :  a. Uji apakah variansi nilai ujian kelas tatap muka sama dengan variansi ujian kelas online! (7)  b. Uji apakah metode pembelajaran tatap muka lebih efektif daripada metode online!  (8)    ====SELAMAT MENGERJAKAN======     

(22)

UJIAN PERBAIKAN 

MATA KULIAH :  MA2191  Analisis Data  TANGGAL  :  Selasa, 15 Januari 2008  PROGRAM STUDI :   Matematika  WAKTU      :  13.00 – 15.00  (120 menit)  DOSEN       :  Dr. Udjianna S. Pasaribu         Drs. Sumanto W.H, M.Com  SIFAT         :  TUTUP BUKU , jawab dengan ballpoint (tdk  boleh memakai pensil)   RUANG      :    Tabel disediakan  Ujian terbagi 2 bagian, esei pendek (A) dan panjang (B). Kerjakan yang dianggap mudah terlebih dahulu!  A. Jawab dengan singkat (Total nilai : 15)  1. Tuliskan perbedaan dan persamaan dari diagram batang‐daun dan box plot masing‐masing satu!(3)  2. Tuliskan definisi dari mean dan variansi suatu variabel acak T jika T adalah variabel acak kontinu! (4)  3. Jika        lainnya y y y Y P , 0 4 , 3 , 2 , 1 , 4 / 1 ) (    maka nilai F(3,99) = ...          (2)  4. Galat (error) dalam mengukur kelebihan/kekurangan tegangan listrik suatu perumahan dianggap  berdistribusi normal dengan rataan 220 Volt dan variansi 4 Volt2. Berapakah peluang bahwa galat  pengukuran tegangan listrik tersebut lebih dari 220 Volt?                (3)   5. Tuliskan tiga asumsi mendasar yang dipakai di dalam metode statistik analisis regresi!  (3)    B. Jawab dengan baik dan jelas. Kerjakan yang mudah dulu ((Total nilai : 85)  1. Dalam sebuah penelitian pada suatu daerah, peluang lahirnya seorang bayi (jenis kelamin bayi diabaikan)  dengan berat lebih dari 2,8 kg adalah 0,85. Jika X menyatakan banyaknya bayi yang lahir dengan berat  lebih dari 2,8 kg yang diambil dari sampel acak yang terdiri dari 8 bayi yang baru lahir di rumah sakit  tersebut,  a. Sebutkan distribusi X  jika diasumsikan bebas.        (3)  b. Hitung peluang bahwa tidak ada bayi yang beratnya lebih dari 2,8 kg!      (3)  c. Hitung peluang banyaknya bayi dengan berat lebih dari 2,8 kg, tidak lebih dari 6!    (3)  d. Jika ada 100 bayi yang lahir, hitung peluang banyaknya bayi yang beratnya lebih dari 2,8 kg antara 75  dan 90!(7)    2. Banyaknya peserta kuliah on line suatu mata kuliah tertentu dianggap berdistribusi normal dengan  rataan 100 dan standar deviasi 25. Tentukan:  a. Peluang peserta on line mata kuliah tersebut lebih dari 200 orang.       (4)  b. Peluang peserta on line mata kuliah tersebut kurang dari 120 tapi tidak kurang dari 90 orang.  (6)  c. Di bawah banyak peserta berapakah terdapat 20% dari seluruh peserta kuliah tersebut.    (8)    3. Konsentrasi dari zat‐zat padat yang dikandung air sungai merupakan karakteristik lingkungan yang  penting. Berdasarkan survey di beberapa lokasi di dua propinsi yang berbeda diperoleh konsentrasi zat  padat`(dalam per million per parts atau ppm) untuk sungai‐sungai tersebut adalah sebagai berikut:    Propinsi I  80  83  64  81  75  80  86  81  51  64  59  85  74  Propinsi II  66  75  85  64  88  77  74  91  72  69  77       Dengan taraf keberartian 2% dan di bawah asumsi normal, dari data tersebut:  a. Uji apakah variansi konsentrasi zat padat sungai‐sungai di kedua propinsi itu berbeda?  (8)  b. Uji apakah konsentrasi zat padat sungai di Propinsi I tidak lebih besar dibandingkan Propinsi II!(8)    4. Persentase hidup air mani binatang, setelah disimpan, diukur pada berbagai konsentrasi (dalam % berat)  zat (sebut zat U) yang dipakai untuk meningkatkan peluang hidupnya, sebut V. Datanya sbb:     V (% hidup)  1.93 4.63 8.95 15.05 23.31  U  (% berat)   1.25 1.325 1.375 1.45 1.55  a. Tentukan prediktor (X) dan respon (Y) untuk kasus di atas!        (2)  b. Gambar diagram pencar Y terhadap X!        (4)  c. Tentukan titik potong dan gradien dari taksiran garis regresinya!        (7)  d. Prediksikan % hidup binatang tersebut jika % beratnya adalah 1.21 !      (3)  e. Hitung korelasi antara % hidup dan % berat  di atas!      (4)    5. Lima metode pemberian pakan diterapkan pada 16 ekor anak kambing yang dikelompok menjadi lima  kelompok. Ujilah apakah terdapat perbedaan berat anak kambing yang dihasilkan oleh metode  pemberian pakan yang berbeda jika berat anak kambing (dalam kg) yang dihasilkan setelah 2 bulan sejak  penerapan metode pemberian pakan adalah sbb.  Treatment  Berat Badan (kg)  A  5.21  4.65      B  5.59  2.69  7.57  5.16  C  6.24  5.94  6.41    D  6.85  9.18  4.94    E  4.04  3.29  4.52  3.75  Gunakan taraf signifikansi 1% dan 5% dan diasumsikan bahwa sebelum penerapan metode pemberian  pakan yang berbeda, kenambelas anak kambing tersebut memiliki berat yang sama. (15) 

(23)

UJIAN TENGAH SEMESTER (UTS)

Senin, 5 Oktober 2009, 14.05-15.45 WIB

Kelas 01, Pengajar: Drs. Sumanto Winotoharjo, M.Com

Kelas 02, Pengajar: Dr. Sutawanir Darwis dan Utriweni Mukhaiyar, M.Si

BAGIAN I: ESAI [90 poin]

1. Data lama hidup (dalam tahun) dari 50 nasabah perusahaan asuransi XYZ setelah mendaftar pada tahun dan kategori umur yang sama di suatu kota, dinyatakan dalam diagram batang-daun berikut.

0 34 0 56667777777889999 1 0000001223333344 1 5566788899 2 034 2 7 3 2

Ket: batang (x10), daun (x100)

e. Hitung rata-rata dan simpangan baku lama hidup 50 nasabah tersebut.

[poin 6]

f. Hitung nilai minimum, maksimum, kuartil satu (bawah), median dan kuartil tiga (atas) dari lama hidup 50 nasabah tersebut. [poin 10]

g. Apakah terdapat pencilan? Jika iya, tuliskan nilai yang menjadi pencilan dan jenisnya. [poin 8]

h. Gambarkan box-plot untuk kasus di atas. [poin 6]

2. Misal f(x)= 3 16 , untuk - c < x < c, adalah fungsi : ∞, ∞ 0,1 .

e. Tentukan nilai konstanta c, sehingga fungsi f(x) merupakan fungsi kerapatan peluang untuk variabel acak X. [poin 10]

f. Gambarkan grafik f(x) tersebut. [poin 5]

g. Hitung peluang nilai peubah acak X terletak antara 0 dan 1. [poin 5] h. Tentukan dan gambarkan grafik fungsi distribusi F(x). [poin 6 – 4] 3. Misalkan peubah acak X memiliki mean µ dan variansi .

d. Tunjukan bahwa adalah fungsi dari b. [10 poin] e. Tentukan nilai b agar minimum. [10 poin]

f. Tentukan nilai . [10 poin]

(24)

BAGIAN II: PILIHAN BERGANDA [10 poin]

Jawaban benar bernilai 2, jawaban salah bernilai -  , nilai akhir max{nilai total,0}.

1. Berikut ini berturut-turut yang merupakan ukuran pemusatan data beserta ukuran penyebaran data padanannya adalah:

a. Kuartil tiga (atas) dan jangkauan antar kuartil b. Simpangan baku dan rata-rata

c. Jangkauan data dan maksimum d. Median dan variansi

2. Peluang bahwa jadwal keberangkatan (departs) regular sebuah maskapai penerbangan tepat waktu adalah 0,83; peluang kedatangannya (arrives) tepat waktu adalah 0,82; dan peluang bahwa keberangkatan dan kedatangannya tepat waktu adalah 0,78. Peluang bahwa kedatangannya tepat waktu jika keberangkatannya tepat waktu dan peluang bahwa keberangkatannya tepat waktu jika kedatangannya tepat waktu berturut-turut adalah:

a. 0,95 dan 0,94 b. 0,94 dan 0,95

c. 0,99 dan 0,95 d. 0,95 dan 0,99

3. Pernyataan berikut adalah benar mengenai sifat-sifat fungsi distribusi dari sebuah peubah acak X, F(x), kecuali:

e. Jika maka f. lim 1

g. lim 0

h. lim

4. Berapa banyak cara penyusunan huruf yang berbeda yang dapat dibuat dari huruf-huruf pada kata MATEMATIKA.

e. 10 9 8 7 6 5 4 3 2

f. 10 9 8 7 6 5

g. 10 9 8 7

h. 6 5 4 3 2

5. Suatu perusahan yang bergerak di bidang investasi, menawarkan beberapa saham yang berkaitan dengan pemerintahan kepada nasabahnya. Misalkan T adalah peubah acak yang menyatakan lamanya waktu (tahun) sampai saham tersebut habis masa berlakunya. Fungsi distribusi T diberikan sbb:

0 ,        1 1 4, 1 3 1 2, 3 5 3 4, 5 7 1,        7

Peluang bahwa masa berlaku saham tersebut habis tepat 5 tahun, kurang dari 4 tahun, dan dari 4 sampai 7 tahun berturut-turut adalah:

a. , ,   b. , ,

c. , , d. , ,

Gambar

Ilustrasi berikut digunakan untuk menjawab soal nomor 1 dan 2. 
Ilustrasi berikut digunakan untuk menjawab soal nomor 1 dan 2. 

Referensi

Dokumen terkait

(A) Adsorpsi ion-ion oleh partikel koloid (B) Adsorpsi elektron oleh partikel koloid (C) Partikel koloid mengalami ionisasi (D) Pelepasan elektron oleh paartikel koloid (E)

Waktu yang diperlukan untuk mereaksikan A dan B dengan konsentrasi masing-masing 1,0M pada volume total yang sama dengan percobaan di atas

Yang dimaksud tumbuhan lumut adalah gametofitnya, sedangkan pada paku adalah sporofitnya b.. Yang dimaksud tumbuhan lumut adalah sporofitnya, sedangkan pada paku adalah gametofitnya

Takson terendah yang menempatkan orang utan dan manusia dalam kedudukan yang sama adalah .... Berikut ini merupakan proses pengubah glu- kosa menjadi CO 2 dan H 2 0,

A. Isilah titik-titik di bawah ini dengan benar 1. Binatang sapi dipelihara manusia karena menghasilkan………2. Kita harus………para korban bencana alam

Bersifat normal Bersifat normal : dimana setiap proses produksi tidak bisa dihindari : dimana setiap proses produksi tidak bisa dihindari terjadinya ptoduk cacat, terjadinya

(2) mempunyai percabangan menggarpu Jenis lumut dengan ciri- ciri diatas adalah … a. Berikut ini skema pergiliran keturunan pada tumbuhan paku. Protalium, antheridium, arkegonium,

Di soal, anda dihadapkan pada pekerjaan tambahan dari atasan, oleh karenannya opsi B adalah jawaban yang terbaik, mengingat tugas baru yang diberikan tidak ada