• Tidak ada hasil yang ditemukan

Introduction to Number Theory Part B NIKEN

N/A
N/A
Protected

Academic year: 2017

Membagikan "Introduction to Number Theory Part B NIKEN"

Copied!
13
0
0

Teks penuh

(1)

Introduction to Number Theory

Part B.

- Congruence

- Unique Factorisation

(2)

Contents all part

Preliminary

Divisibility

Congruence

Unique Factorisation

Linear Diophantine Equation

(3)

Congruence

Definition

 Konsep kekongruenan bilangan dikembangkan berdasarkan konsep bahwa setiap bilangan bulat positif dapat dinyatakan ke dalam bentuk N = pq + r atau N − r = pq dengan p, q, r adalah bilangan bulat dan r berada pada 0 ≤ r < p. Persamaan N = pq + r dengan p menyatakan pembagi, q menyatakan hasil bagi dan r menyatakan sisa.

 Persamaan di atas sering pula ditulis N ≡ r (mod p) (dibaca N kongruen modulo p terhadap r)

Dari hal tersebut didapat definisi bahwa a ≡ b (mod m) jika m | (a − b) untuk bilangan bulat a, b dan m.

 Contoh :

◦ (1) 25 ≡ 1 (mod 4) sebab 4|24

(4)

Congruence

Properties 1

Beberapa sifat berkaitan dengan modulo adalah sebagai

berikut. Misalkan a, b, c, d dan m adalah bilangan-bilangan bulat

dengan d > 0 dan m > 0, berlaku :

i.

a

a (mod m)

ii.

Jika a

b (mod m) dan b

c (mod m) maka a

c (mod

m)

iii.

Jika a

b (mod m) dan d|m maka a

b (mod d)

iv.

Jika a

b (mod m) maka a

k

b

k

(mod m) untuk semua k

bilangan asli

v.

Jika a

b (mod m) dan f(x) = a

n

x

n

+ a

n-1

x

n-1

+

⋅⋅⋅

+ a

o
(5)

Congruence

Properties 2

Beberapa sifat berkaitan dengan modulu adalah sebagai berikut. Misalkan a, b, c, d dan m adalah bilangan-bilangan bulat dengan d > 0 dan m > 0, berlaku :

i. Jika a ≡ b (mod m) dan c ≡ d (mod m) maka a + c ≡ b + d (mod m)

ii. Jika a ≡ b (mod m) dan c ≡ d (mod m) maka ac ≡ bd (mod m)

iii. (am + b)k≡ bk (mod m) untuk semua k bilangan asli

iv. (am + b)k ⋅ (cm + d)n ≡ bk ⋅ dn (mod m) untuk semua k dan n

bilangan asli

v. Misalkan n ∈ N dan S(n) adalah penjumlahan digit-digit dari n maka berlaku n ≡ S(n) (mod 9).

(6)
(7)

Unique Factorization

The Fundamental Theorem of Arithmetic

Every integer greater than 1 can be written

uniquely in the form

Where the

p

i

are distinct primes and the

are positive integers.

k

k

p

...

p

p

1

2

2

1

i

(8)

GCD and LCM

The greatest common divisor of two positive

integers a and b is the greatest positive integer

that divides both a and b, which we denote by

gcd(a, b), and similarly, the lowest common

multiple of a and b is the least positive integer

that is a multiple of both a and b, which we

denote by lcm(a, b).

We say that a and b are relatively prime if gcd(a,

b) = 1.

(9)
(10)
(11)

Theorem

Let

b,n

and

r

be positive integers, then

As we had learned on secondary school that

we can use prime factorization method to

find

the greatest common divisor of two

integer

m

and

n

.

Using this Theorem, we can find the greatest

common divisor of two integer

m

and

n

with

another way.

bn

r

n

GCD

 

n

r

(12)

Theorem

Let m and n be positive integers where

0 <

n

<

m

. From division algorithm, we

know that there exist integers

b

and

r

such that

Therefore

n

r

r

bn

m

,

0

 

m

n

GCD

bn

r

n

GCD

 

n

r

(13)

Because

n

and

r

are positive integers

where 0 < r < n, we know that there

exist integers b

1

and r

1

such that

Therefore,

If we continu this process, then there

exist integers

such that

r

r

r

r

b

n

1

1

,

0

1

 

n

,

r

GCD

b

1

r

r

1

,

r

GCD

 

r

,

r

1

GCD

s

r

r

r

2

,

3

,...,

Referensi

Dokumen terkait

of mathematics. In it we establish the notation and state the basic deinitions and properties that will be used throughout the book. This approach, often referred to as

A monopoly insurance company provides accident insurance to two types of customers: low risk customers, for whom the probability of an accident is 0.25, and high risk customers, for

Note that player 2’s payoffs depend only on the actions taken by the players, not on Player 1’s type.. b What are the pure strategy Bayes-Nash equilibrium outcomes of this game as a

Let s be the strategy for the infinitely repeated game that charges 𝑝𝑝𝑚𝑚 in the first period and subsequently as long as both firms continue to charge 𝑝𝑝𝑚𝑚, and punishes any deviation

If there are 𝑘 > 1 players submitting the highest bid, then the winner is determined randomly among these players – each has probability 1/𝑘 of winning.. a Compute the symmetric, linear