• Tidak ada hasil yang ditemukan

vol6_pp56-61. 135KB Jun 04 2011 12:06:15 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol6_pp56-61. 135KB Jun 04 2011 12:06:15 AM"

Copied!
6
0
0

Teks penuh

(1)

The Electronic Journal of Linear Algebra.

A publication of the International Linear Algebra Society.

Volume 6, pp. 56-61, March 2000.

ISSN 1081-3810. http://math.technion.ac.il/iic/ela

ELA

ON INEQUALITIES INVOLVING THE HADAMARD PRODUCT OFMATRICES

B. MOND

y

AND J. PE CARI

C z

Abstrat. Reently,theauthorsestablishedanumberofinequalitiesinvolvingintegerpowersof theHadamardprodutoftwopositivedeniteHermitianmatries. Heretheseresultsareextended intwo ways. First, the restritiontointeger powersisrelaxedtoinlude allrealnumbersnotin theopeninterval( 1;1). Seond,theresultsareextended totheHadamardprodutofanynite numberofHermitianpositivedenitematries.

Keywords.matrixinequalities,Hadamardprodut AMSsubjet lassiations.15A45

1. Introdution. LetAandB bennmatries. AÆB denotestheHadamard produtandAB theKronekerprodutofA andB.

Thesetwoprodutsarerelatedbythefollowingrelation[2℄,[3℄. Thereexistsann

2

nseletionmatrixJ suhthatJ T

J =I and AÆB=J

T

(AB)J: NotethatJ

T

isthenn 2

matrix[E 11

E 22

:::E nn

℄, whereE ii

isthennmatrixof zerosexeptforaonein the(i;i)thposition.

Using this result, in [4℄ the authors proved a number of inequalities involving integerpowersoftheHadamardprodutoftwopositivedeniteHermitianmatries. Here we extend these results in two ways. First, the restrition to integer powers is relaxed to inlude all real numbersnot in the open interval ( 1;1). Seond, the resultsareextendedtotheHadamardprodutofanynitenumberofnnHermitian positivedenitematries.

2. NotationandPreliminaryResults. TheHadamardandKroneker prod-utsofmatriesA

i

; i=1;:::k,willbedenoted by k Æ i=1

and k O i=1

,respetively. WeshallmakefrequentuseofthefollowingpropertyoftheKronekerprodut:

(AB)(CD)=(AC)(BD): ForanitenumberofmatriesA

i ; B

i

; i=1;:::;k,thisbeomes k

Y i=1

A i

!

k Y i=1

B i

! =

k Y i=1

(A i

B i

): (1)

Reeivedby the editors on 11 Otober1999. Aepted for publiation on 25January 2000. Handlingeditor:DanielHershkowitz.

y

Department of Mathematis, La Trobe University, Bundoora, Vitoria 3083, Australia (matbmlura.latrobe.edu.au).

z

(2)

ELA

OnInequalitiesInvolvingtheHadamardProdutofMatries 57 LetA beapositivedenite nn Hermitianmatrix. Thereexists amatrix U suh that

A=U

[ 1

; 2

;:::; n

℄U; U

U =I; where [

1 ;

2 ;:::;

n

℄ is the diagonalmatrix with i

, the positiveeigenvaluesof A, alongthediagonal[1℄. For anyrealnumbers; A

s

isdenedby A

s =U

[

s 1

; s 2

;:::; s n

℄U:

Lemma 2.1. LetAandB bepositive deniteHermitiannn matries andsa nonzerorealnumber. Then

A s

B s

=(AB) s

: (2)

Proof. Assume

B=V

[ 1

; 2

;:::; n

℄V; V

V =I; where

i

aretheeigenvaluesofB. Then A

s B

s =(U

[

s 1

;:::; s n

℄U)(V

[ s 1

;:::; s n

℄V) =(U

V

)([

s 1

;:::; s n

℄[ s 1

;:::; s n

℄)(UV) =(UV)

([

s 1

;:::; s n

℄[ s 1

;:::; s n

℄)(UV)=(AB) s

: Notethat

(UV)

(UV) =(U

V

)(UV) =(U

U)(V

V)=II =I n

2:

Equation(2)extendsreadily,foranitenumberofnnpositivedeniteHermitian matriesA

i

; i=1;:::;k,to k O i=1

(A s i

)= k O

i=1 A

i !

s : (3)

Lemma 2.2. Let A i

; i = 1;:::;k, be nn matries. There exists an n k

n seletion matrixP suhthatP

T P =I and

k Æ i=1

A i

=P T

k O i=1

A i

! P: (4)

Weprovethisforthreematries. 1

Theextensionfrom mtom+1issimilar. AÆBÆC =AÆJ

T

(BC)J =J

T

(A(J T

(BC)J))J =J

T

((IAI)(J T

(BC)J))J =J

T (IJ

T

)(ABC)(IJ)J by(1) =J

T (IJ)

T

(ABC)(IJ)J =

^ J

T

(3)

ELA

58 B.MondandJ.Peari where

^

J isthen 3

nmatrix ^

J =(IJ)J. Notethat ^ J

T ^ J =I. 3. Results. Inthissetion,A

i

; i=1;:::;k,willdenote nnpositivedenite Hermitianmatries. A

i A

j

meansthatA i

A j

ispositivesemidenite.

Theorem 3.1. Let r and s bereal numbers r<s,and either r2=( 1;1) and s2=( 1;1)or s1r

1 2 orr 1s

1 2

. Then

k Æ i=1

A s i

1=s

k Æ i=1

A r i

1=r : (5)

Proof. Wemakeuseofthefollowingresult[5℄.

LetAbeannnpositivedeniteHermitianmatrixandletV beanntmatrix suhthatV

V =I. Then (V

A

s V)

1=s (V

A

r V)

1=r

forallrealrands,r<s,suhthateitherr2=( 1;1)ands2=( 1;1)ors1r 1 2 orr 1s

1 2 .

HereinsteadofV,weusethen k

nseletionmatrixP givenby(4). Noting(3), wehave

k Æ i=1

A s i

1=s =

P

t

N k i=1

A s i

P

1=s =

P

t

N k i=1

A i

s

P

1=s

P

T

N k i=1

A i

r

P

1=r =

P

t

N k i=1

A r i

P

1=r =

k Æ i=1

A r i

1=r : Somespeial asesof(5)arethefollowing:

k Æ i=1

A 1 i

1

k Æ i=1

A i

or,equivalently

k Æ i=1

A i

1

k Æ i=1

A 1 i

: Forr>1,wehave

k Æ i=1

A i

k Æ i=1

A r i

1=r

or,equivalently,

k Æ i=1

A 1=r i

k Æ i=1

A i

1=r

: Forr=2,thelast twoinequalitiesbeome

k Æ

A i

k Æ

A 2 i

(4)

ELA

OnInequalitiesInvolvingtheHadamardProdutofMatries 59 and

k Æ i=1

A 1=2 i

k Æ i=1

A i

1=2

:

Theorem 3.2. Let r and s be nonzero real numbers suh that s > r and s2=( 1;1)or r2=( 1;1). Then

(a)

k Æ i=1

A s i

1=s

4

k Æ i=1

A r i

1=r ; where

4=

r(

s

r ) (s r)(

r 1)

1=s

s(

r

s ) (r s)(

s 1)

1=r

; (6)

=M=m, and M and m are, respetively, the largest and smallest eigenvalues of k

O i=1

A i

. Also,

(b)

k Æ i=1

A s i

1=s

k Æ i=1

A r i

1=r 4I; where

4= max 2[0;1℄

f[M s

+(1 )m s

℄ 1=s

[M r

+(1 )m r

℄ 1=r

g: (7)

Proof. Let A be an nn positive denite Hermitian matrix with eigenvalues ontainedin theinterval [m;M℄, where 0<m<M, and let V bean nt matrix suhthat V

V =I. Ifr ands arenonzerorealnumberssuh that r<sandeither s2=( 1;1)orr2=( 1;1), then[6℄

(V

A s

V) 1=s

4(V

A

r V)

1=r (8)

where

4isgivenby(6), and (V

A

s V)

1=s (V

A

r V)

1=r 4I (9)

where4isgivenby(7). Thusforpart(a),from(8)andnoting(3)and(4),wehave

k Æ i=1

A s i

1=s =

" P

T k O

i=1 A

s i !

P #

1=s =

" P

T k O i=1

A i

! s

P #1=s

4

" P

T k O

A i

! r

P #1=r

= 4

" P

T k O

A r i

! P

# 1=r

= 4

k Æ i=1

A r i

(5)

ELA

Remark 3.3. Theasesk=2oftheaboveresultswerealsoonsideredin [7℄. 3.1. Speial Cases. Fors=2andr=1,weget

Wenotethat theeigenvaluesof k

produtsoftheeigenvaluesof A

thenthemaximumandminimumeigenvaluesof k

. Thisleadstothefollowingfourinequalities:

(6)

ELA

OnInequalitiesInvolvingtheHadamardProdutofMatries 61

k Æ i=1

A 2 i

1=2

k Æ i=1

A i

k Y i=1

i 1

k Y i=1

i n

! 2

4 k Y i=1

i 1

+ k Y i=1

i n

! I;

k Æ i=1

A i

k Y i=1

i 1

+ k Y i=1

i n

!2

4 k Y i=1

i 1

i n

k Æ i=1

A 1 i

1

; (10)

k Æ i=1

A i

k Æ i=1

A 1 i

1

0

v u u t

k Y i=1

i 1

v u u t k Y i=1

i n

: 1 A 2

I:

Finally,bytakingA 1 i

forA i

in(10),weobtain

k Æ i=1

A 1 i

k Y i=1

i 1

+ k Y i=1

i n

! 2

4 k Y i=1

i 1

i n

k Æ i=1

A i

1

:

Theinequalitiesherearegeneralizationsofthosegivenin[4℄. Additional inequal-itiesofasimilarkindarepossibleandwillbeonsideredelsewhere.

REFERENCES

[1℄ F.E.Hohn. ElementaryMatrixAlgebra.MaMillan,NewYork,1958.

[2℄ T.KolloandH.Neudeker. Asymptotisofeigenvaluesandunit-lengtheigenvetorsofsample varianeandorrelationmatries. J.MultivariateAnal.,47:283{300,1993.

[3℄ S.LiuandH.Neudeker. SeveralmatrixKantorovih-typeinequalities. J.Math.Anal.Appl., 197:23{26,1996.

[4℄ B.MondandJ.E.Peari.InequalitiesfortheHadamardprodutofmatries.SIAMJ.Matrix. Anal.Appl.,19:66{70,1998.

[5℄ B.MondandJ.E.Peari. OnJensen'sinequalityforoperatoronvex funtions. Houston J. Math.,21:739{754,1995.

[6℄ B.Mond and J.E. Peari. Amatrix version ofthe KyFan inequalities of the Kantorovih inequalityII. LinearandMultilinearAlgebra,38:309{313,1995.

Referensi

Dokumen terkait

Namun algoritma SMA* tidak selalu optimal dalam pencarian jika limit yang diberikan pada open list tidak mencukupi, terlihat pada kasus 4 algoritma SMA* dengan limit 3,

Kesimpulan yang dapat diambil dari hasil ketiga Uji statistik tersebut adalah: Bantuan benih padi bermutu telah mampu mening- katkan produktivitas padi meskipun

Selisih ER 5 dan 6 TKI Malaysia adalah nol karena dalam komponen biaya per- pindahan TKI Malaysia, nilai penghasilan yang hilang adalah nol (FE=0), sehingga C = DC. Bila dilihat

Data dalam studi ini adalah data pertumbuhan ekonomi (growth %), indeks kebebasan ekonomi (index of economic freedom), FDI dan nilai tukar dari negara maju di Asia (Jepang,

Oleh karena itu Pokja ULP PSMP Handayani menyimpulkan bahwa E-Lelang Sederhana Pascakualifikasi Pekerjaan Pengadaan Paket Pekerjaan Sewa Sistem Layanan Call Center

[r]

[r]

Apabila tidak tersedia anggaran atau tersedia namun tidak sesuai dengan klasifikasi paket yang diumumkan, maka proses pengadaan dinyatakan batal dan Penyedia tidak