• Tidak ada hasil yang ditemukan

Daniel acta 9. 99KB Jun 04 2011 12:08:35 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Daniel acta 9. 99KB Jun 04 2011 12:08:35 AM"

Copied!
7
0
0

Teks penuh

(1)

THE UNIVALENT CONDITION FOR AN INTEGRAL OPERATOR

ON THE CLASSES S(α) AND T2

Daniel Breaz and Nicoleta Breaz

Abstract.In this paper we present a few conditions of univalency for the

operatorFα,β on the classes of the univalent functions S(p) and T2. These are

actually generalizations(extensions) of certain results published in the paper [1].

AMS 2000 Subject Classification: 30C45.

Keywords and phrases: Unit disk, analytical function, univalent func-tion,integral operator.

1.Introduction

Let be the class of analytical functions,A ={f :f =z+a2z2+...}, z U, whereU is the unit disk ,U ={z :|z|<1}and denoteS the class of univalent functions in the unit disk.

Let p the real number with the property 0 < p ≤ 2. We define the class S(p) as the class of the functions f ∈A, that satisfy the conditions f(z)6= 0 and

(z/f (z))

′′

≤p, z∈U and iff ∈S(p) then the following property is true

z2

f′(z)

f2(z) −1

≤p|z|

2

, z ∈U, relation proved in [3].

We denote with T2 the class of the univalent functions that satisfy the condition

z2

f′(z)

f2(z) −1

< 1, z ∈ U, and also have the property f

′′(0) = 0. These functions have the formf =z+a3z3+a4z4+....For 0< µ <1 we have a subclass of functions denoted by Tµ,2, containing the functions f ∈T2 that

satisfy the property

z2

f′(z)

f2

(z) −1

< µ <1, z ∈U.

(2)

The Schwartz Lemma. Let the analytic function g be regular in the unit

disc U and g(0) = 0. If |g(z)| ≤1,∀z ∈U, then

|g(z)| ≤ |z|,∀z ∈U (1) and equality holds only if g(z) =εz, where |ε|= 1.

Theorem 1.[2]. Let αC,Reα >0 and f A. If 1− |z|2Reα

Reα

zf′′(z) f′(z)

≤1,∀z ∈U (2) then ∀β ∈,Reβ ≥Reα, the function

Fβ(z) = 

β z Z

0

tβ−1f′(t)dt

1/β

(3)

is univalent.

Theorem 2.[1]. Let fiT2, fi(z) = z+ai

3z3+ai4z4+...,∀i= 1,2, so that α, β ∈C,Reα 6

|α|, Reβ ≥Reα. (4)

If |fi(z)| ≤1,∀z ∈U, i= 1,2 then ∀β ∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!α1

· f2(t)

t

!α1

dt

 

1 β

∈S. (5)

Theorem 3.[1]. LetfiT2, fi(z) = z+ai

3z3+ai4z4+...,∀i= 1,2,so that α, β ∈C,Reα 2 (µ+ 2)

|α| , Reβ ≥Reα. (6)

If |fi(z)| ≤1,∀z ∈U, i= 1,2 then ∀β ∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!α1

· f2(t)

t

!α1

dt

 

1 β

∈S. (7)

Theorem 4.[1]. LetfiS(p),0< p <2, fi(z) = z+ai

(3)

α, β ∈C,Reα 2 (p+ 2)

|α| , Reβ ≥Reα. (8)

If |fi(z)| ≤1,∀z ∈U, i= 1,2 then ∀β ∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!1

α

· f2(t)

t

!1

α

dt

 

1 β

∈S. (9)

2.Main results

Theorem 5. Let M 1,fiT2, fi(z) =z+ai

3z3+ai4z4+...,∀i = 1,2, so that

α, β ∈C,Reα (4M+ 2)

|α| , Reβ ≥Reα. (10)

If |fi(z)| ≤M,∀z ∈U, i= 1,2 then ∀β∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!α1

· f2(t)

t

!α1

dt

 

1 β

∈S. (11)

Proof.

We consider the function h(z) =Rz

0

f

1(t)

t

1 α

·f2(t)

t

1 α

dt.

We observe that h(0) =h′(0)1 = 0.

By calculating the derivatives of the order I and II for this function we obtain:

h′(z) = f1(t) t

!1

α

· f2(t)

t

!1

α

(12) respectively

h′′(z) = 1 αh

(z)·B 1+

1 αh

(z)·B

2 (13)

(4)

Bk=

z fk(z)

!

· zf

k(z)−fk(z)

z2 , k = 1,2. (14)

We calculate the fraction zhh′′′((zz)) and we obtain:

zh′′(z) h′(z) =

α1h′(z)· P2 k=1Bk h′(z) =z·

1 α ·

2

X

k=1

Bk,∀z ∈U. (15)

Replacing Bk, k= 1,2, in formula (15) we obtain:

zh′′(z) h′(z) =

1 α

zf′ 1(z) f1(z) −1

!

+ 1 α

zf′ 2(z) f2(z) −1

!

. (16)

We evaluate the modulus and we multiply in both terms of the relation (16) with 1−|Rez|2Reα α, obtain:

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 1− |z|

2Reα

|α|Reα 2 X i=1

z2f

i(z) f2 i (z)

|fi(z)|

|z| + 1

!

. (17)

Because |fi(z)| ≤ M,∀z ∈ U ,∀i= 1,2 and applying Schwarz Lemma we

obtain that

|fi(z)|

|z| ≤M,∀z ∈U,∀i= 1,2. (18)

We apply this relation in the above inequality and we obtain: 1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 1− |z|

2Reα

|α|Reα 2 X i=1

z2f

i(z) f2 i (z)

M + 1

! . (19) But

z2f

i(z) f2 i (z) =

z2f

i(z)

f2

i (z)

−1 + 1

z2f

i(z) f2 i (z) −1

+ 1,∀z∈U,∀i= 1,2. (20)

Because f ∈T2, so

z2

f′(z)

f2

(z) −1

<1.

(5)

1− |z|2Reα

Reα

zh′′(z) h′(z)

1− |z|2Reα(4M + 2)

|α|Reα ≤

(4M + 2)

|α|Reα ,∀z ∈U. (21) Because Reα > (4M|α+2)| ,we obtain that

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤1,∀z ∈U. (22) Applying Theorem 1 we obtain that Fα,β ∈S.

Remark. Theorem 5 is a generalization of the Theorem 2. Theorem 6. Let M 1, fiT2, fi(z) = z+ai

3z3 +ai4z4+...,∀i = 1,2, so that

α, β ∈C,Reα 2 (µM +M+ 1)

|α| , Reβ ≥Reα. (23)

If |fi(z)| ≤M,∀z ∈U, i= 1,2 then ∀β∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!α1

· f2(t)

t

!α1

dt

 

1 β

∈S. (24)

Proof. Considering the same steps as in the above proof we obtain:

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 1− |z|

2Reα

|α|Reα 2

X

i=1

z2f

i(z)

f2

i (z)

−1

M +M + 1

!

. (25)

But f ∈T2,µ, which implies that

z2

f′(z)

f2(z) −1

< µ,∀z∈U.

In these conditions we obtain: 1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 2 (µM+M + 1)

|α|Reα ,∀z∈U. (26)

By applying the relation (23) we obtain that 1−|Rez|2Reγ γ

zh′′(z)

h′(z)

(6)

So according to the Theorem 1 the function Fα,β is univalent. Remark. Theorem 6 is a generalization of the Theorem 3. Theorem 7. Let M 1, fiS(p),0 < p < 2, fi(z) = z+ai

3z3 +ai4z4 + ...,∀i= 1,2, so that

α, β ∈C,Reα 2 (pM +M+ 1)

|α| , Reβ ≥Reα. (27)

If |fi(z)| ≤M,∀z ∈U, i= 1,2 then ∀β∈C the function

Fα,β(z) =  

β

z Z

0

tβ−1 f1(t) t

!

1 α

· f2(t)

t

!

1 α

dt

 

1 β

∈S. (28)

Proof. Considering the same steps as in the above proof we obtain:

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 1− |z|

2Reα

|α|Reα 2

X

i=1

z2f

i(z)

f2

i (z)

−1

M +M + 1

!

. (29)

But f ∈S(p), so

z2f(z) f2(z) −1

≤p|z|2,∀z ∈U. (30) In these conditions we obtain:

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 1− |z|

2Reα

|α|Reα 2

X

i=1

p|z|2M +M + 1,∀z ∈U, (31) so,

1− |z|2Reα

Reα

zh′′(z) h′(z)

≤ 2 (pM +M + 1)

|α|Reα . (32)

By applying in (32) the relation (27) we obtain that 1−|z|

2Reγ

Reγ

zh′′(z)

h′(z)

(7)

So according to the Theorem 1 the function Fα,β is univalent. Remark. Theorem 7 is a generalization of the Theorem 4.

References

[1] Breaz, D.,Breaz, N., The univalent conditions for an integral operator on the classes S(p) and T2, Preprint,2004.

[2] Pascu, N.N.,An improvement of Becker’s univalence criterion, Proceed-ings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.

[3] Singh, V., On class of univalent functions, Internat. J. Math &Math. Sci. 23(2000), 12, 855-857. [4] Yang, D., Liu, J., On a class of univalent functions, Internat. J. Math &Math. Sci. 22(1999), 3, 605-610.

D. Breaz:

Department of Mathematics

”‘1 Decembrie 1918”’ University of Alba Iulia

Alba Iulia, str. N. Iorga, No. 11-13, 510009, Romania E-mail address: dbreaz@uab.ro

N. Breaz:

Department of Mathematics

”‘1 Decembrie 1918”’ University of Alba Iulia

Referensi

Dokumen terkait

Air yang digunakan dalam pengujian beton berdasarkan standar SK SNI 03-2847-2002 memiliki syarat-syarat sebagai berikut. Air yang digunakan pada campuran beton harus

Penerapan metode MFCC ( Mel-Frequency Cepstrum Coefficients ) dan klasifikasi JST SOM berhasil diimplementasikan dalam identifikasi jenis suara burung berkicau dan

[r]

Kualifikasi yang saudara an Pemasangan Pagar Sisi Udara di Bandar , bersama ini Pokja ULP Bandar Udara mengundang untuk hadir dalam Pembuktian. Kantor Otoritas

“ Untuk memberikan kepada Universitas Komputer Indonesia Hak Bebas Royalty Noneksklusif atas penelitian ini dan bersedia untuk di- online -kan sesuai dengan

Sehubungan dengan Berita Acara Penjelasan Nomor : BA.02/GST-SUV/POKJA/ IV/2017 tanggal 7 Maret 2017 untuk kegiatan pemilihan Jasa Konsultansi Pekerjaan Pengawasan Pembangunan

Sehubungan dengan point 1 dan 2 tersebut di atas, Pokja ULP memutuskan bahwa Pelelangan Pekerjaan Supervisi / Pengawasan Pembangunan Fasilitas Pelabuhan Tanah Ampo

Penggunaan faktor produksi luas lahan dan pestisida belum optimum dan penggunaan tenaga kerja tidak optimum.Dari penelitian Sriyoto et.al., (2007) yang menggunakan analisis