• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:GMJ:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:GMJ:"

Copied!
14
0
0

Teks penuh

(1)

1(1994), No. 2, 127-140

ON THE UNIQUENESS THEOREMS FOR THE EXTERNAL PROBLEMS OF THE COUPLE-STRESS

THEORY OF ELASTICITY

T. BUCHUKURI AND T. GEGELIA

Abstract. A formula is obtained for the asymptotic representation of solutions of the basic equations of the couple-stress theory of elas-ticity. The formula is used in proving the uniqueness theorems of the external boundary value problems.

0. Let Ω+be a bounded domain in the three-dimensional Euclidean space R3, and Ω− a complement of Ω+to the entire spaceR3:Ω=R3\. The

boundary value problems formulated for the domain Ω−are called external. The uniqueness theorems for the external boundary value problems are valid only under some restrictions of the class of solutions at infinity ([1], [2]). These restrictions arose naturally from the Green formulas and consist in the requirement that both the solution and its derivatives vanish at infinity. The weakening of the restrictions is important from both the theoretical and the practical standpoints (for example, in constructing effective solutions). This question is discussed in the monograph [1] devoted specially to uni-queness theorems of the theory of elasticity.

In recent years new results have been obtained for the external static problems of the classical theory of elasticity [3]-[7]. In these works the authors have succeeded in weakening essentially the restrictions at infinity imposed on the class of solutions in which the uniqueness theorems are proved. The results were obtained by two different methods: in [4], [5] the proof was based on Korn’s inequality, whereas in [3], [6], [7] use was made of the asymptotic representation of solutions in the neighborhood of an isolated singular point (in particular, in the neighborhood of the point at infinity). However, both methods were applied to the system of equations containing only derivatives of higher (second) order. The system of static equations of the classical elasticity theory is also such a system.

In this paper we show that the method of asymptotic representations of solutions in the neighborhood of an isolated singular point (see [3], [6], [7])

(2)

can be as well applied to systems of equations containing derivatives of both higher and lower orders. This is exemplified by the system of static equa-tions of the couple-stress theory of elasticity for a homogeneous anisotropic medium containing derivatives of second order, as well as derivatives of first and zero orders. Here we have derived the asymptotic representation of the solution of the said system in the neighborhood of the point at infinity, which has enabled us to prove new uniqueness theorems for the external boundary value problems of the couple-stress theory of elasticity.

The derivation of asymptotic representations largely rests on the behavior of the fundamental solution of the considered system at infinity.

1. A homogeneous system of the couple-stress theory of a homogeneous anisotropic micropolar elastic medium is written in the form [2], [9]

cijlk ∂

2uk

∂xj∂xl −cjilmεklm ∂ωk ∂xj = 0, cjmlkεijm∂uk

∂xl +c ′ jilk

∂2ωk

∂xj∂xl−cjmlpεijmεklpωk= 0, i= 1,2,3, (1)

where u = (u1, u2, u3) is the displacement vector, ω = (ω1, ω2, ω3) is the

rotation vector,εijk is the Levi-Civita symbol,cjilk,c′

jilk(i, j, l, k= 1,2,3) are the elastic constants. Here and in what follows the repetition of the index in the product means summation over this index.

It is assumed that the elastic coefficientscijkl andc′

ijkl satisfy the sym-metry conditions

cijkl=cklij, c′ijkl=c′klij (2) and the energetic form is positive-definite

cijklξijξkl+c′ijklηijηkl>0 for ξijξij+ηijηij6= 0. (3) Let

A(∂x)≡ kAik(∂x)k6×6,

Aik(∂x)≡cjilk ∂

2

∂xj∂xl, i, k= 1,2,3; Ai,k+3(∂x)≡ −cjilmεklm ∂

∂xj, i, k= 1,2,3; Ai+3,k(∂x)≡cjmlkεijm ∂

∂xl, i, k= 1,2,3; Ai+3,k+3(∂x)≡c′jilk

∂2

(3)

Denote byU = (U1, . . . , U6) the six-component vectorUi =ui and Ui+3=

ωi (i= 1,2,3). Then the system (1) is written in the matrix form

A(∂x)U = 0 €Aik(∂x)Uk = 0. (4) 2. Let us establish the properties of the fundamental matrix Φ =kΦijk6×6

of the operatorA(∂x) in the neighborhood of the point at infinity. By virtue of the definition of the fundamental matrix we have

Aik(∂x)Φkj(x) =δijδ(x), i, j= 1, . . . ,6,

where δij is the Kronecker symbol andδ is the Dirac function. Using the Fourier transform

b

ϕ(ξ)≡F[ϕ](ξ) = Z

R3

eix·ξϕ(x)dx,

from this equality we obtain

−Aik(ξ)Φkj(ξ) =b δij, i, j= 1, . . .6, where

A(ξ)≡ kAik(ξ)k6×6,

Aik(ξ) =cjilkξjξl, Ai,k+3(ξ) =icjilmεklmξj,

Ai+3,k(ξ) =−icjmlkεijmξl,

Ai+3,k+3(ξ) =c′jilkξjξl+cjmlpεijmεklp, i, k= 1,2,3.

(5)

The matrix A(ξ) is the invertible one if |ξ| ≡ (ξiξi)1/2 6= 0. Indeed, if |ξ| 6= 0 andηi ≡ξi/|ξ|, then

detA(ξ) =|ξ|6detB(η,|ξ|), B(η, ρ)≡ kBik(η, ρ)k6×6,

Bik(η, ρ) =Aik(η), i≤3 or k≤3;

Bi+3,k+3(η, ρ) =ρ2cjilk′ ηjηl+cjmlpεijmεklp, i≤3, k≤3.

(6)

Now we will prove that detB(η, ρ)6= 0 forη6= 0. Consider the expression Bik(η, ρ)UiUk=cjilkηjηluiuk+ρ2c

jilkηjηlωiωk+cjmlpεijmεklpωiωk. By virtue of (3) we have the estimates

cjilkηjηluiuk ≥c0(ηjui)(ηjui) =|η|2couiui,

c′

jilkηjηlωiωk≥c0(ηjωi)(ηjωi) =|η|2coωiωi,

(4)

for some positive numberc0. Therefore

Bik(η, ρ)UiUk ≥ |η2|c0uiui+|η|2ρ2c0ωiωi+ 2c0ωiωi>0

ifU 6= 0 andη6= 0. Therefore detB(η, ρ)6= 0 forη6= 0. Let us represent detB(η, r) as follows:

detB(η, ρ) =

6

X

k=0

ak(η)ρk,

whereak(η) are homogeneous polynomials ofηof orderk+ 6. In particular, a0(η) = detB(η,0).

As proved above,

a0(η)6= 0, 6

X

k=0

ak(η)ρk6= 0 for η6= 0. (7)

Write detA(ξ) in the form

detA(ξ) =|ξ|6 6

X

k=0

ak(η)|ξ|k. (8)

By virtue of (7)A(ξ) is the invertible matrix for|ξ| 6= 0. Therefore b

Φik(ξ) =−A−ik1(ξ), i, k= 1, . . . ,6.

Let us now estimate the elements of the matrixΦ(ξ). First we will proveb the validity of the representation

b

Φik(ξ) =Φb(1)ik(ξ) +Φb(2)ik(ξ),

i, k= 1, . . . ,6, (9)

where Φb(1)ik(ξ) are homogeneous functions of order −2 for i, k = 1,2,3, of order−1 fori= 1,2,3 andk= 4,5,6, and fori= 4,5,6 andk= 1,2,3; of order 0 fori, k= 4,5,6;Φb(2)ik(ξ) admits the estimates

|∂αΦb(2)ik(ξ)| ≤cα|ξ|−|α|−1, i≤3, k≤3;

|∂αΦb(2)ik(ξ)| ≤cα|ξ|−|α|, i≤3, k≥4 or i≥4, k≤3;

|∂αΦb(2)ik(ξ)| ≤cα|ξ|1−|α|, i≥4, k≥4,

(10)

(5)

Let F ≡ (F1, . . . , F6) be some vector and Vi ≡ A−ik1Fk. Repeating the

above arguments for the matrixB(η, r), we can readily prove

Aik(ξ)ViVk ≥c0|ξ|2ViVi+ 2c0 4

X

i=1

Vi2. (11)

Let us fix the indexp. If Fk =δkp,k= 1, . . . ,6, thenVi =A−ik1(ξ)δkp= A−ip1(ξ) (i= 1, . . . ,6). The substitution of the obtained value of Vi in (11) leads to

A−pp1(ξ)≥c0|ξ|2 6

X

k=1

€

A−kp1(ξ)2+ 2c0 6

X

k=4

€

A−kp1(ξ)2. (12)

Hence

6

X

k,p=1

€

A−kp1(ξ)2≤ 1

c0|ξ|2 6

X

p=1

A−pp1(ξ)≤ c1 |ξ|2

 X6

k,p=1

€

A−kp1(ξ)2‘1/2,

|A−kp1(ξ)| ≤c1|ξ|−2, c1= const, k, p= 1, . . . ,6.

(13)

From (12) and (13) we obtain

6

X

k=4

€

A−kp1(ξ)2≤ 1

2c0

A−1

pp(ξ)≤ c1

2c0 |ξ|−2,

|A−kp1(ξ)| ≤c2|ξ|−1, k= 4,5,6; p= 1, . . . ,6.

(14)

SinceAik(ξ) =Aki(−ξ) (i, k= 1, . . . ,6), from (14) we have

|A−kp1(ξ)| ≤c2|ξ|−1, c1= const, k= 1, . . . ,6; p= 4,5,6. (14′)

Considering (12) forp≥4, we obtain

6

X

k,p=4

€

A−kp1(ξ)2≤ 1

2c0 6

X

p=4

A−pp1(ξ)≤c1

 X6

k,p=4

€

A−kp1(ξ)2‘1/2.

Therefore

|A−kp1(ξ)| ≤c1, k, p= 4,5,6. (15)

Now we will prove the representation (9). Leti ≤3 and k ≤3. Write b

Φik(ξ) in the form b

Φik(ξ) =−A−ik1(iξ) =− Mik(ξ)

(6)

where Mik(ξ) is the cofactor of the element Aik(ξ) in the matrix A(ξ). ThereforeMik(ξ) is the polynomial of ξ. Since detA(ξ) =|ξ|6detB(η,|ξ|)

and|Φik(ξ)b | ≤c|ξ|−2, it is obvious thatMik(ξ) is represented in the form

Mik(ξ) =|ξ|4 6

X

j=0

bikj (η)|ξ|j,

wherebj(η) is the homogeneous polynomial ofηof orderj+4 (j= 1, . . . ,6). Thus

b

Φik(ξ) =− 1 |ξ|2

P6

j=0bikj (η)|ξ|j P6

j=0aj(η)|ξ|j

.

Setting

b

Φ(1)ik(ξ) =− 1 |ξ|2·

bik

0 (η)

a0(η)

=− 1 |ξ|2

bik

0

€ξ |ξ|



a0

€ξ |ξ|

,

b

Φ(2)ik(ξ) =− 1

|ξ|

P6

j=1(a0(η)bikj (η)−bik0(η)aj(η))|ξ|j−1

a0(η)P6j=0aj(η)|ξ|j

,

(16)

we obtain the required representation (9), since Φb(1)ik(ξ) is a homogeneous function ofξ of order−2 andΦb(2)ik(ξ) satisfies the condition (10) for i, k= 1,2,3.

In a similar manner one can prove the validity of the representation (9) for the rest ofiandk.

Let us now estimate the matrix Φ(x). From the equality (9) we have

Φik(x) = Φ(1)ik(x) + Φ(2)ik(x), i, k= 1, . . . ,6. (17) The first term in (17) is the inverse Fourier transform of the homogeneous functionΦb(1)ik(ξ), and therefore Φ

(1)

ik(ξ) is a homogeneous function of order

−3−q, whereqis the order of the homogeneous functionΦb(1)ik(ξ). Thus for Φ(1)ik(ξ) we have the estimates

|∂αΦ(1)

ik(x)| ≤c|x|−|α|−1, i≤3, k≤3;

|∂αΦ(1)ik(x)| ≤c|x|−|α|−2, i≤3, k≥4 or i≥3, k≤4;

|∂αΦ(1)ik(x)| ≤c|x|−|α|−3, i, k≥4, c= const.

(7)

Next we will estimate the second term in (17). It will be shown that in the neighborhood of the point at infinity

∂αΦ(2)ik(x) =o(|x|−|α|−1), i≤3, k≤3;

∂αΦ(2)ik(x) =o(|x|−|α|−2), i≤3, k≥4 or i≥3, k≤4; ∂αΦ(2)

ik(x) =o(|x|−|α|−3), i≥4, k≥4.

(19)

We introduce the functionsω0andω1, whereω1= 1−ω0andω0possesses

the following properties:

ω0∈C∞(R3), suppω0⊂B(0,1), ω0(x) = 1 if |x| ≤

1 2. HereB(0,1) is the ball with center 0 and radius 1 inR3. Obviously,

b

Φ(2)ik(ξ) =Φb(2)ik(ξ)ω0(ξ) +Φb(2)ik(ξ)ω1(ξ),

Φ(2)ik(x) =Φ0(2)ik(x)+

1

Φ(2)ik(x), where

0

Φ(2)ik(x) =F −1[Φb(2)

ikω0](x), 1

Φ(2)ik(x) =F −1[Φb(2)

ikω1](x).

F−1 is the inverse Fourier transform operator.

Leti ≤3,k ≤3 and |β| < α+ 2. Then by virtue of (10) the function ∂βαΦb(2)

ik(ξ)ω0(ξ)) is absolutely integrable onR3and therefore the inverse Fourier transform of this function tends to zero at infinity, but

F−1[∂β(ξαΦb(2)ik(ξ)ω0(ξ))](x) = (−1)|α|i|α|+|β|xβ∂α 0

Φ(2)ik(x). Thus, if|β|=|α|+ 1, then

lim |x|→∞x

βα 0

Φ(2)ik(x) = 0 and therefore

∂αΦ0(2)ik(x) =o(|x|

−|α|−1). (20)

Let us estimateΦ1(2)ik(x). Ifn≥ |α|+ 2, then ∆n(ξαΦb(2)ik(ξ)ω1(ξ))∈L1(R3)

(8)

Therefore for anyn≥ |α|+ 2

∂αΦ1ik(2)(x) =o(|x|

−2n). (21)

Equations (20) and (21) imply the first estimate in (19). The rest of the estimates are proved in the same manner.

3. The derivation of the asymptotic representation formula for the solution of the system (1) in the neighborhood of the point at infinity is based on the Green formulas. We will give these formulas.

Let Ω be a bounded domain in R3 with a piecewise-smooth boundary ∂Ω,U = (U1, . . . , U6),V = (V1, . . . , V6),U ∈C2( ¯Ω) andV ∈C2( ¯Ω). Then

Z

(Vi(x)AikUk(x)−Uk(x)Aki(∂x)Vi(x))dx= =

Z

∂Ω

(Vi(y)Tik(∂y, ν)Uk(y)−Uk(y)Tki(∂y, ν)Vi(y))dy S, (22)

where T(∂y, ν)≡ kTik(∂y)k6×6 is the boundary stress operator defined on

∂Ω by the relations

Tik(∂y, ν) =cjilkνj ∂ ∂yl, Ti,k+3(∂y, ν) =−cjilmνjεklm,

Ti+3,k(∂y, ν) = 0,

Ti+3,k+3(∂y, ν) =c′jilkνj ∂

∂yl, i, k= 1,2,3.

(23)

Hereν = (ν1, ν2, ν3) is the unit normal to∂Ω at the pointy, external with

respect to Ω.

If U = (U1, . . . , U6) is the solution of the system (1) in the domain Ω,

belonging to the classC2(Ω)C1( ¯Ω), thenxΩ:

uj(x) = Z

∂Ω

(Ui(y)Tik(∂y, ν)Φkj(y−x)−

(9)

4. Let us formulate the theorem of the asymptotic representation of a solution of the system (1) in the neighborhood of the point at infinity.

Theorem 1. LetΩbe a domain fromR3 containing the neighborhood of the point at infinity, letU be a solution of the system (1)inΩof the class

C2(Ω), and let

Ui(z) =o(|z|p+1), i= 1, . . . ,6 (25)

in the neighborhood of the point at infinity, wherepis a nonnegative integer number. Then the representation

Uj(x) = X |α|≤p

c(jα)xα+ X |β|≤q

d(kβ)∂βΦjk(x) +ψj(x) j= 1, . . . ,6

(26)

holds in the neigborhood of the point at infinity. Here c(jα) andd(kβ) are the constants, α= (α1, α2, α3) and β = (β1, β2, β3)are the multiindexes, q is an arbitrary nonnegative integer number, and the function ψj admits the estimate

∂γψj(x) =O(|x|−2−|γ|−q), j= 1, . . . ,6 (27)

in the neighborhood of |x|=∞, where γ≡(γ1, γ2, γ3)is an arbitrary mul-tiindex.

Moreover, each of the three terms on the right-hand side of (26)is the solution of the system (1) in the neighborhood of|x|=∞.

Proof. Let x ∈ Ω, and let a positive number r be chosen such that x∈B(0, r/8) andR3\B(0, r/8)⊂Ω. Write the formula (24) for the domain Ωr≡B(0, r)∩Ω. We will have

Uj(x) = Z

∂Ω

€

Ui(y)Tik(∂y, ν)Φkj(y−x)−

−Φkj(y−x)Tki(∂y, ν)Ui(y)dyS+ +

Z

∂B(0,r)

€

Ui(y)Tik(∂y, ν)Φkj(y−x)−

(10)

Represent Φkj(y−x), in the neighborhood of the pointy, by the Taylor’s formula

Φkj(y−x) = X |α|≤p+1

(−1)|α|xα α! ∂

αΦkj(y) +Rkj(x, y),

Rkj(x, y) = X |α|≤p+2

(−1)|α|xα α! ∂

αΦkj(yθx), 0< θ <1.

(29)

By virtue of (18) and (19) we readily ascertain that the estimates

|∂yβRkj(x, y)| ≤aβ,p(r)|y|−p−|β|−3, k, j≤3;

|∂yβRkj(x, y)| ≤aβ,p(r)|y|−p−|β|−4, k≤3, j≥4 or k≥4, j≤3;

|∂yβRkj(x, y)| ≤aβ,p(r)|y|−p−|β|−4, k, j≥4

(30)

are fulfilled for any xand y satisfying the conditions|x|< r/8 andr/4≤ |y| ≤r. Taking into account (29), from (28) we obtain

Uj(x) =Uj(0)(x) + X

|α|≤p+1

(−1)|α|c(α) j (r) α! x

α+Ij(p, r, x),

j= 1, . . . ,6,

(31)

where

Uj(0)(x)≡ Z

∂Ω

€

Ui(y)Tik(∂y, ν)Φkj(y−x)−

−Φkj(y−x)Tki(∂y, ν)Ui(y)dyS, (32) c(jα)(r)≡

Z

∂Ω

€

Ui(y)Tik(∂y, ν)∂αΦkj(y)−

−∂αΦkj(y)Tki(∂y, ν)Ui(y)dyS, (33) Ij(p, r, x)≡

Z

∂B(0,r)

€

Ui(y)Tik(∂y, ν)Rkj(x, y)−

−Rkj(x, y)Tki(∂y, ν)Ui(y)dyS. (34) It is not difficult to prove (cf. [6]) thatc(jα)(r) does not depend onr, and, introducing the notation

c(jα)≡

(−1)|α| α! c

(α)

j (r), we obtain the equality

Uj(x) =Uj(0)(x) + X |α|≤p+1

(11)

from which we conclude thatIj(p, r, x) does not depend onreither. Thus, if we prove

lim

r→∞Ij(p, r, x) = 0, we will obtain

Uj(x) =Uj(0)(x) + X

|α|≤p+1

c(jα)xα. (35)

Let the function ω:R3→R, ω∈C∞

0 (R3), suppω⊂B(0,3)\B(0,1/3),

ω(y) = 1 for 1/2<|y|<2. Then the estimate

|∂αω(r)(y)| ≤b(α)r−|α| (36) holds for the functionω(r)(y)ω(y/r).

Rewriting the formula (22) for the domainB(0, r)\B(0, r/4), in whichV is replaced by the function

V ≡€R1(rj)(x,·), . . . , R(6rj)(x,·), R(kjr)(x, y)≡ω(r)(y)Rkj(x, y), we obtain

Ij(p, r, x) = Z

B(0,r)\B(0,r/4)

Ui(z)Aik(∂z)R(kjr)(x, z)dz, j= 1, . . . ,6.

(37)

On account of (30) we have the estimates

|Aik(∂z)Rkj(x, z)| ≤a(x)|z|−p−5, i≤3, j≤3;

|Aik(∂z)Rkj(x, z)| ≤a(x)|z|−p−6, i≤3, j≥4;

|Aik(∂z)Rkj(x, z)| ≤a(x)|z|−p−4, i≥4, j≤3;

|Aik(∂z)Rkj(x, z)| ≤a(x)|z|−p−5, i≥4, j≥4. Taking these estimates and restrictions (25) into account, we obtain

lim

r→∞Ij(p, r, x) = 0.

The representation (35) is thus derived. Note that, due to (25), in the formula (35) the constantsc(jα)= 0 ifα=p+ 1, and therefore we have the representation

Uj(x) =Uj(0)(x) + X |α|≤p

c(jα)xα.

Let us transform this representation in the form (26). To this effect, in the formula (32) we will represent Φkj(y−x) by the Taylor’s formula. Since Akj(ξ) =Ajk(−ξ), we haveA−kj1(ξ) =A

−1

(12)

Φjk(x−y). Choose a positive numberr0such thatR3\B(0, r0)⊂Ω. Then,

ify∈∂Ω andx∈R3\B(0,2r0), we will have the expansion

Φkj(y−x) = Φjk(x−y) =

= X

|α|≤q

(−1)|α|yα α! (∂

αΦjk)(x) +ψjk(x, y),

ψkj(x, y) = X |α|=q+1

(−1)q+1yα α! (∂

αΦjk)(xθy),

0< θ <1.

(38)

Applying the estimates (18), (19), we show that

|∂βxψjk(x, y)| ≤c

(β)

jk (y)|x|

−q−|β|−2,

j≤3, k≤3;

|∂βxψjk(x, y)| ≤c

(β)

jk (y)|x|

−q−|β|−3,

j≤3, k≥4 or j ≥4, k≤3;

|∂βxψjk(x, y)| ≤c

(β)

jk (y)|x|

−q−β−4,

j≥4, k≥4.

(39)

The substitution of (38) in (32) gives Uj(0)(x) =

X

|α|≤q

d(kα)∂αΦjk(x) +ψj(x), (40)

ψj(x) = (−1)q X |α|=q

Z

∂Ω

Ui(y)y α

α!Tik(∂x, ν)(∂

αΦjk)(x)dy S

Z

∂Ω

(Ui(y)Tik(∂x, ν)ψjk(x, y)−ψjk(x, y)Tki(∂y, ν)Ui(y))dy S. Now, due to (18), (19) and (39), we obtain

|∂γψj(x)| ≤c(jγ)|x|−|γ|−2−q, j = 1, . . . ,6. „

Remark. Theorem 1 can also be proved when the condition (25) is re-placed by the conditions of Theorem 2 from [6].

(13)

In the domain Ω− with the piecewise-smooth boundary∂Ω, find a solu-tionU of the system (1) of the classC1( ¯Ω)C2(Ω), satisfying the boundary

condition

∀y ∈∂Ω : lim

Ω−∋x→y

U(x) =ϕ(y)

and the condition at infinity lim

|x|→∞U(x) = 0.

Theorem 2. The first external problem of the couple-stress theory of elasticity has at most one solution.

Proof. LetU be a solution of the first external problem. Then the expansion (26) holds forU. Setting p= 0, q= 0 in (26), we obtain the equality

Uj(x) =c(0)j +d(0)k Φjk(x) +ψj(x), j= 1, . . . ,6.

All terms on the right-hand side of this equality, except c(0)j , tend to zero as |x| → ∞. Thereforec(0)j = 0, j = 1, . . . ,6. Now we conclude from (18), (19), (27) that

∂αUj(x) =O(|x|−|α|−1), j= 1,2,3; ∂αUj(x) =O(|x|−|α|−2), j= 4,5,6.

Now, repeating the arguments, say, from [2], we readily obtain the proof of Theorem 2.

The uniqueness theorems for the other external boundary value problems of the couple-stress elasticity are proved in a similar manner.

References

1. R.J. Knops and L.E. Payne, Uniqueness theorems in linear elasticity.

Springer tracts in natural philosophy,v. 19,Springer-Verlag, Berlin-Heidel-berg-New York,1971.

2. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, and T.V. Burchu-ladze, Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity. (Translated from the Russian)North-Holland Series in Applied Mathematics and Mechanics, v. 25, Amsterdam, New York, Oxford, North-Holland Publishing Company,1979.

(14)

4. V.A. Kondratiev and O.A. Oleinik, Korn’s inequalities and the uni-queness of solutions of classical boundary value problems in unbounded domains for a system in elasticity theory. (Russian) Current problems in mathematical physics. (Russian) (Proceedings of the all-union symposium; Tbilisi, 1987), v. 1, 35-63, Tbilisi University Press, Tbilisi, 1987.

5. —–, On the behavior at infinity of solutions of elliptic systems with a finite energy integral. Arch. rational Mech. Anal. 99(1987), No. 1, 75-89.

6. T.V. Buchukuri and T.G. Gegelia, Qualitative properties of solutions of the basic equations of the theory of elasticity near singular points. (Rus-sian)Trudy Tbilissk. Mat. Inst. Razmadze90(1988), 40-67.

7. —–, On the uniqueness of solutions of the basic problems of elasticity for infinite domains. (Russian)Differentsial’nye Uravneniya25(1988), No. 9, 1556-1565.

8. F. John, Plane waves and spherical means. Interscience Publishers, New York,1955.

9. V. Nowacki, The theory of elasticity. (Translation from Polish into Russian)Mir, Moscow,1975.

(Received 02.03.1993) Authors’ address:

Referensi

Dokumen terkait

Berdasarkan hasil pengujian sistem yang telah dilakukan secara keseluruhan pada black box dengan kasus uji diatas dapat ditarik kesimpulan bahwa pembangunan

1.3 Menyusun teks lisan dan tulis sederhana untuk mengungkapkanidentitas diri (aisatsu, jikoshoukai) dan kehidupan sekolah (Gakkou no seikatsu) dengan memperhatikan

Dalam rangka penginputan data sasaran dan kegiatan program penanggulangan kemiskinan SKPD/UKPD pada APBD 2017 Provinsi DKI Jakarta melalui Sistem Informasi

Selama menjalankan praktik kerja lapangan di Radio Delta FM Bandung, penulis melakukan kegiatan rutin dan kegiatan insidental yang berhubungan dengan jurnalistik

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Unit Layanan Pengadaan Kota Banjarbaru mengundang penyedia Pengadaan Barang/Jasa untuk mengikuti Pelelangan Umum pada Pemerintah Kota Banjarbaru yang dibiayai dengan Dana APBD

Hali ini terjadi karena pembinaan dan pengembangan bahasa lebih banyak melalui jalur pendidikan formal (sekolah). Di samping itu, ragam baku dapat dengan tepat memberikan

Balai Standardisasi Metrologi Legal (BSML) Regional III, Direktorat Jendral Standarisasi dan Perlindungan Konsumen, Kementrian Perdagangan bekerjasama dengan Unit Layanan