• Tidak ada hasil yang ditemukan

vol17_pp487-492. 104KB Jun 04 2011 12:06:01 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "vol17_pp487-492. 104KB Jun 04 2011 12:06:01 AM"

Copied!
6
0
0

Teks penuh

(1)

A PARAMETERIZED LOWER BOUND FOR THE SMALLEST

SINGULAR VALUE∗

WEI ZHANG†, ZHENG-ZHI HAN, AND SHU-QIAN SHEN

Abstract. This paper presents a parameterized lower bound for the smallest singular value of

a matrix based on a new Gerˇsgorin-type inclusion region that has been established recently by these authors. The comparison of the new lower bound with known ones is supplemented with a numerical example.

Key words. Eigenvalue, Inclusion region, Smallest singular value, Lower bound.

AMS subject classifications.15A12, 65F15.

1. Introduction. To estimate matrix singular values is an attractive topic in matrix theory and numerical analysis, especially to give a lower bound for the smallest one. Let A = (aij) ∈Cn×n and letA∗ be the conjugate transpose of A. Then the singular values of A are the square roots of the eigenvalues of AA∗. Throughout the paper we use σn(A) to denote the smallest singular value of A. D enote N :=

{1,2, . . . , n}. Define, for allk∈N,

rk(A) :=

j∈N\{k}

|akj|, ck(A) :=

j∈N\{k}

|ajk|, hk(A) := 1

2(rk(A) +ck(A)).

In the past three decades, several useful lower bounds for the smallest singular value of a matrix have been presented in the literature; see Varah [7] and Qi [6]. By using Gerˇsgorin’s theorem (see Chapter 6 of [1]), Johnson [4] obtained a lower bound forσn(A):

(1.1) σn(A)≥min

k∈N{|akk| −hk(A)}.

Recently, Johnson and Szulc [5] provided several further lower bounds for the

Received by the editors August 14, 2008. Accepted for publication September 26, 2008. Handling

Editor: Roger A. Horn.

School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai, 200240, China (wizzhang@gmail.com).

School of Applied Mathematics, University of Electronic Science and Technology of China,

Chengdu, 610054, China.

(2)

smallest singular value. Two of them are

(1.2) σn(A)≥ 1 2mink∈N

4|akk|2+ [rk(A)−ck(A)]2 12

−2hk(A)

and

(1.3) σn(A)≥ 1 2mini=k

|aii|+|akk| −

(|aii| − |akk|)

2

+ 4hi(A)hk(A) 12

.

In this paper, after introducing a new inclusion region for eigenvalues of a matrix in Section 2, we present a parameterized lower bound for the smallest singular value in Section 3. In Section 4, a numerical example is given to compare our results with the known ones.

2. Inclusion regions for eigenvalues. Recently, a new Gerˇsgorin-type inclu-sion region for eigenvalues of a matrix has been provided by Huang, Zhang, and Shen in [3]. To introduce the result, we first present some notation. LetS be a nonempty subset of N. D enote ¯S := N\S and let P(N) denote the power set of N. For

A= (aij)∈Cn×n, define, for alli∈N

rSi(A) :=

k∈S\{i}

|aik|, r

¯

S i(A) :=

k∈S¯\{i}

|aik|,

cSi(A) :=

k∈S\{i}

|aki|, c

¯

S i(A) :=

k∈S¯\{i}

|aki|.

If S contains a single element, say S = {i0}, then we let rS

i0(A) = 0. Similarly

rS¯

i0(A) = 0 if ¯S ={i0}. We sometimes use r

S i (cSi, r

¯

S i, c

¯

S

i) to denoterSi(A) (cSi(A),

rS¯ i(A),c

¯

S

i(A), respectively). Define, for alli∈S and j∈S¯,

GSi(A) :=

z∈C:|zaii| ≤rSi , GSj¯(A) :=zC:|zajj| ≤rSj¯

and

GS i,j(A) :=

z∈C:z /GSi(A)GSj¯(A),

|z−aii| −rSi

|z−ajj| −r

¯

S j

≤rS¯ ir

S j

.

Proposition 2.1. ([3]) Let A = (aij) Cn×n. Then all the eigenvalues of A

are located in

GS(A) :=

i∈S

GSi(A)

j∈S¯ GSj¯(A)

∪ 

i∈S,j∈S¯

GSi,j(A) 

(3)

This result is interesting, but it can not be applied directly to estimate σn(A). So we must deduce other inclusion regions. Letα∈ [0,1] be given. For i ∈S, j ∈ S¯, define the following regions in the complex plane:

Ui,jS (A) :=

z∈C:|zaii| −riS rirjS α

,

VS i,j(A) :=

z∈C:|zajj| −rjrirjS

1−α

,

Proposition 2.2. Let A = (aij) Cn×n. Then all the eigenvalues of A are

located in

KS(A) :=

i∈S,j∈S¯

US i,j(A)

∪ 

i∈S,j∈S¯

VS i,j(A)

.

Proof. It is sufficient to show thatGS(A)KS(A). Note thatGS

i(A)⊆Ui,jS(A) andGS¯

j(A)⊆Vi,jS(A). Therefore, for anyz∈GS(A), if

z∈

i∈S

GSi(A) or z∈

j∈S¯

GSj¯(A),

thenz∈KS(A). Otherwise, there existi0S andj0S¯, such that

|z−ai0i0| −r

S i0

|z−aj0j0| −r

¯

S j0

≤rS¯ i0r

S j0 =

rS¯ i0r

S j0

α

rS¯ i0r

S j0

1−α

which leads to

|z−ai0i0| −r

S i0≤

rS¯ i0r

S j0

α

or |z−aj0j0| −r

¯

S j0 ≤

rS¯ i0r

S j0

1−α

.

Hence

z∈US

i0,j0(A)∪V

S i0,j0(A).

And thenz∈KS(A).

3. Main results. In this section we use the inclusions derived in Section 2 to estimateσn(A). Denote the Hermitian part of Aby

H(A) := 1 2(A+A

(4)

Letλmin(H(A)) be the smallest eigenvalue ofH(A). It is known thatλmin(H(A)) is a lower bound forσn(A) [2, p.227]. Moreover, define for alli∈S,j∈S¯, andα∈[0,1],

PS

i,j(A) : =|aii| −21riS(A) +c S i(A)

−1 4

rS¯ i(A) +c

¯

S i(A)

rS j(A) +c

S j(A)

α

,

QSi,j(A) : =|ajj| −12

rSj¯(A) +c

¯

S j(A)

−14riS¯(A) +c

¯

S i(A)

rjS(A) +c S j(A)

1−α

.

Theorem 3.1. Let A= (aij)Cn×n. Then

(3.1) σn(A)≥ min

i∈S,j∈S¯

PS i,j(A), Q

S i,j(A) .

Proof. We first define a diagonal matrixD=diag(eiθ1, . . . , eiθn),whereeiθka kk=

|akk|ifakk= 0 andθk = 0 ifakk= 0,k∈N. SinceD is unitary, the singular values ofDAare the same as those ofA. Consequently, we have

(3.2) σn(A) =σn(DA)≥λmin(H(DA)).

DenoteB = (bkl) :=H(DA) = 12(DA+A∗D∗).Thus,bkk=|akk|, fork∈N, and

bkl= 1 2

ekθk

akl+ ¯alke−kθk

, for all k=l, k, l∈N.

Since B is a Hermitian matrix, its eigenvalues are all real. Letλmin(B) denote the smallest eigenvalue ofB. Then, by using Proposition 2.2, λmin(B) must satisfy at least one of the following conditions

λmin(B)≥ |bii| −riS(B)−

rS¯ i(B)r

S j(B)

α

, i∈S, j∈S,¯

λmin(B)≥ |bjj| −r

¯

S j(B)−

riS¯(B)r S j(B)

1−α

, i∈S, j∈S.¯

It follows that

λmin(B)≥ min i∈S,j∈S¯

|bii| −rSi(B)−

rSi¯(B)r S j(B)

α

,

|bjj| −r

¯

S j(B)−

rS¯ i(B)r

S j(B)

1−α

.

By applying the triangle inequality, we have

|bii| −rSi(B)−

rSi¯(B)r S j(B)

α

=|aii| −riS(H(DA))−

rS¯

i (H(DA))r S

j (H(DA)) α

≥ |aii| −12

rS

i(A) +cSi(A)

−14rS¯ i(A) +c

¯

S i(A)

rS

j(A) +cSj(A) α

(5)

Similarly, one can obtain

|bii| −r

¯

S i (B)−

rS¯

i(B)rSj(B) 1−α

≥QS i,j(A).

Then from (3.2), we have

σn(A)≥ min i∈S,j∈S¯

PS

i,j(A), QSi,j(A) .

Since the bound (3.1) holds for any nonempty S ∈ P(N) and anyα∈[0,1], we have obtain the following corollaries:

Corollary 3.2. σn(A) max

S∈P(N)αmax∈[0,1]i∈minS,j∈S¯

PS

i,j(A), QSi,j(A) .

Corollary 3.3. ([4]) σn(A)min

i∈N

|aii| −12(ri(A) +ci(A)) .

4. Numerical example. In this section, we give a numerical example to com-pare our bound (3.1) with known ones.

Example 4.1. Consider the following matrices

A1= 

11 5 6

4 12 −5

3 4 13

, A2= 

18 2 −5

6 15 8

−6 −3 17 

, A3= 

6 2 −1

2 9 1

2 −2 −13

.

Table 1. Comparison of lower bounds forσn(A)

Matrix σn(Ai) S α (1.1) (1.2) (1.3) (3.1)

A1 5.8446 {1} 0.57 2.0000 2.1803 2.4861 2.5886

A2 9.6861 {2} 0.56 5.5000 6.1172 5.7827 5.7989

A3 4.5433 {3} 0.10 2.5000 3.6921 2.3028 2.8377

[image:5.612.107.406.438.501.2]
(6)

REFERENCES

[1] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, 1985. [2] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press,

Cam-bridge, 1991.

[3] T. Z. Huang, W. Zhang, and S. Q. Shen. Regions containing eigenvalues of a matrix. Electron. J. Linear Algebra, 15:215–224, 2006.

[4] C. R. Johnson. A Gersgorin-type lower bound for the smallest singular value. Linear Algebra Appl., 112:1–7, 1989.

[5] C. R. Johnson and T. Szulc. Further lower bounds of the smallest singular value.Linear Algebra Appl., 272:69–179, 1998.

[6] L. Qi. Some simple estimates for singular values of a matrix. Linear Algebra Appl., 56:105–119, 1984.

Gambar

Table 1.Comparison of lower bounds for σn(A)

Referensi

Dokumen terkait

Akan tetapi, meletakkan permasalahan sebagai pijakan awal dari teorisasi dapat melahirkan permasalahan baru yang justru berujung kembali kepada kegaduhan dan hiruk-pikuk

Mengutip salah satu teori yang dikemukakan oleh Pearson dan Payasilian (1999:380-381) mengenai bantuan luar negeri, dapat diketahui bahwa bantuan luar negeri Cina ke Indonesia

Pada hari ini Sabtu tanggal Dua Puluh bulan Mei tahun Dua Ribu Tujuh Belas (Sabtu, 20-05- 2017) , bertempat di ruang Pertemuan Kantor Kesyahbandaran dan

Kami mengucapkan terima kasih kepada Peserta Pengadaan Barang/Jasa yang belum mendapat kesempatan sebagai Pemenang Lelang dan berharap dapat berpartisipasi pada

Kelalaian tidak mengunduh Berita Acara Pemberian Penjelasan dan Addendum Dokumen Pengadaan atau pengumuman lainnya oleh peserta lelang menjadi tanggung jawab

Dalam Pasal 56 Ayat (1) UUM 15/2001 dirumuskan definisi IG yang memuat unsur-unsur tertentu, yaitu: Indikasi-geografis dilindungi sebagai suatu tanda yang menunjukkan daerah asal

Sehubungan dengan butir 1 (satu) tersebut diatas, apabila ada peserta yang berkeberatan atas keputusan ini, dapat mengajukan sanggahan secara online melalui Portal LPSE

KANTOR KESYAHBANDARAN DAN OTORITAS PELABUHAN KELAS II BENOA PAKET PEKERJAAN PEMBANGUNAN PAGAR DAN HALAMAN PARKIR (2.250 M²). TAHUN