• Tidak ada hasil yang ditemukan

IE1art2sec20062. 109KB Jun 04 2011 12:09:02 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "IE1art2sec20062. 109KB Jun 04 2011 12:09:02 AM"

Copied!
10
0
0

Teks penuh

(1)

SUBCLASSES OF CONVEX FUNCTIONS ASSOCIATED WITH SOME HYPERBOLA

Mugur Acu

Abstract.In this paper we define some subclasses of convex functions associated with some hyperbola by using a generalized S˘al˘agean operator and we give some properties regarding these classes.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination, generalized S˘al˘agean operator

1. Introduction

LetH(U) be the set of functions which are regular in the unit discU,A =

{f ∈ H(U) :f(0) =f′

(0)1 = 0},Hu(U) = {f ∈ H(U) :f is univalent in U} and S ={f A:f is univalent in U}.

Let Dn be the S˘al˘agean differential operator (see [12]) defined as: Dn :A

→A , nN and D0f(z) = f(z) D1f(z) =Df(z) = zf′

(z) , Dnf(z) = D(Dn−1 f(z)). Remark. If f S , f(z) = z +

P

j=2ajz

j, z U then Dnf(z) = z +

P

j=2j

najzj.

We recall here the definition of the well - known class of convex functions CV =Sc =

(

f A: Re zf ′′

(z) f′(z) + 1

!

>0, z U

)

(2)

Let consider the Libera-Pascu integral operator La:AA defined as:

f(z) =LaF(z) = 1 +a za

z

Z

0

F(t)·ta−1

dt , a C, Re a0. (1)

Generalizations of the Libera-Pascu integral operator was studied by many mathematicians such are P.T. Mocanu in [8], E. Dr˘aghici in [7] and D. Breaz in [6].

Definition 1.1.Let n N and λ 0. We denote with Dnλ the operator

defined by

Dλn:A→A ,

Dλ0f(z) =f(z), Dλ1f(z) = (1λ)f(z) +λzf(z) = Dλf(z), Dλnf(z) =DλDn−1

λ f(z).

Remark 1.2. We observe that Dn

λ is a linear operator and for f(z) = z+P∞

j=2ajzj we have

Dλnf(z) =z+ ∞

X

j=2

(1 + (j1)λ)najzj.

Also, it is easy to observe that if we consider λ= 1 in the above definition we obtain the S˘al˘agean differential operator.

The next theorem is result of the so called ”admissible functions method” introduced by P.T. Mocanu and S.S. Miller (see [9], [10], [11]).

Theorem 1.1. Let h convex in U and Re[βh(z) + γ] > 0, z U. If p H(U) with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination

p(z) + zp ′

(z)

βp(z) +γ ≺h(z), then p(z)≺h(z).

(3)

Definition 1.2. Let β, λ R, β 0, λ 0 and f(z) = z+P∞ j=2ajzj. We denote by Dλβ the linear operator defined by

λ :AA , Dλβf(z) =z+

X

j=2

(1 + (j1)λ)βajzj.

Remark 1.3. It is easy to observe that for β = n N we obtain the

Al-Oboudi operator Dn

λ and for β = n ∈ N, λ = 1 we obtain the S˘al˘agean

operator Dn.

The purpose of this note is to define some subclasses of convex functions associated with some hyperbola by using the operator Dλβ defined above and to obtain some properties regarding these classes.

2. Preliminary results

Definition 2.1. [1]A function f A is said to be in the class CV H(α)

if it satisfies

zf′′ (z) f′(z) −2α

21+ 1

<Re

(

2zf ′′

(z) f′(z)

)

+ 2α√21+√2,

for some α (α >0) and for all z U .

Remark 2.1. Geometric interpretation: Let

Ω(α) =nw=u+i·v : v2 <4αu+u2, u > 0o.

Note that Ω(α) is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin. Whit this notations we have f(z)CV H(α) if and only if zff′′′((zz))+ 1 take all values in the convex

domain Ω(α) contained in the right half-plane.

Definition 2.2. [2]Let f A and α >0. We say that the function f is

in the class CV Hn(α), n N, if

Dn+2f(z)

Dn+1f(z)−2α

21

<Re

(

2D

n+2f(z)

Dn+1f(z)

)

(4)

Remark 2.2. Geometric interpretation: If we denote with the

an-alytic and univalent functions with the properties pα(0) = 1, p′

α(0) > 0

and pα(U) = Ω(α) (see Remark 2.1), then f CV Hn(α) if and only if

Dn+2f(z)

Dn+1f(z) ≺pα(z), where the symbol≺denotes the subordination inU .We have

pα(z) = (1 + 2α)q1+bz

1−z −2α , b =b(α) =

1+4α−4α2

(1+2α)2 and the branch of the square

root √w is chosen so that Im√w0. If we consider pα(z) = 1 +C1z+. . . , we have C1 = 1+41+2αα.

Theorem 2.1. [2] If F(z) CV Hn(α), α > 0, n N, and f(z) = LaF(z), whereLais the integral operator defined by (1), thenf(z)CV Hn(α),

α >0, n N.

Theorem 2.2. [2] Let n N and α > 0. If f CV Hn+1(α) then f CV Hn(α).

3. Main results

Definition 3.1. Letβ 0, λ0, α >0andpα(z) = (1 + 2α)q1+bz

1−z −2α ,

where b=b(α) = 1+4α−4α2

(1+2α)2 and the branch of the square root

w is chosen so that Im√w 0. We say that a function f(z) S is in the class CV Hβ,λ(α)

if

Dλβ+2f(z)

Dλβ+1f(z) ≺pα(z), z ∈U .

Remark 3.1. Geometric interpretation: f(z)CV Hβ,λ(α) if and only if Dλβ+2f(z)

Dλβ+1f(z) take all values in the domainΩ(α) which is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin (see Remark 2.1 and Remark 2.2).

Remark 3.2. We observe that this class generalize the class CV Hn(α)

studied in [2] and the class CV H(α) studied in [1].

(5)

Proof. Letf(z)CV Hβ+1,λ(α).

With notation

p(z) = D β+2

λ f(z)

λ+1f(z), p(0) = 1, we obtain

λ+3f(z) Dβλ+2f(z) =

Dλβ+3f(z) Dλβ+1f(z)·

λ+1f(z) Dβλ+2f(z) =

1 p(z)·

λ+3f(z)

λ+1f(z) (2) Also, we have

Dλβ+3f(z) Dλβ+1f(z) =

z+ ∞

P

j=2(1 + (j−1)λ)

β+3

ajzj

z+ ∞

P

j=2(1 + (j−1)λ)

β+1

ajzj

and

zp′

(z) = z

Dλβ+2f(z)′

λ+1f(z) −

Dλβ+2f(z) Dλβ+1f(z)·

zDλβ+1f(z)′

λ+1f(z) =

=

z 1 + ∞

P

j=2(1 + (j−1)λ)

β+2

jajzj−1

!

Dλβ+1f(z) −

−p(z)·

z 1 + ∞

P

j=2(1 + (j −1)λ)

β+1

jajzj−1

!

λ+1f(z) or

zp′ (z) =

z+ ∞

P

j=2j(1 + (j−1)λ)

β+2

ajzj

λ+1f(z) −p(z)· z+

P

j=2j(1 + (j−1)λ)

β+1

ajzj

Dλβ+1f(z) . (3) We have

z+ ∞

X

j=2

j(1 + (j1)λ)β+2ajzj =z+ ∞

X

j=2

(6)

=z+ ∞

X

j=2

(1 + (j1)λ)β+2ajzj + ∞

X

j=2

(j 1) (1 + (j1)λ)β+2ajzj =

=z+Dβλ+2f(z)z+ ∞

X

j=2

(j1) (1 + (j1)λ)β+2ajzj =

=Dβλ+2f(z) + 1 λ

X

j=2

((j 1)λ) (1 + (j1)λ)β+2ajzj =

=Dλβ+2f(z) + 1 λ

X

j=2

(1 + (j1)λ1) (1 + (j1)λ)β+2ajzj =

=Dλβ+2f(z) 1 λ

X

j=2

(1 + (j 1)λ)β+2ajzj+ 1 λ

X

j=2

(1 + (j1)λ)β+3ajzj =

=Dλβ+2f(z)− 1 λ

Dλβ+2f(z)−z

+ 1 λ

Dλβ+3f(z)−z

= =Dβλ+2f(z) 1

λD β+2

λ f(z) + z λ +

1 λD

β+3

λ f(z)− z λ = = λ−1

λ D β+2

λ f(z) + 1 λD

β+3

λ f(z) = = 1

λ

1)Dλβ+2f(z) +Dβλ+3f(z) . Similarly we have

z+ ∞

X

j=2

j(1 + (j1)λ)β+1ajzj = 1 λ

1)Dβλ+1f(z) +Dβλ+2f(z) .

From (3) we obtain

zp′

(z) = 1 λ

1)Dβλ+2f(z) +D β+3

λ f(z)

λ+1f(z) −p(z)

1)Dβλ+1f(z) +D β+2

λ f(z) Dβλ+1f(z)

!

=

= 1

λ (λ−1)p(z) +

Dλβ+3f(z)

Dλβ+1f(z)−p(z) ((λ−1) +p(z))

!

=

= 1 λ

Dλβ+3f(z)

Dλβ+1f(z)−p(z)

2

(7)

Thus

λzp′

(z) = D β+3

λ f(z)

λ+1f(z) −p(z)

2

or

λ+3f(z)

λ+1f(z) =p(z)

2+λzp′ (z). From (2) we obtain

Dλβ+3f(z) Dλβ+2f(z) =

1 p(z)

p(z)2+λzp′

(z)=p(z) +λzp ′

(z) p(z) ,

where λ >0.

From f(z)CV Hβ+2,λ(α) we have

p(z) +λzp ′

(z)

p(z) ≺pα(z),

with p(0) = pα(0) = 1, α > 0, β 0, λ > 0, and Repα(z) > 0 from here construction. In this conditions from Theorem 1.1, we obtain

p(z)pα(z)

or

λ+2f(z)

λ+1f(z) ≺pα(z). This means f(z)CV Hβ,λ(α).

Theorem 3.2. Let β 0, α >0 and λ 1. If F(z) CV Hβ,λ(α) then f(z) = LaF(z) CV Hβ,λ(α), where La is the Libera-Pascu integral operator defined by (1).

Proof. From (1) we have

(1 +a)F(z) =af(z) +zf′ (z) and, by using the linear operator Dβλ+2, we obtain

(1 +a)Dβλ+2F(z) = aD β+2

λ f(z) +D β+2

λ

 z+

X

j=2

jajzj

(8)

=aDβλ+2f(z) +z+ ∞

X

j=2

(1 + (j1)λ)β+2jajzj We have (see the proof of the above theorem)

z+ ∞

X

j=2

j(1 + (j1)λ)β+2ajzj = 1 λ

1)Dλβ+2f(z) +D β+3

λ f(z)

Thus

(1 +a)Dλβ+2F(z) = aD β+2

λ f(z) + 1 λ

1)Dλβ+2f(z) +D β+3

λ f(z)

=

= a+ λ−1 λ

!

λ+2f(z) + 1 λD

β+3

λ f(z)

or

λ(1 +a)Dβλ+2F(z) = ((a+ 1)λ1)Dλβ+2f(z) +Dλβ+3f(z). Similarly, we obtain

λ(1 +a)Dβλ+1F(z) = ((a+ 1)λ−1)D β+1

λ f(z) +D β+2

λ f(z). Then

λ+2F(z) Dβλ+1F(z) =

Dβ+3λ f(z)

Dβ+2λ f(z) ·

Dλβ+2f(z)

Dλβ+1f(z)+ ((a+ 1)λ−1)·

Dβ+2λ f(z)

Dβ+1λ f(z)

Dλβ+2f(z)

Dλβ+1f(z)+ ((a+ 1)λ−1)

.

With notation

Dβλ+2f(z)

λ+1f(z) =p(z), p(0) = 1, we obtain

Dβλ+2F(z) Dβλ+1F(z) =

Dβ+3λ f(z)

Dβ+2λ f(z) ·p(z) + ((a+ 1)λ−1)·p(z)

p(z) + ((a+ 1)λ1) (4) We have (see the proof of the above theorem)

λzp′

(z) = D β+3

λ f(z) Dβλ+2f(z) ·

Dλβ+2f(z)

Dλβ+1f(z)−p(z)

(9)

= D β+3

λ f(z)

λ+2f(z) ·p(z)−p(z)

2.

Thus

λ+3f(z) Dβλ+2f(z) =

1 p(z)·

p(z)2+λzp′ (z). Then,from (4), we obtain

λ+2F(z) Dβλ+1F(z) =

p(z)2+λzp

(z) + ((a+ 1)λ1)p(z) p(z) + ((a+ 1)λ1) =

=p(z) +λ zp ′

(z)

p(z) + ((a+ 1)λ1), where aC, Rea0, β0, and λ1.

From F(z)CV Hβ,λ(α) we have

p(z) + zp

′ (z)

1

λ(p(z) + ((a+ 1)λ−1))

≺pα(z),

where a C, Rea 0, α > 0, β 0, λ 1, and from her construction, we have Repα(z) >0. In this conditions we have from Theorem 1.1 we obtain

p(z)pα(z)

or

λ+2f(z)

λ+1f(z) ≺pα(z). This means f(z) = LaF(z)CV Hβ,λ(α).

Remark 2.3. If we considerβ =nNin the previously results we obtain

(10)

References

[1] M. Acu and S. Owa, Convex functions associated with some hyperbola, Journal of Approximation Theory and Applications, Vol. 1(2005), (to appear). [2] M. Acu, On a subclass of n-convex functions associated with some hy-perbola, Annals of the Oradea Univ., Fascicola Matematics (2005), (to appear). [3] M. Acu and S. Owa, On n-convex functions associated with some hy-perbola, (to appear).

[4] M. Acu and S. Owa, Note on a class of starlike functions, (to appear). [5] F.M. Al-Oboudi,On univalent funtions defined by a generalized S˘al˘agean operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.

[6] D. Breaz, Operatori integrali pe spat¸ii de funct¸ii univalente, Editura Academiei Romˆane, Bucure¸sti 2004.

[7] E. Dr˘aghici, Elemente de teoria funct¸iilor cu aplicat¸ii la operatori inte-grali univalen’ti, Editura Constant, Sibiu 1996.

[8] P.T. Mocanu, Classes of univalent integral operators, J. Math. Anal. Appl. 157, 1(1991), 147-165.

[9] S. S. Miller and P. T. Mocanu,Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157 - 171.

[10] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297 - 308.

[11] S. S. Miller and P. T. Mocanu,On some classes of first-order differen-tial subordinations, Mich. Math. 32(1985), 185 - 195.

[12] Gr. S˘al˘agean, Subclasses of univalent functions, Complex Analy-sis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

Author: Mugur Acu

University ”Lucian Blaga” of Sibiu Department of Mathematics

Str. Dr. I. Rat.iu, No. 5-7 550012 - Sibiu, Romania

Referensi

Dokumen terkait

Mengingat pentingnya acara dimaksud, dimohon agar rapat dihadiri oleh Direktur Utama/Pimpinan atau wakil yang memperoleh kuasa penuh dari Direktur

Warna biru segabai warna yang dominan dipakai dalam perancangan buku “Melukis kaca” karena segmentasi dari buku ini merupakan anak- anak, yang pada kenyataannya menyukai

Berdasarkan pada hasil analisis SWOT dan melakukan formulasi strategi pengembangan bisnis terhadap usaha Artharaga fitness center, maka pengembangan bisnis yang

Dengan ini diumumkan Pemenang Seleksi Sedehana dengan metode evaluasi biaya terendah untuk paket pekerjaan sebagaimana tersebut diatas sebagai

Madju Warna Steel juga sudah sesuai dengan 10 peran organisasi menurut Mintzberg (dalam Robbins, 2008) yaitu sebagai tokoh utama yaitu melakukan tugas rutin,

Berdasarkan Tabel 3.4 di atas, dapat diketahui bahwa dapat diketahui bahwa nilai korelasi variabel leader member exchange (X 1 ) dan kepuasan terhadap bonus (X 2 )

Dan metode pelatihan terkahir yang digunakan oleh pabrik kecap Wie Sin adalah sesuai dengan metode yang dikemukakan oleh (Dessler, 2003, p.222) yaitu on the job

Maka bersama ini diumumkan bahwa Pelaksana Pekerjaan tersebut adalah sebagai berikut: Nama Perusahaan : CV.. Bumi