• Tidak ada hasil yang ditemukan

getdocc6f2. 73KB Jun 04 2011 12:04:57 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdocc6f2. 73KB Jun 04 2011 12:04:57 AM"

Copied!
6
0
0

Teks penuh

(1)

ELECTRONIC COMMUNICATIONS in PROBABILITY

MOMENT IDENTITIES FOR SKOROHOD INTEGRALS ON THE WIENER

SPACE AND APPLICATIONS

NICOLAS PRIVAULT1

Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong

email: nprivaul@cityu.edu.hk

SubmittedJanuary 27, 2009, accepted in final formFebruary 2, 2009 AMS 2000 Subject classification: 60H07, 60G30.

Keywords: Malliavin calculus, Skorohod integral, Skorohod isometry, Wiener measure, random isometries.

Abstract

We prove a moment identity on the Wiener space that extends the Skorohod isometry to arbitrary powers of the Skorohod integral on the Wiener space. As simple consequences of this identity we obtain sufficient conditions for the Gaussianity of the law of the Skorohod integral and a recurrence relation for the moments of second order Wiener integrals. We also recover and extend the sufficient conditions for the invariance of the Wiener measure under random rotations given in[3].

1

Introduction and notation

In[3], sufficient conditions have been found for the Skorohod integralδ(Rh)to have a Gaussian law whenhH=L2(IR+, IRd)andRis a random isometry ofH, using an induction argument.

In this paper we state a general identity for the moments of Skorohod integrals, which will allow us in particular to recover the result of[3]by a direct proof and to obtain a recurrence relation for the moments of second order Wiener integrals.

We refer to [1]and[4]for the notation recalled in this section. Let (Bt)t∈IR+ denote a standard

IRd-valued Brownian motion on the Wiener space(W,µ)withW=C0(IR+, IRd). For any separable

Hilbert spaceX, consider the Malliavin derivative Dwith values inH = L2(IR+,X⊗IRd), defined

by

DtF= n

X

i=1

1[0,ti](t)∂if(Bt1, . . . ,Btn), t∈IR+, ,

1THE WORK DESCRIBED IN THIS PAPER WAS SUBSTANTIALLY SUPPORTED BY A GRANT FROM CITY UNIVERSITY

OF HONG KONG (PROJECT NO. 7002312).

(2)

forFof the form

F=f(Bt1, . . . ,Btn), (1.1)

f ∈ C∞ b (IR

n,X),t

1, . . . ,tn∈IR+,n≥1. LetIDp,k(X)denote the completion of the space of smooth X-valued random variables under the norm

kukID

p,k(X)=

k

X

l=0

kDlukLp(W,X⊗Hl), p>1,

whereXH denotes the completed symmetric tensor product ofX andH. For all p,q>1 such thatp−1+q−1=1 andk≥1, let

δ:IDp,k(XH)→IDq,k−1(X)

denote the Skorohod integral operator adjoint of

D:IDp,k(X)→IDq,k−1(XH),

with

E[〈F,δ(u)〉X] =E[〈DF,u〉X⊗H], FIDp,k(X), uIDq,k(XH).

Recall thatδ(u)coincides with the Itô integral ofuL2(W;H)with respect to Brownian motion, i.e.

δ(u) =

Z∞

0

utd Bt,

whenuis square-integrable and adapted with respect to the Brownian filtration. Each element ofXHis naturally identified to a linear operator fromHtoX via

(ab)c=a〈b,c〉, abXH, cH.

ForuID2,1(H)we identify Du= (Dtus)s,t∈IR+ to the random operatorDu:HH almost surely

defined by

(Du)v(s) =

Z∞

0

(Dtus)vtd t, s∈IR+, vL2(W;H),

and define its adjointDuonHHas

(Du)v(s) =

Z∞

0

(Dsut)vtd t, s∈IR+, vL2(W;H),

whereDsut denotes the transpose matrix ofDsut in IRd⊗IRd. Recall the Skorohod[2]isometry

E[δ(u)2] =E[〈u,u〉H] +E”trace(Du)2—, uID2,1(H), (1.2)

with

trace(Du)2 = 〈Du,Du〉H⊗H

=

Z∞

0

Z∞

0

〈Dsut,DtusIRdIRddsd t,

and the commutation relation

(3)

2

Main results

First we state a moment identity for Skorohod integrals, which will be proved in Section 3. Theorem 2.1. For any n≥1and uIDn+1,2(H)we have

E[(δ(u))n+1] =

n

X

k=1

n!

(nk)! (2.1)

E

(δ(u))n−k 〈(Du)k−1u,u〉H+trace(Du)k+1+

k

X

i=2

1 i〈(Du)

k−i

u,Dtrace(Du)i H

!

,

where

trace(Du)k+1=

Z∞

0

· · ·

Z∞

0

〈D†

tk−1utk,Dtk−2utk−1· · ·Dt0ut1Dtkut0〉IRd⊗IRdd t0· · ·d tk.

Forn=1 the above identity coincides with the Skorohod isometry (1.2).

In particular we obtain the following immediate consequence of Theorem 2.1. Recall that trace(Du)k= 0,k≥1, when the processuis adapted with respect to the Brownian filtration.

Corollary 2.2. Let n≥1and uIDn+1,2(H)such that〈u,u〉H is deterministic and

trace(Du)k+1+

k

X

i=2

1 i〈(Du)

k−iu,Dtrace(Du)i

H=0, a.s., 1≤kn. (2.2) Then δ(u) has the same first n+1 moments as the centered Gaussian distribution with variance 〈u,u〉H.

Proof. The relationD〈u,u〉=2(Du)ushows that 〈(Dk−1u)u,u〉=〈(Du)k−1u,u〉=1

2〈u,(D

)k−2D〈u,u〉〉=0, k2, (2.3)

when〈u,u〉is deterministic,uID2,1(H). Hence under Condition (2.2), Theorem 2.1 yields

E[(δ(u))n+1] =n〈u,u〉HE”(δ(u))n−1—, and by induction

E[(δ(u))2m] =(2m)!

2mm!〈u,u〉 m

H, 0≤2m≤n+1, andE[(δ(u))2m+1] =0, 02mn, whileE[δ(u)] =0 for alluID

2,1(H). ƒ

We close this section with some applications. 1. Random rotations

As a consequence of Corollary 2.2 we recover Theorem 2.1-b) of [3], i.e. δ(Rh) has a centered Gaussian distribution with variance 〈h,h〉H when u = Rh, hH, and R is a random mapping with values in the isometries of H, such that Rh ∈ ∩p>1IDp,2(H) and

trace(DRh)k+1=0,k1. Note that in[3]the conditionRh∈ ∩

(4)

2. Second order Wiener integrals

when f2is decomposed as

f2= in a complete orthonormal basis(hk)k∈INofH. Letting

g(2k+1)(s,t) = hence Theorem 2.1 yields the recurrence relation

E[(I2(f2))n+1] =

for the computation of the moments of second order Wiener integrals, by polarisation of

(I2(f2))n−kI2(g (n−k+1)

(5)

3

Proofs

In the sequel, all scalar products will be simply denoted by〈·,·〉.

We will need the following lemma.

(6)

= trace(Du)k+1+

k−2

X

i=0

1 ki〈(Du)

iu,Dtrace(Du)k−i〉.

ƒ

Proof of Theorem 2.1. We decompose

E[(δ(u))n+1] =E[〈u,D(δ(u))n] =nE[(δ(u))n−1〈u,Dδ(u)] =

n

X

k=1

n!

(nk)!

€

E”(δ(u))n−k(Du)k−1u,Dδ(u)—

−(nk)E”(δ(u))n−k−1(Du)ku,Dδ(u)—Š

,

as a telescoping sum and then apply Lemma 3.1, which yields (2.1). ƒ

References

[1] D. Nualart.The Malliavin calculus and related topics. Probability and its Applications. Springer-Verlag, Berlin, second edition, 2006. MR2200233

[2] A.V. Skorokhod. On a generalization of a stochastic integral.Theor. Probab. Appl., XX:219–233, 1975.

[3] A.S. Üstünel and M. Zakai. Random rotations of the Wiener path.Probab. Theory Relat. Fields, 103(3):409–429, 1995. MR1358084

Referensi

Dokumen terkait

Sebagai seorang kuasa hukum yang menjadi tujuan utama yang ingin dicapai bukan hanya untuk menang dalam persidangan, tetapi sebagai kuasa hukum yang baik tidak dapat membuat

Berdasarkan hasil analisis data dan pemba- hasan yang telah diurai, maka dapat diambil kesimpulan bahwa variabel PDRB di kota DIY pada tahun 2006-2012 dipengaruhi oleh Pena-

[r]

Social legitimacy, which derives from historical legacy of women’s employment, a country’s integra- tion into global economy, women’s rural-urban mobility, and their education level,

Because the Sig F (p-value) is much smaller than 0.05, this regression model reflects that independent variables (sensory experience, emotional experience, and

Bentuk yang sebenarnya hampir sama dengan dua gagasan yang dilakukan oleh gerakan Islam Liberal dan Pemberlakuan Syariah Islam adalah yang dilakukan oleh kelompok masyarakat desa

Zainal Abidin Munawwir, fakta ini menggambarkan bahwa sikap maupun dukungan politik pesantren pada sebuah partai politik tertentu, tidak selalu paralel dengan dukungan masyarakat

[r]