A GENERALIZED LAGRANGE IDENTITY AND
CAUCHY-BUNIAKOVSKY INEQUALITY
by
Hacene Belbachir
Abstract.The purpose of this Note is to give an extension to the Lagrange identity [1] and [2], and then an extension to the Cauchy-Bouniakovsky inequality, since the right hand side is positive. Finally, we give an application to polynomials.
1. Principal result
Let a1,...,as;b1,...,bs∈; and
(
∑
)(
∑
)
∑
+− +−= 
    −
= m m k k k m k
k
k
m a b a b
k m
M 1 1
0
2 ( 1)
where
∑
akbm+1−k means∑
== +−
s i i
k m i k ib
a
1 1
Theorem. generalized Lagrange identity
     
= +
−
− = −
=
∑
∑
< <
r m b
a b a b a b a
r m b
a b a
j i
i j j i r i j j i j i
r i j j i
m
2 for )
( ) (
1 2 for )
(
M
2 2
2
Corollary. Generalized Cauchy-Buniakovsky inequality
) 1 2 for
( ;
0
M2;2r−1 ≥ ∀ai bj ∈ℜ m= r−
Remark. For m=2r, we deduce the sign of M2;m If aibj ≥i& j then M2;m ≥0:
If aibj ≤i& j then M2;m ≤0: Pour m=1;2;3;4;...on a:
( )( )
(
)
Lagrange IdentityM2;1=
∑
ai2∑
bi2 −∑
aibi 2 → :( )( ) (
∑
∑
−∑
)(
∑
)
( )( ) (
∑
∑
+∑
) (
−∑
)(
∑
)
= 4 4 2 2 2 3 3
3 ;
2 3 4
M ai bi aibi aibi aibi
( )( ) (
∑
∑
+∑
)(
∑
)
−(
∑
)(
∑
)
= 5 5 3 2 2 3 4 4
4 ;
2 2 3
M ai bi aibi aibi aibi aibi
M
2. Proof of the theorem
We have
( )
∑
∑
∑
∑
∑
∑
     − + + 
     −
= + + ab a b
m m ab
b a m b
am m m m m m m
m 1
1
M2; 1 1 L
1) if m=2r−1
( )
−( )(
)(
)
++
=
∑
∑
∑
−∑
∑
=
− −
− −
1
1
2 2
1 2 2
2 2
;
2 1
M
r
k
k r k k k r r
k k r
r
r a b a b a b
( )
( )(
∑
)
∑
−( )
( )(
∑
)(
∑
)
+ =
− −
−
− + −
−
+ 2 1
1
2 2
1 2 2
1
2 1
1
r
r k
k r k k k r r
k k r
r r
k
r a b a b a b
( )
−( )(
)(
)
++
=
∑
∑
∑
−∑
∑
=
− −
− 1
1
2 2
1 2 2
2 r 1
k
k r k k k r r
k k r
r b a b a b
a
( )
( )(
∑
)
∑
−( )
( )(
∑
)(
∑
)
=
− −
− −
− + −
−
+ 1
1
2 2
1 2 2 2
1
2 1
1
r
l
l r l l l r r
l r l r
r r
k
r a b a b a b
( )
{
( ) ( )
}(
)(
)
+  
  
+ −
+
=
∑
∑
∑
−∑
∑
=
− −
− − −
1
1
2 2
1 2
2 1 2 2
2 r 1
k
k r k k k r r
k r r
k k r
r b a b a b
a
( )
( )(
2 1)
21 −
∑
−
+ r r r
r
k a b
( )
( )(
)(
)
( )
( )(
2)
21
1
2 2
2 2
2 1
2 1
1
∑
∑
∑
∑
∑
∑
+ −  
  
− +
= −
=
−
− r r r
k k r
k
k r k k k r r
k k r
r b a b a b a b
a
( )
( )
( ) ( )
( )
( )
( ) ( )
∑ ∑
   
− +     
  
−
= −
=
−
j i
r i j r j i r k r r
k
k i j k r j i r k
k a b a b a b a b
;
2 1
0
2
2 1
2 1 1
( )
( ) (
)
( )
( ) (
)
+   
    
  
− +
−
=
∑ ∑
∑
< −
=
−
=
− −
j i
r
k
r
k
k j i k r i j r k k
i j k r j i r
k a b a b a b ab
1
0
1
0
2 2
2 2
( )
( ) (
)
( )
( ) (
)
  − + −
+ r
i j r j i r k r i j r j i r
k ab a b 2 ab a b
2
2 1
( )( ) (
)
( )( ) (
)
+  
  
 − + −
=
∑ ∑
< − =
−
j i
r
k
r i j r j i r r k i j k r j i r
k ab a b ab a b
1
0
2 2
2
2 1
( )
( ) (
)
    −
+
∑
+ =
− r
r l
r j i l j i r
l ab a b
2
1
1 2 2
(
)
∑
< − =j i
r i j j
ib a b
a 2
2) if m=2r
( )
−( )(
)(
)
++
=
∑
∑
∑
∑
∑
=
+ − +
− +
+ r
k
k r k k k r r
k k r
r
r a b a b a b
1
1 2 1
2 2
1 2 1 2 2
;
2 1
M
( )
( )(
∑
)(
∑
)
∑
− + − ++ =
−
−
+
2 1 2 12
1
1 2
1
r k k k r kr
r k
r k k
b
a
b
a
( )
−
( )(
)(
)
+
+
=
∑
∑
∑
∑
∑
=
+ − +
− +
+ r
k
k r k k k r r
k k r
r
b
a
b
a
b
a
1
1 2 1
2 2
1 2 1 2
1
( )
( )
(
∑
)(
∑
)
∑
−+ −++
= −+
+
−
+ 2 1 2 1
1
2 1 2 1
1 r l l l r l
r
r k
r l r l
b a b a
( )
{
( )
( )
}
(
∑
)(
∑
)
∑
∑
∑
− + − += −+
+
+ + − −
= 2 1 2 1
1
2 1 2 2 1
2 1
2 r 1 r k k k r k k
r l r r k k r
r b a b a b
a
We remark that
( )
2( )
22 1( )
2 11 2
1 ) (
2 +
+
− = −+ +
− r
k r
l r r k
r k r
; witch gives:
( )
( )(
∑
)(
∑
)
∑
− + − +=
+
+ + − −
= 2 1 2 1
0
1 2 2
; 2
1 2
1 ) ( 2 1
M r k k k r k
r
k
r k k
r a b a b
r k r
( )
( )
( ) ( )
∑ ∑
   
+ + − −
=
=
+ − +
j i
r
k
k i j k r j i r
k k
b a b
a r
k r
; 0
1 2 1
2 1 2
The transposition of i& j; gives:
( )
( ) (
)
∑ ∑
< = + − +    + − + + − = j i r k k i j k r j i r k
r ab a b
r k r 0 1 2 1 2 2 ; 2 1 2 1 ) ( 2 M
( )
( ) (
)
    − + + − +∑
= + − + r k k j i k r i j rk a b ab
r k r 0 1 2 1 2 1 2 1 ) ( 2
( )( ) (
)
∑ ∑
< = + − +
−
+
+
+
−
=
j i r k k i j k r j i r kr
a
b
a
b
r
k
r
0 1 2 1 2 2 ; 21
2
1
)
(
2
M
( )( ) (
−
)
+
+
−
−
+
∑
+ = + − + r r l l r j i l i j rl
a
b
a
b
r
l
r
2 1 1 2 1 21
2
1
)
(
2
( )( ) (
)
∑ ∑
< =+ + − +
−
+
+
−
=
j i r k k i j k r j i rk
a
b
a
b
r
k
r
1 2 0 1 2 1 21
2
1
)
(
2
let
p
=
a
jb
i &q
=
−
a
ib
j, we have:( )
∑ ∑
< =+ + − +        + + − = j i r k k k r r k
r p q
r k r 1 2 0 1 2 1 2 2 ; 2 1 2 1 ) ( 2 M
( )
( )
∑ ∑
< =+ + − +∑
=+ + − +
+
−
+
+
−
=
j i r k r k k k r r k k k r rk
k
p
q
r
q
p
r
k
r
1 2 0 1 2 1 1 2 1 2 1 2 1 21
2
1
2
1
)
(
2
( )
( )
∑ ∑
< =+∑
=+ − +− + − +
+
+
−
=
j i r k r k k k r r k k k r rk
k
p
q
r
r
q
p
1 2 0 1 2 1 1 2 2 1 1 2 1 21
)
1
2
(
2
(
)
( )
∑
< +∑
= − +
+
−
=
j i r l l l r r l rq
p
k
q
p
2 1 1 2 2 1 22
(
)
(
)
{
}
∑
< + + − += j i r r q p q q
p 2 1 2 2
(
) (
)
{
}
∑
< − += j i j i i j r j i i
jb ab a b a b
3. Application to polynomials.
Let P( ) ( )
1
∏
= −= n
i x i
x
µ
and∑
=
= n
i n n
T
1 1
µ ( µi is the module of µi) : For
p i i
x
=
µ
&y
i=
µ
i q we have( ) ( ) 0
) 1
( 1 1
0
≥ 
    
− + +− + +−
=
∑
kp m k q kq m k pm
k
k T T
k m
This inequality is true for all p and q such that kp+(m+1-k)q & kq+(m+1-k)p are integers.
We have the following relations for m = 1; 2; 3; 4; 5;…
0 1
m= → T2pT2q −Tp2+q ≥
0 2
2
m= → T3pT3q − T2p+qTp+2q ≥
0 2
4 3
m= → T4pT4q − T3p+qTp+3q + T22p+2q ≥
0 3
2 4
m= → T5pT5q + T3p+2qT2p+3q − T4p+qTp+4q ≥
0 10
6 15
5
m= → T6pT6q + T4p+2qT2p+4q − T5p+qTp+5q − T32p+3q ≥
M
References:
[1] Hardy G.H., Littlewood J.E., Polya G., Inequalities. Cambridge Univ. Press,1952.
[2] Mitrinovitch P.S.,Vasic P.M., Analytic Inequalities. Springer Verlag, 1970.
Author:
Hacene Belbachir - U.S.T.H.B./Faculte de Mathematiques, El Alia, B.P. 32,