• Tidak ada hasil yang ditemukan

Belbachir1 . 47KB Jun 04 2011 12:08:24 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "Belbachir1 . 47KB Jun 04 2011 12:08:24 AM"

Copied!
5
0
0

Teks penuh

(1)

A GENERALIZED LAGRANGE IDENTITY AND

CAUCHY-BUNIAKOVSKY INEQUALITY

by

Hacene Belbachir

Abstract.The purpose of this Note is to give an extension to the Lagrange identity [1] and [2], and then an extension to the Cauchy-Bouniakovsky inequality, since the right hand side is positive. Finally, we give an application to polynomials.

1. Principal result

Let a1,...,as;b1,...,bs∈; and

(

)(

)

+− +−

= 

    −

= m m k k k m k

k

k

m a b a b

k m

M 1 1

0

2 ( 1)

where

akbm+1−k means

=

= +−

s i i

k m i k ib

a

1 1

Theorem. generalized Lagrange identity

     

= +

− = −

=

< <

r m b

a b a b a b a

r m b

a b a

j i

i j j i r i j j i j i

r i j j i

m

2 for )

( ) (

1 2 for )

(

M

2 2

2

Corollary. Generalized Cauchy-Buniakovsky inequality

) 1 2 for

( ;

0

M2;2r1 ≥ ∀ai bj ∈ℜ m= r

Remark. For m=2r, we deduce the sign of M2;m If aibji& j then M2;m ≥0:

If aibji& j then M2;m ≤0: Pour m=1;2;3;4;...on a:

( )( )

(

)

Lagrange Identity

M2;1=

ai2

bi2 −

aibi 2 → :

( )( ) (

)(

)

(2)

( )( ) (

+

) (

)(

)

= 4 4 2 2 2 3 3

3 ;

2 3 4

M ai bi aibi aibi aibi

( )( ) (

+

)(

)

(

)(

)

= 5 5 3 2 2 3 4 4

4 ;

2 2 3

M ai bi aibi aibi aibi aibi

M

2. Proof of the theorem

We have

( )

     − + + 

     −

= + + ab a b

m m ab

b a m b

am m m m m m m

m 1

1

M2; 1 1 L

1) if m=2r−1

( )

( )(

)(

)

+

+

=

=

− −

− −

1

1

2 2

1 2 2

2 2

;

2 1

M

r

k

k r k k k r r

k k r

r

r a b a b a b

( )

( )(

)

( )

( )(

)(

)

+ =

− −

+

+ 2 1

1

2 2

1 2 2

1

2 1

1

r

r k

k r k k k r r

k k r

r r

k

r a b a b a b

( )

( )(

)(

)

+

+

=

=

− −

− 1

1

2 2

1 2 2

2 r 1

k

k r k k k r r

k k r

r b a b a b

a

( )

( )(

)

( )

( )(

)(

)

=

− −

− −

+

+ 1

1

2 2

1 2 2 2

1

2 1

1

r

l

l r l l l r r

l r l r

r r

k

r a b a b a b

( )

{

( ) ( )

}(

)(

)

+

  

  

+ −

+

=

=

− −

− − −

1

1

2 2

1 2

2 1 2 2

2 r 1

k

k r k k k r r

k r r

k k r

r b a b a b

a

( )

( )(

2 1

)

2

1 −

+ r r r

r

k a b

( )

( )(

)(

)

( )

( )(

2

)

2

1

1

2 2

2 2

2 1

2 1

1

+ −

  

  

− +

= −

=

r r r

k k r

k

k r k k k r r

k k r

r b a b a b a b

a

( )

( )

( ) ( )

( )

( )

( ) ( )

∑ ∑



   

− +     

  

= −

=

j i

r i j r j i r k r r

k

k i j k r j i r k

k a b a b a b a b

;

2 1

0

2

2 1

2 1 1

(3)

( )

( ) (

)

( )

( ) (

)

+ 

  

    

  

− +

=

∑ ∑

< −

=

=

− −

j i

r

k

r

k

k j i k r i j r k k

i j k r j i r

k a b a b a b ab

1

0

1

0

2 2

2 2

( )

( ) (

)

( )

( ) (

)

 

+

+ r

i j r j i r k r i j r j i r

k ab a b 2 ab a b

2

2 1

( )( ) (

)

( )( ) (

)

+ 

 

  

+

=

∑ ∑

< − =

j i

r

k

r i j r j i r r k i j k r j i r

k ab a b ab a b

1

0

2 2

2

2 1

( )

( ) (

)

    −

+

+ =

r

r l

r j i l j i r

l ab a b

2

1

1 2 2

(

)

< − =

j i

r i j j

ib a b

a 2

2) if m=2r

( )

( )(

)(

)

+

+

=

=

+ − +

− +

+ r

k

k r k k k r r

k k r

r

r a b a b a b

1

1 2 1

2 2

1 2 1 2 2

;

2 1

M

( )

( )(

)(

)

− + − +

+ =

+

2 1 2 1

2

1

1 2

1

r k k k r k

r

r k

r k k

b

a

b

a

( )

( )(

)(

)

+

+

=

=

+ − +

− +

+ r

k

k r k k k r r

k k r

r

b

a

b

a

b

a

1

1 2 1

2 2

1 2 1 2

1

( )

( )

(

)(

)

−+ −+

+

= −+

+

+ 2 1 2 1

1

2 1 2 1

1 r l l l r l

r

r k

r l r l

b a b a

( )

{

( )

( )

}

(

)(

)

− + − +

= −+

+

+ +

= 2 1 2 1

1

2 1 2 2 1

2 1

2 r 1 r k k k r k k

r l r r k k r

r b a b a b

a

We remark that

( )

2

( )

22 1

( )

2 1

1 2

1 ) (

2 +

+

− = −+ +

r

k r

l r r k

r k r

; witch gives:

( )

( )(

)(

)

− + − +

=

+

+ + − −

= 2 1 2 1

0

1 2 2

; 2

1 2

1 ) ( 2 1

M r k k k r k

r

k

r k k

r a b a b

r k r

( )

( )

( ) ( )

∑ ∑



   

+ + − −

=

=

+ − +

j i

r

k

k i j k r j i r

k k

b a b

a r

k r

; 0

1 2 1

2 1 2

(4)

The transposition of i& j; gives:

( )

( ) (

)

∑ ∑

< = + − +

    + − + + − = j i r k k i j k r j i r k

r ab a b

r k r 0 1 2 1 2 2 ; 2 1 2 1 ) ( 2 M

( )

( ) (

)

    − + + − +

= + − + r k k j i k r i j r

k a b ab

r k r 0 1 2 1 2 1 2 1 ) ( 2

( )( ) (

)

∑ ∑

< = + − +

+

+

+

=

j i r k k i j k r j i r k

r

a

b

a

b

r

k

r

0 1 2 1 2 2 ; 2

1

2

1

)

(

2

M

( )( ) (

)

+

+

+

+ = + − + r r l l r j i l i j r

l

a

b

a

b

r

l

r

2 1 1 2 1 2

1

2

1

)

(

2

( )( ) (

)

∑ ∑

< =+ + − +

+

+

=

j i r k k i j k r j i r

k

a

b

a

b

r

k

r

1 2 0 1 2 1 2

1

2

1

)

(

2

let

p

=

a

j

b

i &

q

=

a

i

b

j, we have:

( )

∑ ∑

< =+ + − +

        + + − = j i r k k k r r k

r p q

r k r 1 2 0 1 2 1 2 2 ; 2 1 2 1 ) ( 2 M

( )

( )

∑ ∑

< =+ + − +

=+ + − +

+

+

+

=

j i r k r k k k r r k k k r r

k

k

p

q

r

q

p

r

k

r

1 2 0 1 2 1 1 2 1 2 1 2 1 2

1

2

1

2

1

)

(

2

( )

( )

∑ ∑

< =+

=+ − +

− + − +

+

+

=

j i r k r k k k r r k k k r r

k

k

p

q

r

r

q

p

1 2 0 1 2 1 1 2 2 1 1 2 1 2

1

)

1

2

(

2

(

)

( )

< +

= − +

+

=

j i r l l l r r l r

q

p

k

q

p

2 1 1 2 2 1 2

2

(

)

(

)

{

}

< + + +

= j i r r q p q q

p 2 1 2 2

(

) (

)

{

}

< − +

= j i j i i j r j i i

jb ab a b a b

(5)

3. Application to polynomials.

Let P( ) ( )

1

= −

= n

i x i

x

µ

and

=

= n

i n n

T

1 1

µ ( µi is the module of µi) : For

p i i

x

=

µ

&

y

i

=

µ

i q we have

( ) ( ) 0

) 1

( 1 1

0

≥ 

    

− + +− + +−

=

kp m k q kq m k p

m

k

k T T

k m

This inequality is true for all p and q such that kp+(m+1-k)q & kq+(m+1-k)p are integers.

We have the following relations for m = 1; 2; 3; 4; 5;…

0 1

m= → T2pT2qTp2+q

0 2

2

m= → T3pT3qT2p+qTp+2q

0 2

4 3

m= → T4pT4qT3p+qTp+3q + T22p+2q

0 3

2 4

m= → T5pT5q + T3p+2qT2p+3qT4p+qTp+4q

0 10

6 15

5

m= → T6pT6q + T4p+2qT2p+4qT5p+qTp+5qT32p+3q

M

References:

[1] Hardy G.H., Littlewood J.E., Polya G., Inequalities. Cambridge Univ. Press,1952.

[2] Mitrinovitch P.S.,Vasic P.M., Analytic Inequalities. Springer Verlag, 1970.

Author:

Hacene Belbachir - U.S.T.H.B./Faculte de Mathematiques, El Alia, B.P. 32,

Referensi

Dokumen terkait

Berdasarkan surat penetapan hasil evaluasi administrasi dan teknis seleksi umum jasa2. konsultansi nomor : 602.1/ 15/ PAN-KONS.2/ PPL-2/ EPROC/ DI STAKO/ V/ 2012 tanggal

Bila dibandingkan dengan bahan-bahan yang lain, tempurung kelapa merupakan bahan terbaik yang dapat dibuat menjadi karbon aktif karena karbon aktif yang terbuat dari tempurung

B. Kandang tikus dan tikus yang dipilih secara acak C.. Curcuminoid diberikan ke tikus melalui NGT E. Tulang temporal tikus dalam buffer formalin 10% G. Blok

Contoh kekerasan rasial dapat berupa cercaan atau perkataan yang bersifat negatif berdasarkan warna kulit atau asal keturunan; gambar-gambar yang rasis grafiti, atau materi

[r]

Kepada para penyedia jasa pekerjaan konstruksi yang berkeberatan atas penetapan ini diberikan kesempatan untuk mengajukan sanggahan secara tertulis melalui

Pokja Unit Layanan Pengadaan (ULP) Kantor Unit Penyelenggara Pelabuhan Kelas III Bawean akan melaksanakan Lelang Pemilihan Langsung dengan Pascakualifikasi Metode Sistem

Unit Layanan Pengadaan Bar ang/ Jasa pada Lembaga Pener bangan dan Antar iksa Nasional (LAPAN) akan melaksanakan Pelelangan Seder hana dengan pascakualifikasi untuk