• Tidak ada hasil yang ditemukan

getdoc11c3. 134KB Jun 04 2011 12:04:06 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "getdoc11c3. 134KB Jun 04 2011 12:04:06 AM"

Copied!
8
0
0

Teks penuh

(1)

in PROBABILITY

ASYMPTOTIC CONSTANTS FOR MINIMAL DISTANCE IN THE

CEN-TRAL LIMIT THEOREM

EMMANUEL RIO

UMR 8100 CNRS, Université de Versailles Saint Quentin en Y, Bât. Fermat, 45 Avenue des Etats Unis, 78035 Versailles Cedex France

email: rio@math.uvsq.fr

SubmittedSeptember 22, 2010, accepted in final formDecember 20, 2011 AMS 2000 Subject classification: 60F05

Keywords: Minimal metric, Wasserstein distance, Cornish-Fisher expansion of first order, Esseen’s mean central limit theorem, Global central limit theorem

Abstract

In this paper, we generalize the asymptotic result of Esseen (1958) concerning the Wasserstein distance of order one in the mean central limit theorem to the Wasserstein distances of orderrfor rin]1, 2].

1

Introduction and main results.

In this paper we continue the research started in Rio (2009), concerning the Wasserstein distances in the central limit theorem. Let Ω be a probability space, rich enough to generate the set of probability laws on IR×IR. Letdbe a pseudodistance on the set of real-valued random variables, such that d(X,Y)depends only on the law of (X,Y). Then, according to Paul Lévy (see Note B in Fréchet (1950) for this fact) the minimal distance dˆ associated to d is defined by d(ˆ µ,ν) = inf{d(X,Y) : Xµ,Yν}, where the infimum is taken over all random vectors(X,Y)with respective marginal laws µandν. When E=IR, r≥1 and d(X,Y) =kXYkr, we denote by Wr the so defined minimal distance on the spaceMr of probability laws with a finite absolute moment of orderr. This distance is usually called Wasserstein distance of orderr. The distances Wr are homogeneous of degree 1.

Throughout the paper, X1,X2, . . . is a sequence of independent and identically distributed real-valued random variables with mean zero and finite positive variance. We setSn=X1+X2+· · ·+Xn andvn=VarSn. We denote byµnthe law of v−1/2

n Snand byγvthe normal law with mean 0 and variancev. In a recent paper, Rio (2009) proved that, forrin[1, 2],

(1.1) lim sup

n→∞ p

nWr(µn,γ1)<

as soon as IE(|X1|r+2)<∞. An interesting problem is then to find the limit in (1.1). LetFndenote the distribution function of µn andΦ denote the distribution function of the standard normal.

(2)

Esseen (1958) proved that

(1.2) lim

n→∞ p

nkFnΦkp=Ap(µ1),

whereAp(µ1)is some nonnegative explicit constant. In the specific casep=1,

kFnΦk1=W1(µn,γ1).

Consequently Esseen’s result gives the asymptotic constant in (1.1) forr =1. Zolotarev (1964) provided the following representation. LetY andU be independent random variables, with re-spective distributions the standard normal law and the uniform law over[1/2, 1/2]. Then

A1(µ1) =k(α3/6)(1−Y2) + (h)Uk1,

whereσis the standard deviation ofX1,α3=σ−3IE(X13)andhis the span of the distribution of X1for lattice distributions and 0 otherwise. Forr>1, it is known since a long time (cf. Dall’Aglio (1956) and Fréchet (1957) for more about this) that

(1.3) Wr(µn,γ1) =kFn−1−Φ− 1

kr,

and consequentlyWr(µn,γ1)6=kFnΦkr in general. In the next two theorems we describe the asymptotic behaviour ofWr(µn,γ1)asntends to, forrin[1, 2]. As for r=1, this behaviour depends on whether or notX1has a lattice distribution.

Theorem 1.1. LetY be a random variable with standard normal law. Setα3= (IE(X2 1))−

3/2IE(X3 1).

Letrbe any real in]1, 2]. If the distribution ofX1is not a lattice distribution and ifIE(|X1|r+2)<

∞, then

lim n→∞n

1/2W

r(µn,γ1) = (|α3|/6)k1−Y2kr.

We now state the results for lattice distributions. We will consider either smoothed sums or un-smoothed sums. For lattice distributions taking values in the arithmetic progression{a+kh:k ZZ}(hbeing maximal), the smoothed sums ¯Snare defined by

¯

Sn=Sn+hU,

whereUis a random variable with uniform distribution over[1/2, 1/2], independent ofSn. We denote by ¯µn the law of vn1/2S¯n. Theorem 1.2 gives the asymptotic constants for smoothed or unsmoothed sums.

Theorem 1.2. LetX1,X2, . . .be centered and independent identically distributed lattice random variables with varianceσ2, taking values in the arithmetic progression{a+kh:kZZ}(hbeing

maximal). LetY andUbe two independent random variables, with respective laws the standard

normal law and the uniform law over [1/2, 1/2]. Let r be any real in]1, 2]. Assume that

IE(|X1|r+2)<∞. Then

(a) lim

n→∞n

1/2W

rµn,γ1) = (|α3|/6)k1−Y2kr

and

(b) lim

n→∞n

1/2W

(3)

Remark 1.1. The constants appearing here are represented as in Zolotarev (1964), and conse-quently (b) still holds forr=1. Proceeding as in Esseen (1958) one can prove that (a) is true in the case r=1.

In the specific caser=2, the asymptotic constant can be computed more explicitely. Let us state the corresponding result.

Corollary 1.3. LetX1,X2, . . .be centered and independent identically distributed lattice random variables with varianceσ2and finite moment of order4, taking values in the arithmetic

progres-sion{a+kh:kZZ}(hbeing maximal). Then, with the same notations as in Theorems 1.1 and

1.2,

lim n→∞n

1/2W

2(µn,γ1) = 1 6

Æ

3(h)2+2α2 3.

Remark 1.1. In the non lattice case, as shown by Theorem 1.1, the above result holds withh=0.

Example 1: symmetric sign.Assume that the random variables are symmetric signs, that is IP(X1=

1) =IP(X1=1) =1/2. In that caseh=2,σ=1 andα3=0. Then the asymptotic constant in Corollary 1.3 is 1/p3.

Example 2: Poisson distribution. Letλ >0 and assume thatX1+λhas the Poisson distribution

P(λ). Then h= 1, σ2 = λ andα3 = λ−1/2. In that case Corollary 1.3 gives the asymptotic constant 1

6(5) 1/2.

2

Non lattice distributions or lattice distributions and smoothed

sums.

In this section, we prove Theorem 1.1. for non lattice distributions and Theorem 1.2(a) for lattice distributions and smoothed sums. Dividing the random variables by the standard deviation ofX1, we may assume that the random variablesX1,X2, . . . satisfy IE(X12) =1. Let ¯Fndenote the distri-bution function of ¯µn. The first step is the result below of pointwise convergence, which is known as the Cornish-Fisher expansion. As pointed in Hall (1992, Theorem 2.4 and final comments to Chapter 2), the Cornish-Fisher expansion of first order does not need the Cramer condition. To be exhaustive, we give a proof of this result

Lemma 2.1. Ifµ1is not a lattice distribution, then, for anyuin]0, 1[,

(a) pn(Fn−1(u)Φ−1(u)) = α3 6 (Φ

−1(u))2

−1 +o(1),

asntends to. Ifµ1is a lattice distribution, then

(b) pn(F¯−1

n (u)−Φ−

1(u)) = α3 6 (Φ

−1(u))21 +o(1).

Furthermore the convergence in (a) and (b) are uniform on[δ, 1δ], for any positiveδ.

Proof of Lemma 2.1. Let φ = Φ′ denote the density of the standard normal. We start from Esseen’s (1945) estimates

(2.1) Fn(x) = Φ(x) +

α3 6 (1−x

(4)

which holds true for non lattice distributions, and

(2.2) F¯n(x) = Φ(x) +α3 6 (1−x

2)φ(x)n−1/2+o(n−1/2),

which holds true for lattice distributions. Moreover these estimates hold uniformly inxasntends to. Let

Ψ(x) = Φ(x) +α3 6 (1−x

2)φ(x)n−1/2andQ(u) = Φ−1(u) +α3 6 ((Φ

−1(u))2

−1)n−1/2.

We start by proving that, for any positiveA, uniformly inxover[A,A], (2.3) Q(Ψ(x)) =x+O(1/n).

First

sup x∈IR|

1x2|φ(x) = (2π)−1/2.

Fornlarge enough,Ψ(x)lies in[Φ(2A),Φ(2A)]for anyxin[A,A]. Then, by the Taylor formula at order 2 applied atΦ(x)with the increment α3

6(1−x

2)φ(x)n−1/2,

|Φ−1(Ψ(x))xα3 6 (1−x

2)n−1/2

| ≤ α

2 3

72πnu∈[Φ(−sup2A),Φ(2A)]|

(Φ−1)′′(u)|.

Now

(Φ−1)′′(u) = Φ−1(u)(φ−1(u)))−2.

Hence

sup u∈[Φ(−2A),Φ(2A)]|

(Φ−1)′′(u)|= sup

x∈[0,2A]

(x2(x)) =2A2(2A)<,

which ensures that, uniformly inxover[A,A], (2.4) Φ−1(Ψ(x)) =x+α3

6 (1−x

2)n−1/2+O(1/n). Now, uniformly inxover[A,A],

Q(Ψ(x)) = Φ−1(Ψ(x)) +α3 6 ((Φ

−1(Ψ(x)))2

−1)n−1/2

=x+α3 6(1−x

2)n−1/2+O(1/n) +α3 6(x

2

−1)n−1/2+O(1/n) by (2.4) applied twice. The estimate (2.3) follows.

Starting from (2.1), we now prove Lemma 2.1(a). The proof of Lemma 2.1(b) (omitted) can be done exactly in the same way, starting from (2.2). From (2.1), fornlarge enough, Fn(x)lies in [Φ(2A),Φ(2A)]for anyxin[A,A]. Then, by (2.1) again and the Rolle theorem

Q(Fn(x))−Q(Ψ(x)) =o(n−1/2)

uniformly inx over[A,A]. Consequently, by (2.3), there exists some sequence(ǫn)nof positive reals converging to 0 such that

(5)

for any xin[A,A]. It follows that

(2.5) |Fn−1(u)Q(Fn(Fn−1(u)))| ≤n−1/2ǫn,

provided thatFn−1(u)lies in[A,A]. By (2.1) again this condition holds true fornlarge enough ifu belongs to[Φ(A/2),Φ(A/2)]. The estimate (2.1) also implies that the jumps ofFnare uniformly bounded byo(n−1/2). Hence

sup u∈]0,1[|

Fn(Fn−1(u))u|=o(n−1/2),

which ensures that

(2.6) sup

u∈[Φ(−A/2),Φ(A/2)]|

Q(Fn(F−1

n (u)))−Q(u)|=o(n− 1/2).

Finally, by (2.5) and (2.6), Lemma 2.1(a) holds true withδ= Φ(A/2).

Proof of Theorem 1.1. Recall that, for lawsµandνwith respective distribution functionsF and G,Wr(µ,ν) =kF−1G−1kr. Now, by Lemma 2.1, for any positiveδ,

lim n→∞n

r/2 Z1−δ

δ

|Fn−1(u)Φ−1(u)|rdu= |α3|/6r Z1−δ

δ

|Φ−1(u))21|rdu

and

lim n→∞n

r/2 Z1−δ

δ

|F¯n−1(u)Φ−1(u)|rdu= |α3|/6 r

Z1−δ

δ

|Φ−1(u))21|rdu.

SinceΦ−1(u)has the standard normal distribution under the Lebesgue measure over[0, 1], The-orem 1.1 will follow from the above inequality if we prove that, forN large enough,

(2.7a) lim

δց0supnN

nr/2 Z1

0

1inf(u,1u)<δ|Fn−1(u)−Φ−

1(u)|rdu=0

and

(2.7b) lim

δց0supnN

nr/2 Z1

0

1inf(u,1u)<δ|F¯n−1(u)−Φ−

1(u)|rdu=0.

Now|F−1

n (u)−F¯n−1(u)| ≤n−1

/2h, which ensures that

lim

δց0 supn>0

nr/2 Z1

0

1inf(u,1u)<δ|F¯n−1(u)−F¯− 1 n (u)|

rdu=0.

Hence (2.7b) follows from (2.7a) via the triangle inequality. The proof of (2.7a) will be done via Theorem 6.1 in Rio (2009), which is based on estimates of Borisov, Panchenko and Skilyagina (1998) for smooth functions ofSn. ForF andGdistribution functions on the real line, let

κr,2(F,G) = Z1

0

(6)

Theorem 6.1 in Rio (2009) states that, ifnr/2≥IE(|X1|r+2)(recallX1has unit variance), then

κr,2(Fn,Φ)C nr/2IE(|X1|r+2) for some positive constantCdepending only onr. Now

Z1

0

1inf(u,1u)<δ|Fn−1(u)−Φ−

1(u)|rdu 4

1+ (Φ−1(δ))2κr,2(Fn,Φ).

Hence, forN= (IE(|X1|r+2))2/r,

sup nN

nr/2 Z1

0

1inf(u,1u)<δ|Fn−1(u)−Φ− 1(u)

|rdu 4CIE(|X1| r+2)

1+ (Φ−1(δ))2,

which implies (2.7a). Hence Theorem 1.1 holds true.

3

Lattice distributions.

In this section we prove Theorem 1.2(b). Again we may assume thatσ2=1. Let

n(t) =n1/2(Fn−1(t)−Φ− 1(t)).

From (2.7a), it is enough to prove that, for anyδin]0, 1/2[,

(3.1) lim n→∞

Z1−δ

δ

|∆n(t)|rdu= Z1

0 Z1−δ

δ

|(α3/6)(1− |Φ−1(t)|2) +huh/2|rdud t.

In order to prove (3.1) we will use Lemma 2.1(b). For any distribution functionF and any real x, letF(x0) =limtxF(t). Letx0be the smallest number in the lattice{n−1/2(a+kh):k∈ZZ} such thatFn(x00)δ. For any relative integerl, setxl=x0+lhn−1/2anda

l=Fn(xl). Then, for anylin ZZ such that 0<al1<al<1, we have

(3.2) Fn−1(t) =xlfor anyt∈]al−1,al[, sinceal1=Fn(xl0). Furthermore, it can easily be proven that

(3.3) F¯n−1((1u)al−1+ual) =xl+n−1/2h(u−1/2)for anyu∈[0, 1].

Throughout the sequel, let tl(u) = (1−u)al−1+ual. Let m be the largest integer such that Fn(xm)1δ. It comes from Esseen’s estimates thatal1<al for anyl in [1,m], fornlarge enough. Then, forlin[1,m]anduin[0, 1], by Lemma 2.1(b) together with (3.3),

n(tl(u)) =α3 6 |Φ

−1(t

l(u))|2−1

h(u1/2) +o(1) uniformy inl∈[1,m]andu∈[0, 1]. It follows that

Z am

a0

|∆n(t)|rdu= m X

l=1

(alal−1) Z1

0

α63 |Φ−1(tl(u))|2−1−h(u−12) r

(7)

Now|a0−δ|+|1−δam|=O(n−1/2)and|∆n(t)|is uniformly bounded on[δ, 1−δ]. It follows

which ensures that the upper bound in (3.5) converges to 0 as n tends to . It follows that (InJn)converges to 0 asntends to∞. Finally

so that, repeating the arguments of the proof of (3.4), we have:

(8)

Both (3.4), (3.6) and the convergence of(InJn)to 0 then imply (3.1). Theorem 1.2(b) is proved.

Acknowledgment. I would like to thank the referee for carefully reading the paper and for suggestions and comments that improved the style of the paper.

References

[1] Borisov, I.S., Panchenko D.A. and Skilyagina, G.I., On minimal smoothness conditions for asymptotic expansions of moments in the CLT. Siberian advances in Mathematics 8 80-95 (1998).

[2] Dall’Aglio, G., Sugli estremi deli momenti delle funzioni di ripartizione doppia.Ann. Scuola

Norm. Sup. Pisa, (Ser. 3)1035-74, (1956).

[3] Esseen, C-G., Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. sl Acta Math.771-125 (1945).

[4] Esseen, C-G., On mean central limit theorems.Kungl. Tekn. Högsk. Handl. Stockholm 121 (1958).

[5] Fréchet M., Recherches théoriques modernes sur le calcul des probabilités, premier livre. Généralités sur les probabilités, éléments aléatoires. Paris, Gauthier-Villars. (1950).

[6] Fréchet M., Sur la distance de deux lois de probabilité. C. R. Acad. Sci. Paris244689-692, (1957).

[7] Hall, P., The bootstrap and Edgeworth expansion. Springer Series in Statistics. Springer-Verlag, New York (1992).

[8] Rio, E., Upper bounds for minimal distances in the central limit theorem.Ann. Institut H.

Poincaré Probab. Statist.45, 802-817, (2009).

Referensi

Dokumen terkait

Pada hari ini, Senin tanggal Sembilan bulan Oktober tahun Dua Ribu Tujuh Belas , Kami Pokja ULP Barang/Jasa Balai Diklat Transportasi Darat Palembang Tahun

Oleh karena itu untuk dapat menghasilkan informasi yang berkualitas dalam mendukung pencapaian tujuan stratejik berupa keunggulan kompetitif, akuntan manajemen

Hubungan strategi ini menjadi semakin eksplisit dengan karya mereka yang paling baru tentang organisasi yang terfokus secara strategi ( strategy-focused

Ro sukun karena waqof didahului huruf sukun yang sebelumnya ada kasroh ركذ رحس , Soal 35 : sebutkan ro yang boleh dibaca tafkhim atau tarqiq5. Jawab : ro yang boleh dibaca

Panitia Pengadaan Formulir Model D.II.a pada Badan Kepegawaian Negara, Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Sederhana dengan pascakualifikasi

Hasil pengamatan terhadap salinitas bahan pembenah tanah dari tumbuhan akuatik menunjukkan bahwa terdapat variasi salinitas pembenah tanah yang cukup lebar antara

cenderung imaging yang tidak sepenuhnya menggambarkan realitas bisa nampak seperti sebuah kebenaran yang tak terbantahkan, 2) media memiliki kekuatan untuk menganggap biasa

Hasil penelitian hubungan menunjukkan tidak terdapat hubungan yang siginifikan antara variabel faktor individual pengusaha mikro dan kecil sektor formal dengan kinerja