• Tidak ada hasil yang ditemukan

OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR THE GEOMETRIC COMBINATION OF ARITHMETIC AND HARMONIC MEANS | Long | Journal of the Indonesian Mathematical Society 5 402 1 PB

N/A
N/A
Protected

Academic year: 2017

Membagikan "OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR THE GEOMETRIC COMBINATION OF ARITHMETIC AND HARMONIC MEANS | Long | Journal of the Indonesian Mathematical Society 5 402 1 PB"

Copied!
12
0
0

Teks penuh

(1)

Vol. 17, No. 2 (2011), pp. 85–96.

OPTIMAL GENERALIZED LOGARITHMIC MEAN

BOUNDS FOR THE GEOMETRIC COMBINATION OF

ARITHMETIC AND HARMONIC MEANS

Bo-Yong Long

1

and Yu-Ming Chu

2

1College of Mathematics Science, Anhui University, Hefei 230039,

P. R. China, lbymxy@163.com

2Department of Mathematics, Huzhou Teachers College, Huzhou 313000,

P. R. China, chuyuming@hutc.zj.cn

Abstract. In this paper, we answer the question: forα ∈ (0,1), what are the greatest valuep=p(α) and least valueq=q(α), such that the double inequality Lp(a, b) ≤Aα(a, b)H1−α(a, b) Lq(a, b) holds for all a, b > 0? where Lp(a, b),

A(a, b), andH(a, b) are thep-th generalized logarithmic, arithmetic, and harmonic means ofaandb, respectively.

Key words: Generalized logarithmic mean, arithmetic mean, harmonic mean.

Abstrak. Dalam paper ini, kami menjawab pertanyaan: untukα∈(0,1), berapa nilai terbesarp=p(α) dan nilai terkecilq=q(α), sehingga ketidaksamaan ganda Lp(a, b)≤Aα(a, b)H1−α(a, b)Lq(a, b) dipenuhi untuk semuaa, b >0? dengan

Lp(a, b),A(a, b), danH(a, b) secara berturut-turut adalah rata-rata logaritmik yang diperumum, aritmatik, dan harmonik ke-pdariaandb.

Kata kunci: Rata-rata logaritmik yang diperumum, rata-rata aritmatik, rata-rata harmonik.

2000 Mathematics Subject Classification: 26E60.

(2)

86

1. Introduction

Forp∈Rthe generalized logarithmic meanLp(a, b) of two positive numbers

aandbis defined by

It is well-known thatLp(a, b) is continuous and strictly increasing with respect

top∈Rfor fixeda, b >0 witha6=b. In the recent past, the generalized logarithmic mean has been the subject of intensive research. In particular, many remarkable inequalities for Lp can be found in the literature [1, 8, 9, 13, 14, 19, 20, 22, 23].

It might be surprising that the generalized logarithmic mean has applications in economics, physics and even in meteorology [10, 17, 18]. In [10] the authors study a variant of Jensen’s functional equation involving Lp, which appear in a heat

conduction problem.

LetA(a, b) = (a+b)/2,I(a, b) = 1/e(bb/aa)1/(b−a), L(a, b) = (ba)(lnb lna),G(a, b) =√ab, andH(a, b) = 2ab/(a+b) be the arithmetic, identric, logarith-mic, geometric, and harmonic means of two positive numbersaand b witha6=b, respectively. Then

min{a, b}< H(a, b)< G(a, b) =L−2(a, b)< L(a, b) =L−1(a, b)

< I(a, b) =L0(a, b)< A(a, b) =L1(a, b)<max{a, b}.

In [7, 11, 21] the authors present bounds forL(a, b) and I(a, b) in terms of

G(a, b) andA(a, b).

Theorem 1.1. For all positive real numbersa andbwith a6=bwe have

A13(a, b)G

The proof of the following Theorem 1.2 can be found in [5].

Theorem 1.2. For all positive real numbersa andbwith a6=bwe have

(3)

The main properties of these means are given in [5]. Several authors discussed the relationship of certain means toMp(a, b). The following sharp bounds forL,I,

(IL)1/2and (I+L)/2 in terms of power means are proved in [2, 3, 6, 12, 15, 16].

Theorem 1.3. For all positive real numbersa andbwith a6=bwe have

M0(a, b)< L(a, b)< M1/3(a, b), M2/3(a, b)< I(a, b)< Mln 2(a, b),

M0(a, b)< I1/2(a, b)L1/2(a, b)< M1/2(a, b)

and

1

2[I(a, b) +L(a, b)]< M1/2(a, b).

The following Theorems 1.4-1.6 were established by Alzer and Qiu in [4].

Theorem 1.4. The inequalities

αA(a, b) + (1−α)G(a, b)< I(a, b)< βA(a, b) + (1−β)G(a, b)

hold for all positive real numbersaandb with a6=b if and only if

α≤2/3 and β≥2/e= 0.73575· · · .

Theorem 1.5. Let aandb be real numbers with a6=b. If0< a, b≤e, then

[G(a, b)]A(a,b)<[L(a, b)]I(a,b)<[A(a, b)]G(a,b).

And, ifa, b≥e, then

[A(a, b)]G(a,b)<[I(a, b)]L(a,b)<[G(a, b)]A(a,b).

Theorem 1.6. For all positive real numbersa andbwith a6=bwe have

Mc(a, b)<

1

2(L(a, b) +I(a, b))

with the best possible parameterc= ln 2/(1 + ln 2) = 0.40938· · ·.

It is the aim of this paper to answer the question: forα∈(0,1), what are the greatest valuep=p(α) and least valueq=q(α), such that the double inequality

Lp(a, b)≤Aα(a, b)H1

−α(a, b)

≤Lq(a, b)

(4)

88

2. Main Results

Theorem 2.1. Forα∈(0,1) and alla, b >0 we have (1) L6α−5(a, b) =Aα(a, b)H1

−α(a, b) =L

−1/α(a, b)forα= 1/3orα= 1/2; (2) L−1/α(a, b)≤Aα(a, b)H1

−α(a, b)

≤L6α−5(a, b)forα∈(0,1/3)

S

(1/2,1)

and L−1/α(a, b) ≥Aα(a, b)H1

−α(a, b)

≥ L6α−5(a, b) for α ∈(1/3,1/2), with

equality if and only if a=b, and the parameters−1/α and 6α−5 in either case are best possible.

Proof. (1) Ifα= 1/3 orα= 1/2, anda=b, then we clearly see thatL6α−5(a, b) =

(a, b)H1−α(a, b) =L

−1/α(a, b) =a.

Ifα= 1/3 anda6=b, then we have

L6α−5(a, b) =L−1/α(a, b) =L−3(a, b)

=2

1/3(ab)2/3 (a+b)1/3 =A

1/3(a, b)H2/3(a, b) =Aα(a, b)H1−α(a, b).

Ifα= 1/2 anda6=b, then we get

L6α−5(a, b) =L−1/α(a, b) =L−2(a, b)

= (ab)1/2=A1/2(a, b)H1/2(a, b) =Aα(a, b)H1−α(a, b).

(2) Ifα∈(0,1) anda=b, then we clearly see thatL−1/α(a, b) =Aα(a, b)H1−α(a, b) =

L6α−5(a, b). Without loss of generality, we assume thatt=a/b >1 in the following discussion.

Ifα= 2/3, then one has

lnL6α−5(a, b)−ln[Aα(a, b)H1

−α(a, b)]

= lnL−1(a, b)−ln[A2/3(a, b)H1/3(a, b)]

= ln(t−1 lnt )−ln[2

−1/3(1 +t)1/3t1/3]. (1)

Letf1(t) = ln(t−1 lnt)−ln[2

−1/3(1 +t)1/3t1/3], then simple computations lead to

lim

t→1+f1(t) = 0, (2) f′

1(t) =

g1(t)

3t(t−1)(t+ 1) lnt, (3)

whereg1(t) = (t2+ 4t+ 1) lnt3(t21).

g1(1) = 0, (4)

g′ 1(t) =

h1(t)

(5)
(6)
(7)
(8)

92

fort >1. Therefore,L−1α(a, b)> Aα(a, b)H1−α(a, b) forα∈(1/3,1/2) and a6=b

follows from (31)-(35) and (38).

Finally, we prove that the parameters−1/αand 6α−5 in either case are best possible.

Firstly, we show that the parameter 6α−5 in either case is best possible. We divide the proof into seven cases.

Case 1. α= 2/3. For anyǫ >0 andx >0 one has

[Aα(1,1 +x)H1−α(1,1 +x)]1+ǫ

−[L6α−5−ǫ(1,1 +x)]1+ǫ

= [A2/3(1,1 +x)H1/3(1,1 +x)]1+ǫ−[L−1−ǫ(1,1 +x)]1+ǫ

= f1(x)

(1 +x)ǫ1, (39)

wheref1(x) = [(1 +x)ǫ−1](1 +x)(1+ǫ)/3(1 +x/2)(1+ǫ)/3−ǫx(1 +x)ǫ. Lettingx→0 and making use of Taylor expansion we get

f1(x) = ǫ 2(1 +ǫ)

24 x

3+o(x3). (40)

Equations (39) and (40) imply that forǫ >0 there existsδ1=δ1(ǫ)>0, such that L6α−5−ǫ(1,1 +x)< Aα(1,1 +x)H(1−α)(1,1 +x) forα= 2/3 andx∈(0, δ1).

Case 2. α= 5/6. For anyǫ∈(0,1) andx >0 we have

[Aα(1,1 +x)H1−α(1,1 +x)]ǫ[L

6α−5−ǫ(1,1 +x)]ǫ

= [A5/6(1,1 +x)H1/6(1,1 +x)]ǫ−[L−ǫ(1,1 +x)]ǫ

= f2(x)

(1 +x)1−ǫ1, (41)

wheref2(x) = [(1 +x)1−ǫ1](1 +x)ǫ/6(1 +x/2)2ǫ/3(1ǫ)x. Lettingx→0 and making using of Taylor expansion we get

f2(x) =ǫ(1−ǫ) 24 x

3+o(x3). (42)

Equations (41) and (42) show that forǫ∈(0,1) there exists δ2 =δ2(ǫ)>0, such that L6α−5−ǫ(1,1 +x)< Aα(1,1 +x)H(1−α)(1,1 +x) for α= 5/6 and x∈

(0, δ2).

Case 3. α∈(0,1/3). For anyǫ >0 andx >0 one has

[Aα(1,1 +x)H1−α(1,1 +x)]5+ǫ−6α

−[L6α−5−ǫ(1,1 +x)]5+ǫ−6α

= f3(x)

[(1 +x)4+ǫ−6α1](1 +x

2)(1

−2α)(5+ǫ−6α), (43) wheref3(x) = [(1+x)4+ǫ−6α1](1+x)(1−α)(5+ǫ−6α)(4+ǫ6α)x(1+x)4+ǫ−6α(1+

(9)

Lettingx→0 and making use of Taylor expansion we get

f3(x) =ǫ(4 +ǫ−6α)(5 +ǫ−6α)

24 x

3+o(x3). (44)

Equations (43) and (44) imply that for anyα∈(0,1/3) andǫ >0 there exists

δ3 =δ3(ǫ, α)>0, such that L6α−5−ǫ(1,1 +x)< Aα(1,1 +x)H(1−α)(1,1 +x) for

x∈(0, δ3).

Case 4. α∈(1/3,1/2). For anyǫ∈(0,4−6α) andx >0 we get

[L6α−5+ǫ(1,1 +x)]5

−6α−ǫ

−[Aα(1,1 +x)H1−α(1,1 +x)]5−6α−ǫ

= f4(x)

[(1 +x)4−6α−ǫ1](1 +x

2)(1

−2α)(5−6α−ǫ), (45) wheref4(x) = (4−6α−ǫ)x(1 +x)4−6α−ǫ(1 +x/2)(1−2α)(5−6α−ǫ)[(1 +x)4−6α−ǫ

1](1 +x)(1−α)(5−6α−ǫ)

Lettingx→0 and making using Taylor expansion one has

f4(x) =ǫ(4 +ǫ−6α)(5 +ǫ−6α)

24 x

3+o(x3). (46)

Equations (45) and (46) imply that for anyα ∈ (1/3,1/2) and ǫ ∈ (0,4− 6α) there exists δ4 = δ4(ǫ, α) > 0, such that L6α−5+ǫ(1,1 +x) > Aα(1,1 +

x)H(1−α)(1,1 +x) forx(0, δ4).

Case 5. α∈(1/2,2/3). For anyǫ >0 andx >0 we have

[Aα(1,1 +x)H1−α(1,1 +x)]5−6α+ǫ

−[L6α−5−ǫ(1,1 +x)]5−6α+ǫ

= f5(x)

(1 +x)4−6α+ǫ1, (47)

wheref5(x) = [(1 +x)4−6α+ǫ1](1 +x/2)(2α−1)(5−6α+ǫ)(1 +x)(1−α)(5−6α+ǫ)(4 6α+ǫ)x(1 +x)4−6α+ǫ.

Lettingx→0 and making use of Taylor expansion we get

f5(x) = ǫ(4 +ǫ−6α)

2(5 +ǫ6α)

24 x

3+o(x3). (48)

Equations (47) and (48) imply that for anyα∈ (1/2,2/3) and ǫ > 0 there existsδ5=δ5(ǫ, α)>0, such thatL6α−5−ǫ(1,1 +x)< Aα(1,1 +x)H(1−α)(1,1 +x)

forx∈(0, δ5).

Case 6. α∈(2/3,5/6). For anyǫ∈(0,6α−4) andx >0 one has

[Aα(1,1 +x)H1−α(1,1 +x)]5−6α+ǫ

−[L6α−5−ǫ(1,1 +x)]5

−6α+ǫ

= f6(x)

(1 +x)6α−4−ǫ1, (49)

(10)

94

Lettingx→0 and making using Taylor expansion we obtain

f6(x) =ǫ(5 +ǫ−6α)(6α−4−ǫ)

Lettingx→0 and making use of Taylor expansion we get

f7(x) =ǫ(6α−5−ǫ)(6α−4−ǫ)

Secondly, we prove that the parameter−1/αin either case is the best possible. The proof is divided into two cases.

(11)

lim

t→+∞{2

1−2α(1 +1

t)

2α−1

−t−ǫα2

1+ǫα[(

1

α−1 +ǫ)(1−

1

t)

1−t−(1 α−1+ǫ)

]1+αǫα}

= 21−α>0. (56)

From (55) and (56) we clearly see that for any α ∈ (1/3,1/2) and ǫ > 0 there exists T2 = T2(ǫ, α) > 1, such that L−1/α−ǫ(1, t) < Aα(1, t)H1−α(1, t) for

t∈(T2,∞).

Acknowledgement The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions. This research was supported by the Natural Science Foundation of China under Grants 11071069 and 11171307, and the Innovation Team Foundation of the Department of Education of Zhejiang Province under Grant T200924.

References

[1] Abuhany, A. A. K., Salem, S. R. and Salman, I. M., “On Steffensen’s integral inequality with applications”,J. Rajasthan Acad. Phys. Sci.5(2006), 1-12.

[2] Alzer, H., “Ungleichungen f¨ur (e/a)a(b/e)b”,Elem. Math.40(1985), 120-123. [3] Alzer, H., “Ungleichungen f¨ur Mittelwerte”,Arch. Math.47(1986), 422-426.

[4] Alzer, H. and Qiu, S.-L., “Inequalities for means in two variables”,Arch. Math.80(2003), 201-215.

[5] Bullen, P. S., Mitrinovi´c, D. S. and Vasi´c, P. M.,Means and Their Inequalities, D. Reidel Pubishing Co., 1988.

[6] Burk, F., “The geometric, logarithmic and arithmic mean inequality”,Amer. Math. Monthly 94(1987), 527-528.

[7] Carlson, B. C., “The logarithmic mean”,Amer. Math. Monthly79(1972), 615-618.

[8] Chen, Ch.-P., “The monotonicity of the ratio between generalized logarithmic means”, J. Math. Anal. Appl.345(2008), 86-89.

[9] Chen, Ch.-P. and Qi, F., “Monotonicity properties for generalized logarithmic means”,Aust. J. Math. Anal. Appl.1(2004), Article 2, 1-4.

[10] Kahlig, P. and Matkowski, J., “Functional equations involving the logarithmic mean”, Z. Angew. Math. Mech.76(1996), 385–390.

[11] Leach, E. B. and Sholander, M. C., “Extended mean values II”,J. Math. Anal. Appl. 92

(1983), 207-223.

[12] Lin, T. P., “The power mean and the logarithmic mean”,Amer. Math. Monthly 81(1974), 879-883.

[13] Mond, B., Pearce, C. E. M. and Peˇcari´c, J., “The logarithmic mean is a mean”, Math. Commun.2(1997), 35-39.

[14] Pearce, C. E. M. and Peˇcari´c, J., “Some theorems of Jensen type for generalized logarithmic means”,Rev. Roumaine Math. Pures Appl.40(1995), 789-795.

[15] Pittenger, A. O., “Inequalities between arithmetic and logarithmic means”,Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.678-715(1980), 15-18.

[16] Pittenger, A. O., “The symmetric, logarithmic and power means”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz.678-715(1980), 19-23.

[17] Pittenger, A. O., “The logarithmic mean innvariables”,Amer. Math. Monthly 92(1985),

(12)

96

[18] P´olya, G. and Szeg¨o, G.,Isoperimetric Inequalities in Mathematical Physics, Princeton Uni-versity Press, 1951.

[19] Qi, F., Chen Sh.-X. and Chen, Ch.-P., “Monotonicity of ratio between the generalized loga-rithmic means”,Math. Inequal. Appl.10(2007), 559-564.

[20] Qi, F., Li, X.-A. and Chen, Sh.-X., “Refinements, extensions and generalizations of the second Kershaw’s double inequality”,Math. Inequal. Appl.11(2008), 457-465.

[21] S´andor, J., “A note on some inequalities for means”,Arch. Math.56(1991), 471-473. [22] Shi, H.-N., “Schur-convex functions related to Hadamard-type inequalities”,J. Math. Inequal.

1(2007), 127-136.

[23] Stolarsky, K. B., “The power and generalized logarithmic means”,Amer. Math. Monthly87

Referensi

Dokumen terkait

Ini berarti perusahaan harus lebih memperhatikan insentif yang diberikan kepada karyawan.Perusahaan harus memberikan dorongan pada karyawan agar mau bekerja dengan

Jika dilihat dari goals, visi dan misi yang dimiliki oleh perusahaan ini mendukung nilai kekeluargaan yang ada di dalam perusahaan karena untuk dapat bekerja

Penelitian ini meneliti tentang makna pesan Kepahlawanan, bertujuan untuk mengetahui makna yang terdapat dalam film American Sniper yang berkaitan dengan Patriotsm

Apabila Perusahaan yang diundang tidak hadir sesuai dengan waktu yang telah ditetapkan pada saat klarifikasi dan negosiasi teknis dan biaya akan dinyatakan gugur. Demikian

Dokumen Pengadaan dapat diambil dalam bentuk softcopy dan diunduh (download) melalui aplikasi Sistem Pengadaan Secara Elektronik (SPSE) pada alamat website LPSE

Restoration efforts could, in some cases, help spread invasive species, but until very recently the USACE had not consid- ered invasive species in project planning

Pengaruh Penggunaan Multimedia Animasi terhadap Keterampilan Pemecahan Masalah MAteri Diagram Fasa dalam Pembelajaran Mata Kuliah Material Teknik1. Universitas Pendidikan Indonesia |

Sehingga tidak jarang terjadi degradasi beion ka(ena pelaksanaan yang tidak sesuai dengan pengaturan ya,1g berlaku, rrloisal adanya retak, pelapukan beton dan korosi