Gate Dielectric Scaling for
High-Performance CMOS:
from SiO2 to High-K
Robert Chau
Intel Fellow
Technology and Manufacturing Group Intel Corporation
Content
• Introduction
• SiO2 Scaling
• Review on High-K Problems
• Significant Breakthroughs in High-K/Metal-Gate
• High-K/Metal-gate NMOS & PMOS Transistors with Record-Setting Drive Performance
Introduction
10 100
350n
m
250 n
m
180 n
m
130 n
m
90 n
m
Th
ic
kn
ess (
Å
)
• 1.2nm physical SiO2 in
production in our 90nm logic technology node
• 0.8nm physical SiO2 in our
research transistors with 15nm physical Lg
• Gate leakage is increasing
with reducing physical SiO2 thickness
• SiO2 running out of atoms
for further scaling
SiO2 Scaling
PolySi
Silicon PolySi
Silicon SiO2
Silicon substrate 1.2nm SiO 2
Gate
Silicon substrate
1.2nm SiO2
PolySi
Electrical Characteristics of
0.8nm Physical SiO2
0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm Inversion Capacitance 0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm 0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0
-1 -0.5 0 0.5 1
Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm Inversion Capacitance 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3
-1 -0.5 0 0.5 1
Vg (Volts)
Jg (A /c m ²) NMOS NMOS Inversion PMOS Inversion 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3
-1 -0.5 0 0.5 1
Vg (Volts)
Research Transistor with 15nm
Physical Lg and 0.8nm Physical SiO2
0 100 200 300 400 500
0 0.2 0.4 0.6 0.8
Drain Voltage (V)
Dr ai n Cu rr en t ( µ A/µ m )
Vg = 0.8V
0.7V 0.6V 0.5V 0.4V 0.3V 15nm NMOS 0 100 200 300 400 500
0 0.2 0.4 0.6 0.8
Drain Voltage (V)
Dr ai n Cu rr en t ( µ A/µ m )
Vg = 0.8V
0.7V 0.6V 0.5V 0.4V 0.3V 15nm NMOS 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03
0 0.2 0.4 0.6 0.8
Gate Voltage (V)
Drain Current (
A
/
µ
m)
Vd = 0.8V
Vd = 0.05V
S.S. = 95mV/decade DIBL = 100mV/V Ioff = 180nA/um 15nm NMOS 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03
0 0.2 0.4 0.6 0.8
Gate Voltage (V)
Drain Current (
A
/
µ
m)
Vd = 0.8V
Vd = 0.05V
S.S. = 95mV/decade DIBL = 100mV/V Ioff = 180nA/um 15nm NMOS
0.8nm physical SiO2 0.8nm physical SiO2
M02 MCl4(g)
Step 1
Step 2
MCl4 + 2H2O(g) -> M02 + 4HCl(g)
Step 3
Step 4
Formation of High-K: Atomic Layer Deposition
M = Zr, Hf
Review on High-K Problems
(High-K/PolySi-Gate)
•
High-K and polySi gate are incompatible due
to Fermi level pinning at the high-K and
polySi interface which causes high threshold
voltages in transistors
•
High-K/polySi transistors exhibit severely
degraded channel mobility due to the
High-K and PolySi are Incompatible
O M
O O O O
M M M
O M
O O O O
M M M
O O O O O O O O
O M
O O O O
M M M
O M
O O O O
M M M
M
O M
O O O O
M M M
O M
O O O O
M M M
M Si
Si Si Si Si Si Si
Si Si
Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si Si
Si Si Si Si Si Si Si Si Si Si
M Si
Si Si Si Si
Poly Si
Interface
High-K
M = Zr, Hf
Experimental Evidence of
Phonon Scattering in High-K
1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05 3.5E-05 4.0E-05 4.5E-05
0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
E-Field (MV/cm) d(1/ueff)/dT High-K/PolySi SiO2/PolySi Phonon scattering E-Field µ 0 1 > ∂ ∂ T PH µ 0 1 < ∂ ∂ T Coul µ 0 1 = ∂ ∂ T SR µ
µph ↓ T ↑
µCoul ↑ T ↑
µSR~ const
Coulombic Phonon Surface
Roughness
SR ph
Coul
eff µ µ µ
µ
1 1
1
Review on High-K Problems
(High-K/Metal-Gate)
•
Metal gate electrodes may be able to screen
the high-K SO phonons from coupling to the
inversion channel charge carriers and reduce
the mobility degradation problem
•
However the use of high-K/metal-gate
requires metal gate electrodes with the
“correct” work functions on high-K for both
PMOS and NMOS transistors for high
Significant Breakthroughs in
High-K/Metal-Gate made by Intel
•
N-type metal and P-type metal with the
correct work functions on high-K have been
engineered and demonstrated for
high-performance CMOS
•
High-K/metal-gate stack achieves NMOS and
PMOS channel mobility close to SiO2’s
•
High-K/metal-gate stack shows significantly
We have Engineered N-type and P-type Metal Electrodes on High-K with the “Correct” Work
Functions for NMOS and PMOS on Bulk Si
NDK
SDK
-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1
N+poly P+pol
y
P-metal
N-metal Metal A Metal B Metal C Metal D Metal E Metal F Metal G Metal H Metal I Metal J
Gate Electrode Materials
Transistor Flatband
Voltage
(V)
P-type Metal on High-K
N-type Metal on High-K
N+ PolySi/SiO2
P+ PolySi/SiO2
High-K/Metal-Gate Stack Achieves
NMOS Channel Mobility Close to SiO2
SiO2/polyS i
W fill + poor contacts
W fill + improved contact
Nitridation Optimizatio n
20Å High-K/polySi
TiN fill + improved contact
10 12 14 16 18 20 22 24 26
NMOS Mobility (cm
2 /V.s)
Eeff = 1.0MV/cm
High-K/Metal-Gate
High-K/Metal-Gate Stack Achieves
PMOS Channel Mobility Close to SiO2
10 15 20 25 30
Inversion Electrical Thickness, Toxe (Å)
PMOS Mobility (cm
2 /V.s)
High-K/Metal-Gate
SiO2/PolySi
High-K Reduces Gate Leakage
SiO2/polySi
High-K/metal-gate
1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
0 5 10 15 20 25
Accumulation Electrical Tox [A]
Jox
[A/cm
High-K/Metal-gate NMOS and PMOS
Transistors with Record-Setting
Drive Current (Idsat) Performance
• NMOS and PMOS high-K/metal-gate transistors were made on bulk Si
– Physical gate length (Lg) = 80nm
– Electrical Oxide Thickness @ inversion (Toxe) = 1.45nm
• Very high NMOS Idsat
– Idsat = 1.66mA/um, Ioff = 37nA/um at Vcc = 1.3V
• Very high PMOS Idsat
High-K/Metal-Gate NMOS I
on- I
off0.8 1 1.2 1.4 1.6 1.8
1.0E-10 1.0E-09 1.0E-08 1.0E-07 1.0E-06
Ioff (A/µm)
Ion (mA/µ
m)
• Electrical Tox at inversion
(Toxe) = 1.45nm
• Vcc = 1.3V
High-K/Metal-Gate NMOS with Record-Setting
Drive Current Performance
• Electrical Tox at Inversion (Toxe) = 1.45nm • Transistor physical gate length (Lg) = 80nm
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018
0 0.2 0.4 0.6 0.8 1 1.2 1.4 Vd (V)
Id
(
A
/µ
m
)
1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02
0 0.2 0.4 0.6 0.8 1 1.2 1.4 Vg (V)
Id
(
A
/µ
m
)
Ion = 1.66mA/um Ioff = 37nA/um
Lg = 80nm Toxe = 14.5A
Lg = 80nm Toxe = 14.5A
Vd=1.3V
High-K/Metal-Gate PMOS with Record-Setting
Drive Current Performance
1E-10 1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 Vg (V) Id ( A /µ m ) Vd=0.05V Vd=1.3V
Ion = 693 µA/µm Ioff = 25 nA/µm
Lg = 80nm
Toxe = 14.5A
-7.E-04 -6.E-04 -5.E-04 -4.E-04 -3.E-04 -2.E-04 -1.E-04 0.E+00 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 Vds (V) Id ( A /µ m )
Lg = 80nm
Toxe = 14.5A
Summary
• We have implemented 1.2nm physical SiO2 in our 90nm logic technology node and products, and have demonstrated 0.8nm physical SiO2
• We have engineered and demonstrated NMOS and PMOS high-K/metal-gate stacks on bulk Si with i) the correct work functions, ii) channel mobility close to SiO2’s and iii) very low gate leakage
• We have fabricated high-K/metal-gate NMOS and PMOS transistors on bulk Si with record-setting drive current performance