• Tidak ada hasil yang ditemukan

Chau high k metal gate conf foils 110603

N/A
N/A
Protected

Academic year: 2017

Membagikan "Chau high k metal gate conf foils 110603"

Copied!
21
0
0

Teks penuh

(1)

Gate Dielectric Scaling for

High-Performance CMOS:

from SiO2 to High-K

Robert Chau

Intel Fellow

Technology and Manufacturing Group Intel Corporation

(2)

Content

Introduction

SiO2 Scaling

Review on High-K Problems

Significant Breakthroughs in High-K/Metal-Gate

High-K/Metal-gate NMOS & PMOS Transistors with Record-Setting Drive Performance

(3)

Introduction

10 100

350n

m

250 n

m

180 n

m

130 n

m

90 n

m

Th

ic

kn

ess (

Å

)

1.2nm physical SiO2 in

production in our 90nm logic technology node

0.8nm physical SiO2 in our

research transistors with 15nm physical Lg

Gate leakage is increasing

with reducing physical SiO2 thickness

SiO2 running out of atoms

for further scaling

(4)

SiO2 Scaling

PolySi

Silicon PolySi

Silicon SiO2

Silicon substrate 1.2nm SiO 2

Gate

Silicon substrate

1.2nm SiO2

PolySi

(5)

Electrical Characteristics of

0.8nm Physical SiO2

0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm Inversion Capacitance 0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm 0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg Capaci tance ( µF /c m ²) NMOS PMOS NMOS PMOS --0.0 0.5 1.0 1.5 2.0

-1 -0.5 0 0.5 1

Vg (V) C apa ci tance (µ F /c m ²) NMOS PMOS NMOS PMOS 0.8nm 0.8nm Inversion Capacitance 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3

-1 -0.5 0 0.5 1

Vg (Volts)

Jg (A /c m ²) NMOS NMOS Inversion PMOS Inversion 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3

-1 -0.5 0 0.5 1

Vg (Volts)

(6)

Research Transistor with 15nm

Physical Lg and 0.8nm Physical SiO2

0 100 200 300 400 500

0 0.2 0.4 0.6 0.8

Drain Voltage (V)

Dr ai n Cu rr en t ( µ A/µ m )

Vg = 0.8V

0.7V 0.6V 0.5V 0.4V 0.3V 15nm NMOS 0 100 200 300 400 500

0 0.2 0.4 0.6 0.8

Drain Voltage (V)

Dr ai n Cu rr en t ( µ A/µ m )

Vg = 0.8V

0.7V 0.6V 0.5V 0.4V 0.3V 15nm NMOS 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

0 0.2 0.4 0.6 0.8

Gate Voltage (V)

Drain Current (

A

/

µ

m)

Vd = 0.8V

Vd = 0.05V

S.S. = 95mV/decade DIBL = 100mV/V Ioff = 180nA/um 15nm NMOS 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

0 0.2 0.4 0.6 0.8

Gate Voltage (V)

Drain Current (

A

/

µ

m)

Vd = 0.8V

Vd = 0.05V

S.S. = 95mV/decade DIBL = 100mV/V Ioff = 180nA/um 15nm NMOS

0.8nm physical SiO2 0.8nm physical SiO2

(7)

M02 MCl4(g)

Step 1

Step 2

MCl4 + 2H2O(g) -> M02 + 4HCl(g)

Step 3

Step 4

Formation of High-K: Atomic Layer Deposition

M = Zr, Hf

(8)

Review on High-K Problems

(High-K/PolySi-Gate)

High-K and polySi gate are incompatible due

to Fermi level pinning at the high-K and

polySi interface which causes high threshold

voltages in transistors

High-K/polySi transistors exhibit severely

degraded channel mobility due to the

(9)

High-K and PolySi are Incompatible

O M

O O O O

M M M

O M

O O O O

M M M

O O O O O O O O

O M

O O O O

M M M

O M

O O O O

M M M

M

O M

O O O O

M M M

O M

O O O O

M M M

M Si

Si Si Si Si Si Si

Si Si

Si

Si Si Si Si Si Si Si Si Si Si Si

Si Si Si Si Si Si Si Si Si Si Si

Si Si Si Si Si Si Si Si Si Si

M Si

Si Si Si Si

Poly Si

Interface

High-K

M = Zr, Hf

(10)

Experimental Evidence of

Phonon Scattering in High-K

1.0E-05 1.5E-05 2.0E-05 2.5E-05 3.0E-05 3.5E-05 4.0E-05 4.5E-05

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

E-Field (MV/cm) d(1/ueff)/dT High-K/PolySi SiO2/PolySi Phonon scattering E-Field µ 0 1 > ∂ ∂ T PH µ 0 1 < ∂ ∂ T Coul µ 0 1 = ∂ ∂ T SR µ

µphT

µCoulT

µSR~ const

Coulombic Phonon Surface

Roughness

SR ph

Coul

eff µ µ µ

µ

1 1

1

(11)

Review on High-K Problems

(High-K/Metal-Gate)

Metal gate electrodes may be able to screen

the high-K SO phonons from coupling to the

inversion channel charge carriers and reduce

the mobility degradation problem

However the use of high-K/metal-gate

requires metal gate electrodes with the

“correct” work functions on high-K for both

PMOS and NMOS transistors for high

(12)

Significant Breakthroughs in

High-K/Metal-Gate made by Intel

N-type metal and P-type metal with the

correct work functions on high-K have been

engineered and demonstrated for

high-performance CMOS

High-K/metal-gate stack achieves NMOS and

PMOS channel mobility close to SiO2’s

High-K/metal-gate stack shows significantly

(13)

We have Engineered N-type and P-type Metal Electrodes on High-K with the “Correct” Work

Functions for NMOS and PMOS on Bulk Si

NDK

SDK

-1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

N+poly P+pol

y

P-metal

N-metal Metal A Metal B Metal C Metal D Metal E Metal F Metal G Metal H Metal I Metal J

Gate Electrode Materials

Transistor Flatband

Voltage

(V)

P-type Metal on High-K

N-type Metal on High-K

N+ PolySi/SiO2

P+ PolySi/SiO2

(14)

High-K/Metal-Gate Stack Achieves

NMOS Channel Mobility Close to SiO2

SiO2/polyS i

W fill + poor contacts

W fill + improved contact

Nitridation Optimizatio n

20Å High-K/polySi

TiN fill + improved contact

10 12 14 16 18 20 22 24 26

NMOS Mobility (cm

2 /V.s)

Eeff = 1.0MV/cm

High-K/Metal-Gate

(15)

High-K/Metal-Gate Stack Achieves

PMOS Channel Mobility Close to SiO2

10 15 20 25 30

Inversion Electrical Thickness, Toxe (Å)

PMOS Mobility (cm

2 /V.s)

High-K/Metal-Gate

SiO2/PolySi

(16)

High-K Reduces Gate Leakage

SiO2/polySi

High-K/metal-gate

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

0 5 10 15 20 25

Accumulation Electrical Tox [A]

Jox

[A/cm

(17)

High-K/Metal-gate NMOS and PMOS

Transistors with Record-Setting

Drive Current (Idsat) Performance

NMOS and PMOS high-K/metal-gate transistors were made on bulk Si

Physical gate length (Lg) = 80nm

Electrical Oxide Thickness @ inversion (Toxe) = 1.45nm

Very high NMOS Idsat

Idsat = 1.66mA/um, Ioff = 37nA/um at Vcc = 1.3V

Very high PMOS Idsat

(18)

High-K/Metal-Gate NMOS I

on

- I

off

0.8 1 1.2 1.4 1.6 1.8

1.0E-10 1.0E-09 1.0E-08 1.0E-07 1.0E-06

Ioff (A/µm)

Ion (mA/µ

m)

Electrical Tox at inversion

(Toxe) = 1.45nm

Vcc = 1.3V

(19)

High-K/Metal-Gate NMOS with Record-Setting

Drive Current Performance

Electrical Tox at Inversion (Toxe) = 1.45nmTransistor physical gate length (Lg) = 80nm

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018

0 0.2 0.4 0.6 0.8 1 1.2 1.4 Vd (V)

Id

(

A

m

)

1.E-10 1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 Vg (V)

Id

(

A

m

)

Ion = 1.66mA/um Ioff = 37nA/um

Lg = 80nm Toxe = 14.5A

Lg = 80nm Toxe = 14.5A

Vd=1.3V

(20)

High-K/Metal-Gate PMOS with Record-Setting

Drive Current Performance

1E-10 1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 Vg (V) Id ( A m ) Vd=0.05V Vd=1.3V

Ion = 693 µA/µm Ioff = 25 nA/µm

Lg = 80nm

Toxe = 14.5A

-7.E-04 -6.E-04 -5.E-04 -4.E-04 -3.E-04 -2.E-04 -1.E-04 0.E+00 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 Vds (V) Id ( A m )

Lg = 80nm

Toxe = 14.5A

(21)

Summary

We have implemented 1.2nm physical SiO2 in our 90nm logic technology node and products, and have demonstrated 0.8nm physical SiO2

We have engineered and demonstrated NMOS and PMOS high-K/metal-gate stacks on bulk Si with i) the correct work functions, ii) channel mobility close to SiO2’s and iii) very low gate leakage

We have fabricated high-K/metal-gate NMOS and PMOS transistors on bulk Si with record-setting drive current performance

Referensi

Dokumen terkait