• Tidak ada hasil yang ditemukan

Calderon M, Loiseau G, Guyot JP. 2003a. Fermentation by Lactobacillus fermentum Ogi E1 of different combinations of carbohydrates occurring naturally

N/A
N/A
Protected

Academic year: 2021

Membagikan "Calderon M, Loiseau G, Guyot JP. 2003a. Fermentation by Lactobacillus fermentum Ogi E1 of different combinations of carbohydrates occurring naturally"

Copied!
39
0
0

Teks penuh

(1)

DAFTAR PUSTAKA

Akerberg A, Liljeberg H, Bjoorck I. 1998. Effects of amylose/amylopectin ratio and baking conditions on resistant starch formation and glycaemic indices.

Journal of Cereal Science 28 : 71–80.

Anderson AK, Guraya HS, James C, Salvaggio L. 2002. Digestibility and pasting properties of rice starch heat-moisture treated at the melting temperature (Tm). J Starch/Stärke 54 : 401-409.

AOAC. 1995. Official Methods of Analysis of the Association of Official Analytical Chemist. Association of Official Analytical Chemists, Washington, DC.

Aparicio-Saguilan A et al. 2005. Resistant starch rich-powders prepared by autoclaving of native and intnerized banana starch: partial characterization.

J Starch/Stärke 57 : 405-412.

Apriyantono A, Fardiaz D, Puspitasari NL, Sedarnawati, Budiyanto S. 1989.

Petunjuk Laboratorium Analisis Pangan. Bogor : Departemen Pendidikan dan Kebudayaan Direktorat Jenderal Pendidikan Tinggi Pusat Antar Universitas Pangan dan Gizi, Institut Pertanian Bogor.

Aurore G, Parfait B, Fahrasmane L. 2008. Bananas, raw materials for making processed food products. Trends in Food Science & Technology 1-13.

Axelsson L. 2004. Lactic acid bacteria : classification and physiology. Di dalam : Salminen S, Wright AV, Ouwehand A, editor. Lactic Acid Bacteria Microbiological and Functional Aspects. New York. Marcel Dekker, INC.

hlm 1-66.

Behall KM, Scholfield DJ, Hallfrisch JG, Liljeberg-Elmstahl HGM. 2006.

Consumption of both resistant starch and β-glucan improves postprandial plasma glucose and insulin in women. Diabetes care 29 : 976-981.

Bello-Pérez LA, Gonzáles-Soto RA, Sánchez-Rivero MM, Gutiérrez-Meraz F, Vargas-Torres A. 2006. Extrusion of starches from non-conventional sources for resistant strach production. Artículo en Agrociencia 40 : 441- 448.

Bird AR, Brown IL, Topping DL. 2000. Starches, resistant starches, the gut microflora and human health. Curr. Issues Intest. Microbiol 1 : 25-37.

Bouhnik Y et al. 2004. The capacity of nondigestible carbohydrates to stimulate fecal Bifidobacteria in healthy humans : a double-blind, randomized, placebo-controlled, parallel group, dose-response relation study. The American Journal of Clinical Nutrition 80 : 1658-1664.

British Nutrition Foundation. 2005. Resistant starch-question and answers.

(2)

Calderon M, Loiseau G, Guyot JP. 2003a. Fermentation by Lactobacillus fermentum Ogi E1 of different combinations of carbohydrates occurring naturally in cereals: consequences on growth energetics and a-amylase production. International Journal of Food Microbiology 80 : 161– 169.

Calderon MS, Loiseau G, Sanoja RR, Guyot JP. 2003b. Study of starch fermentation at low pH by Lactobacillus fermentum Ogi E1 reveals uncoupling between growth and a-amylase production at pH 4.0.

International Journal of Food Microbiology 80 : 77– 87.

Champ M, Langkilde AM, Brouns F, Kettlitz B, Collet YLB. 2003. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects. Nutrition Research Reviews 16 : 71-82.

Cordenunsi BR, Shiga TM, Lajolo F. 2008. Non-starch polysaccharide composition of two cultivars of banana (Musa acuminata L. : cvs Mysore and Nanicão). Carbohydrate Polymers 71 : 26-31.

Crittenden R et al. 2005. Probiotic research in Australia, New Zealand and the Asia-Pasific region. Current Pharmaceutical Design 11 : 37-53.

Cummings JH, Macfarlane GT. 2002. Gastrointestinal effects of prebiotics.

British Journal of Nutrition 87 : S145-S151.

Eerlingan RC, Delcour JA. 1995. Formation, analysis, structure and properties of type III enzyme resistant starch. Jounal of Cereal Science 22 : 129-138.

Englyst HN, Kingman SM, Cummings JH. 1992. Classification and measurement of nutritionally important starch fraction. Europan Journal of Clinical Nutrition 46 : 533-550.

Fardiaz S. 1992. Mikrobiologi Pangan 1. Gramedia Pustaka Utama, Jakarta.

Fiedorowicz M, Chaczatrian G, Kapusniak J, Tomasik PJ, Tomasik P, 2003.

Novel dextrins as potential prebiotics. Food, Agriculture and Environment 1 : 54-58.

Frei M, Siddhuraju P, Becker K. 2003. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from the Philippines. Food Chemistry 83 : 395–402.

Giraud E, Brauman A, Kéléke S, Gosselin L, Raimbault M. 1996. A lactic acid bacterium with potential application in cassava fermentation. CIAT Publication 271 ISBN 958-9439-888. Colombia.

Goni I, Garcia-Alonso A, Saura-Calixto F. 1997. A Starch hydrolysis procedure to estimate glycemic index. Nutrition Research 17 : 427-437.

Gonzalez-Soto RA, Mora-Escobedo R, Hernandez-Sanchez H, Sanchez-Rivera M,

Bello-Perez LA. 2007. The influence of time and storage temperature on

resistant starch formation from autoclaved debranched banana starch. Food

Research International 40 : 304–310.

(3)

75

Govers MJAP, Gannon NJ, Dunshea FR, Gibson PR, Muir JG. 1999. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. Gut 45 : 840-847.

Grajek W, Olejnik A, Sip A. 2005. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica 52 : 665-671.

Greenhill AR et al. 2008. Spontaneous fermentation of traditional sago starch in Papua New Guinea. Food Microbiology 1-6.

Griffin IJ, Abrams SA. 2008. Effects of prebiotics on mineral absorption : mechanisms of action. Di dalam : Gibson GR, Roberfroid MB, editor.

Handbook of Prebiotics. New York : CRC Press. hlm 93-104.

Hernot DC, Fahey GCJr. 2007. Based in science dietary fibers and their efects on human digestive health.

Higgins JA et al. 2004. Resistant starch consumption promotes lipid oxidation.

Nutrition and Metabolism 1 : 8.

Higgins JA, Brown MA, Storlien LH. 2006. Consumption of resistant starch decreases postprandial lipogenesis in white adipose tissue of the rat.

Nutrition Journal 5 : 25.

Hu P, Zhao H, Duan Z, Linlin Z, Wu D. 2004. Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science 40 : 231–237.

Huebner J, Wehling RL, Hutkins RW. 2007. Functional activity of commercial prebiotics. International Dairy Journal 17 : 770-775.

Hylla S et al. 1998. Effects of resistant starch on the colon in healthy volunteers:

possible implications for cancer prevention. The American Journal of Clinical Nutrition 67 : 136-42.

ISAPP. 2008. Prebiotics : a consumer guide for making smart choices.

International Scientific Association for Probiotics and Prebiotics.

http://www.isapp.net/docs/annual_report_2008.pdf [20 Maret 2009].

Jenie BSL, Nurwitri CC, Nurjanah S, Firlieyanti AS. 2006. Pengembangan produk pangan tinggi serat dan sumber prebiotik dari resistant starch umbi- umbian (laporan research grant program hibah kompetisi B). Bogor : Departemen Ilmu dan Teknologi Pangan Fakultas Teknologi Pertanian, Institut Pertanian Bogor.

Jenie BSL, Widowati S, Nurjanah S. 2009. Pengembangan produk tepung pisang dengan IG rendah dan sifat prebiotik sebagai bahan pangan fungsional.

Laporan Akhir Hibah Kompetitif Penelitian sesuai Prioritas Nasional Batch II. LPPM, IPB.

Jenkins DJA et al. 1998. Physiological effects of resistant starches on fecal bulk,

short chain fatty acids, blood lipids and glycemic index. Journal of The

American College of Nutrition 17 : 609-616.

(4)

Juarez-Garcia E, Agama-Acevedo E, Sáyago-Ayerdi SG, Rodríguez-Ambriz SL.

Bello-Pérez LA. 2006. Composition, digestibility and application in breadmaking of banana flour. Plant Foods For Human Nutrition 61: 131-137.

Khetarpaul N, Chauhan BM. 1990. Effect of fermentation by pure cultures of yeasts and lactobacilli on the available carbohydrate content of pearl millet.

Food Chemistry 36 : 287-293.

Kim JH et al. 2008. Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137.

Journal of Bioscience and Bioengineering 106 : 449-459.

Kim JH et al. 2009. Characterization of the C-terminal truncated form of amylopullulanase from Lactobacillus plantarum L137. Journal of Bioscience and Bioengineering 107 : 124-129.

Klinder A, Glei M, Pool-Zobel BL. 2008. Prebiotics and reduction of risk of carcinogenesis : review of experimental and human data. Di dalam : Gibson GR, Roberfroid MB, editor. Handbook of Prebiotics. New York : CRC Press. hlm 295-328.

Koksel H, Masatcioglu T, Kahraman K, Ozturk S, Basman A. 2008. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. Journal of Cereal Science 47 : 275–282.

Langkilde AM, Champ M, Andersson H. 2002. Effects of high-resistant-starch banana flour (RS

2

) on in vitro fermentation and the small-bowel excretion of energy, nutrients, and sterols: an ileostomy study. The American Journal of Clinical Nutrition 75 : 104-11.

Le Leu RK et al., 2007. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis 28 : 240- 247.

Le Leu RK, Brown IL, Hu Y, Young GP. 2003. Effect of resistant starch on genotoxin-induced apoptosis, colonic epithelium, and luminal contents in rats. Carcinogenesis 24 : 1347-1352.

Lehmann U, Jacobasch G, Schmiedl D. 2002. Characterization of resistant starch type III from banana (Musa acuminata). Journal of Agricultural and Food Chemistry.

Lehninger AL. 1993. Dasar-Dasar Biokimia. Jilid 1. Thenawidjaja M, penerjemah; Jakarta : Erlangga. Terjemahan dari : Principles of Biochemistry.

Lichtenstein AH, Goldin BR. 2004. Lactic acid bacteria and intestinal drug and

cholesterol metabolism. Di dalam : Salminen S, Wright AV, Ouwehand A,

editor. Lactic Acid Bacteria Microbiological and Functional Aspects. New

York. Marcel Dekker, INC. hlm 507-514.

(5)

77

Mangala SL, Udayasankar K, Tharanathan RN. 1999. Resistant starch from processed cereals : the influence of amylopectin and non-carbohyrate constituents in its formation. Food Chemistry 64 : 391-396.

Manning TS, Rastall R, Gibson G. 2004. Prebiotics and lactic acid bacteria. Di dalam : Salminen S, Wright AV, Ouwehand A, editor. Lactic Acid Bacteria Microbiological and Functional Aspects. New York. Marcel Dekker, INC.

hlm 407-418.

Margareta-Leeman M, Karlsson ME, Eliasson AC, Björck IME. 2006. Resistant starch formation in temperature treated potato starches varying in amylose/amylopectin ratio Carbohydrate Polymers 65 : 306 – 313.

Marinovic MB, Florian S, Muller-Schmehll K, Glatt H, Jacobasch G. 2006.

Dietary resistant starch type 3 prevents tumor induction by 1,2- dimethylhydrazine and alters proliferation, apoptosis, and dedifferentiation in rat colon. Carcinogenesis 27 : 1849-1859.

McIntyre A, Gibson PR, Young GP. 1993. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut 34 : 386-391.

Nguyen TTT et al. 2007. Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: A new method for preparing high energy density complementary foods for young children. Food Chemistry 100 : 623-631.

Nunez-Santiago MC, Bello-Perez LA, Tecante A. 2004. Swelling-solubility characteristics, granule size distribution and behavior of banana (Musa paradisiaca) starch. Carbohydrat Polimer. 56: 65-75.

Okoniewska M, Witwer RS. 2007. Natural resistant starch : an overview of health properties a useful replacement for flour, resistant starch may also boost insulin sensitivity and satiety. Nutritional Outlook.

Oldways. 2007. Resistant starch FAQ, the new fiber story : natural resistant starch. Philadelphia.

Omaye ST. 2004. Food and Nutritional Toxicology. CRC Press, New York.

Onyango C, Thomas B, Annette J, Thomas H, Harald R. 2006. Influence of incubation temperature and time on resistant starch type III formation from autoclaved and acid-hydrolysed cassava starch. Carbohydrate Polymers 66 : 494-499.

Osorio-Dıaz P et al. 2002.In vitro digestibility and resistant starch content of some industrialized commercial beans (Phaseolus vulgaris L.) Food Chemistry 78 : 333–337.

Osungbaro TO. 1990. Effect of fermentation period on amylose content and

textural characteristics of "ogi" (a fermented maize porridge). Journal of

Fermentation and Bioengineering 70 : 22-25.

(6)

Ouattara LTS et al. 2009. Potential of amylolytic lactic acid bacteria to replace the use of malt for partial starch hydrolysis to produce African fermented pearl millet gruel fortified with groundnut. International Journal of Food Microbiology 130 : 258-264.

Patterson CA. 2006. Glycemic Index (GI). Technology Watch.Wellness West.

Phillips J et al. 1995. Effect of resistant starch on fecal bulk and fermentation- dependent events in human. The American Journal of Clinical Nutrition 62 : 121-30.

Presscott H. 2002. Laboratory Exercises in Microbiology. McGraw-Hill Companies.

Prijatmoko D. 2007. Indeks glikemik 1 jam postprandial bahan makanan pokok jenis nasi, jagung, dan kentang. Cermin Dunia Kedokteran 34 : 285-288.

Rahman A. 1992. Teknologi Fermentasi. Jakarta : Arcan.

Raimbault M, Toro CR, Giraud E, Soccol C, Saucedo G. 1996. Fermentation in cassava bioconversion. CIAT Publication 271 ISBN 958-9439-888.

Colombia.

Ramakrishna BS et al. 2000. Amylase-resistant starch plus oral rehydration solution for cholera. The New England Journal of Medicine.

Ramakrishna BS et al. 2008. A Randomized Controlled Trial of Glucose versus Amylase Resistant Starch Hypo-Osmolar Oral Rehydration Solution for Adult Acute Dehydrating Diarrhea. PLoS ONE 3 : e1587.

Reddy G, Altaf Md, Naveena BJ, Venkateshwar M, Kumar EV. 2008. Amylolytic bacterial lactic acid fermentation-A review. Biotechnology Advances 26 : 22–34.

Roberfroid M. 2007. Prebiotics : The concept revisited. The Journal of Nutrition 137 : 830S-837S.

Roberfroid MB. 2008. Prebiotics : concept, definition, criteria, methodologies, and products. Di dalam : Gibson GR, Roberfroid MB, editor. Handbook of Prebiotics. New York : CRC Press. hlm 39-68.

Robertson MD, Bickerton AS, Dennis AL, Vidal H, Frayn KN. 2005. Insulin- sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. The American Journal of Clinical Nutrition 82 : 559-67.

Rubatzky VE, Yamaguchi M. 1998. Sayuran Dunia Jilid I. Bogor: IPB.

Sagum R, Arcot J. 2000. Effect of domestic processing methods on the starch, non-starch polysaccharides and in vitro starch and protein digestibility of three varieties of rice with varying levels of amylose. Food Chemistry 70 : 107-111.

Sajilata MG, Singhal RS, Kulkarni PR. 2006. Resistant starch-a review.

Comprehensive Reviews in Food Science and Food Safety, Institute of Food

Technologists.

(7)

79

Sanni AI et al. 2002. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. International Journal of Food Microbiology 72 : 53–62.

Schmiedl D, BaÈuerlein M, Bengs H, Jacobasch G. 2000. Production of heat- stable, butyrogenic resistant starch. Carbohydrate Polymers 43 : 183-193.

Shamai K, Peled HV, Shimoni E. 2003. Polymorphism of resistant starch type III.

Carbohydrate Polymers 54 : 363-369.

Shamai K, Shimoni E, Peled HV. 2004. Small angle X-ray scattering of resistant starch type III. Biomacromolecules 5 : 219-223.

Sievert D, Pomeranz Y. 1990. Enzyme-resistant starch II. Differential scanning calorymetry studies on heat-treated starches and enzyme-resistant starch residues. Cereal Chem 67 : 217-221.

Skrede G et al. 2003. Effects of lactic acid fermentation on wheat and barley carbohydrate composition and production performance in the chicken Animal. Feed Science and Technology 105 (2003) 135–148

Skrede G, Sahlstrøm S, Skrede A, Holck A, Slinde E. 2001. Effect of lactic acid fermentation of wheat and barley whole meal flour on carbohydrate composition and digestibility in mink (Mustela vison). Animal Feed Science and Technology 90 : 199-212.

So PW et al. 2007. Impact of Resistant Starch on Body Fat Patterning and Central Appetite Regulation. PLoS ONE 2 : e1309.

Sobowale AO, Olurin TO, Oyewole OB. 2007. Effect of lactic acid bacteria starter culture fermentation of cassava on chemical and sensory characteristics of fufu flour. African Journal of Biotechnology 6 : 1954- 1958.

Suh HJ, Kim JM, Choi YM. 2003. The incorporation of sweet potato application in the preparation of a rice beverage. International Journal of Food Science and Technology 38 : 145-151.

Taggart P. 2005. Resistant starch : a new fibre naturally. National Starch Food Inovation. http://www.aaccnet.org/meetings/99mtg/abstracts/acaba49.htm [13 Mei 2008].

Thompson DB. 2000. Strategies for the manufacture of resistant starch. Trends in Food Science and Technology 11 : 245-253.

Topping DL, Clifton PM. 2001. Short-chain fatty acids and human colonic function : roles of resistant starch and nonstarch polysaccharides.

Phisiological Reviews 81 : 1031-1064.

Topping DL, Fukushima M, Bird AR. 2003. Resistant starch as a prebiotic and synbiotic : state of the art. Proceedings of the Nutrition Society 62 : 171- 176.

Van der Meulen R et al. 2007. Population dynamics and metabolite target analysis

of lactic acid bacteria during laboratory fermentations of wheat and spelt

sourdoughs. Applied and Environmental Microbiology 73 : 4741-4750.

(8)

Vanhoutte T et al. 2006. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Applied and Environmental Microbiology 72 : 5990-5997.

Vatanasuchart N, Niyomwit B, Wongkrajang K. 2009. Resistant starch contents and the in vitro starch digestibility of thai starchy foods. Kasetsart J. 43 : 178-186.

Vishnu C, Naveena BJ, Altaf Md, Venkateshwar M, Reddy G. 2006.

Amylopullulanase—A novel enzyme of L. amylophilus GV6 in direct fermentation of starch to L(+) lactic acid. Enzyme and Microbial Technology 38 : 545–550.

Volk, Wheeler. 1993. Mikrobiologi Dasar Edisi 5. Erlangga, Jakarta.

Wang J, Jin Z, Yuan X. 2007. Preparation of resistant starch from starch-guar gum extrudates and their properties. Food Chemistry 101 : 20-25.

Wells AL, Saulnier DMA, Gibson GR. 2008. Gastrointestnal microflora and interactions with gut mucosa. Di dalam : Gibson GR, Roberfroid MB, editor. Handbook of Prebiotics. New York : CRC Press. hlm 13-38.

Wikipedia, 2007. Banana. http://www.wikipedia.org/bananas [02 Januari 2007].

Wikipedia. 2008. Resistant Starch. http://en.wikipedia.org/wiki/Resistantstarch [13 Mei 2008).

Winarno FG. 2002. Kimia pangan dan gizi. Jakarta : Gramedia Pustaka Utama.

Wollowski I, Rechkemmer G, Pool-Zobel BL. 2001. Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition 73 : 451S-5S.

Xue Q, Newman RK ,Newman CW. 1996. Effects of heat treatment of barley starches on in vitro digestibility and glucose responses in rats. Cereal Chem.

73 : 588-592.

Zhang P, Whistler RL, BeMiller JN, Hamaker BR. 2005. Banana starch:

production, physicochemical properties, and digestibility—a review.

Carbohydrate Polymers 59 : 443–458.

(9)

LAMPIRAN

Lampiran 1 Gambar hasil pewarnaan Gram BAL dan EPEC di bawah mikroskop dengan pembesaran 1000 x

Enteropatogenik Escherichia coli (EPEC)

Lactobacillus plantarum kik Lactobacillus fermentum 2B4

Lactobacillus plantarum sa28k Lactobacillus acidophilus

(10)

Lampiran 2 Tampilan output software API Test CHL 50 L. plantarum kik dan L.

fermentum 2B4

Lactobacillus plantarum kik

Lactobacillus fermentum 2B4

(11)

83 Lampiran 3 Pengukuran diameter dan panjang pisang tanduk

Lampiran 4 Kondisi fermentasi irisan pisang tanduk oleh kultur campuran

L. plantarum kik dan L. fermentum 2B4

(12)

Lampiran 5 Penampakan irisan pisang tanduk setelah fermentasi dan perlakuan pemanasan otoklaf

Lampiran 6 Penampakan tepung pisang dan tepung pisang modifikasi

Tepung pisang alami Tepung pisang fermentasi

Tepung pisang perlakuan pemanasan otoklaf

Tepung pisang fermentasi dan perlakuan

pemanasan otoklaf

(13)

85 Lampiran 7 Tabel kurva pertumbuhan Lactobacillus plantarum kik dan L. fermentum

2B4

Jam

Lactobacillus fermentum 2B4 Lactobacillus plantarum kik

cfu/ml Log cfu/ml cfu/ml Log cfu/ml

0 1.4 × 10⁵ 5.1 2.1 × 10⁵ 5.3

3 2.5 × 10⁵ 5.4 2.0 × 10⁵ 5.3

6 2.6 × 10⁶ 6.4 5.9 × 10⁶ 6.8

9 7.8 × 10⁷ 7.9 1.2 × 10⁸ 8.1

12 7.8 × 10⁸ 8.9 8.5 × 10⁸ 8.9

15 1.3 × 10⁹ 9.1 1.7 × 10⁹ 9.2

18 1.4 × 10⁹ 9.1 1.7 × 10⁹ 9.2

21 3.0 × 10⁹ 9.5 2.7 × 10⁹ 9.4

24 8.1 × 10⁸ 8.9 2.8 × 10⁹ 9.4

Lampiran 8 Tabel kurva pertumbuhan Lactobacillus plantarum kik dan L. fermentum 2B4 berdasarkan densitas optik (λ = 600 nm)

Jam Lactobacillus fermentum 2B4 Lactobacillus plantarum kik

0 0.024 0.034

3 0.039 0.052

6 0.064 0.084

9 0.408 0.449

12 1.543 1.6

15 1.876 2.023

18 1.97 2.163

21 1.997 2.256

24 1.978 2.287

27 1.976 2.307

(14)

Lampiran 9 Tabel pengukuran berat, panjang dan diameter pisang tanduk

Berat (g) Panjang (cm) Diameter Luar (cm)

Luar Dalam Pangkal Tengah Ujung

363.2 35.2 25.2 4.35 4.735 3.62

464.6 41.9 29.1 4.15 4.725 4.135

428.4 31.8 37.6 3.79 4.93 3.94

475.8 36.2 38.4 4.075 4.9 4.385

342.7 30.6 36.8 3.54 4.55 4.295

308 27 32.5 3.62 4.805 4.44

491.3 41.3 30.8 4.5 4.915 4.27

534.1 40.4 30.6 4.61 5.275 4.5

418.9 39.2 31.7 4.235 4.535 4.025

352.6 36 27.1 3.55 4.49 3.675

444.1 37.2 31.5 4.16 4.725 3.925

409.3 39.2 32.9 3.6 4.465 3.9

408.8 39.2 28.5 3.625 4.575 3.69

381.3 36.5 25.3 4.775 4.78 4.075

383.2 39 29.3 3.625 4.675 3.82

358.1 39.6 29 3.2 4.4 4

268.4 33.5 24.5 4.02 4.415 3.48

394 37.6 25.8 4.375 4.99 4.15

431.7 41.7 29.6 4.51 4.75 4.3

432.7 40.6 27.3 4.19 4.765 4.35

386.7 40 27.2 3.35 4.25 4.58

465.6 34.5 23 4.72 5.46 4.54

479.4 37.2 25.9 4.6 5.5 4.25

464.9 37 27.5 4.6 5.25 4.4

413.1 38 28.2 4.22 4.7 4.12

420.3 41 29.2 3.895 4.515 4.29

322.9 34 29 2.75 4.19 3.57

406 39.3 29.4 4.326 4.6 3.6

301.7 37.8 27 3.375 4.225 3.54

332.7 36 28.7 3.71 4.33 4.05

386.5 39.6 30.3 3.29 4.38 4.33

313.8 39.6 27 3.14 4.075 3.725

372.2 39.3 28 3.155 4.09 3.78

Rata-rata

398.70 37.48 29.21 3.93 4.67 4.05

(15)

87 Lampiran 10a Tabel pengaruh lama fermentasi terhadap jumlah bakteri asam laktat

pada cairan fermentasi (Log cfu/ml)

Lama fermentasi (jam)

Ulangan

Jumlah Rata-rata

1 2

0 6.41 6.38 12.79 6.39

24 6.70 6.66 13.36 6.68

48 7.06 7.29 14.35 7.17

72 7.84 8.16 16.00 8.00

96 8.27 8.35 16.61 8.31

Lampiran 10b Tabel analisis deskriptif pengaruh lama fermentasi terhadap jumlah bakteri asam laktat pada cairan fermentasi (Log cfu/ml)

N Mean Std. Deviation Std. Error

95% Confidence Interval for

Mean Minimum Maximum

Lower Bound Upper Bound

0 2 6.3945 .02475 .01750 6.1721 6.6169 6.38 6.41

24 2 6.6805 .03182 .02250 6.3946 6.9664 6.66 6.70

48 2 7.1740 .15981 .11300 5.7382 8.6098 7.06 7.29

72 2 7.9995 .23122 .16350 5.9220 10.0770 7.84 8.16

96 2 8.3065 .05728 .04050 7.7919 8.8211 8.27 8.35

Total 10 7.3110 .78362 .24780 6.7504 7.8716 6.38 8.35

Lampiran 10c Tabel analisis ragam pengaruh lama fermentasi terhadap jumlah bakteri asam laktat pada cairan fermentasi (Log cfu/ml)

Sum of Squares df Mean Square F Sig.

Between Groups 5.443 4 1.361 81.081 .000

Within Groups .084 5 .017

Total 5.527 9

(16)

Lampiran 10d Tabel uji lanjut Duncan pengaruh lama fermentasi terhadap jumlah bakteri asam laktat pada cairan fermentasi (Log cfu/ml)

Waktu N

Subset for alpha = 0.05

1 2 3

0 2 6.3945

24 2 6.6805

48 2 7.1740

72 2 7.9995

96 2 8.3065

Sig. .078 1.000 .064

Lampiran 11a Tabel pengaruh lama fermentasi terhadap total asam terlarut (TAT) pada cairan fermentasi (%)

Lama fermentasi (jam)

Ulangan

Jumlah Rata-rata

1 2

0 0.03 0.03

0.13 0.03

0.03 0.03

24 0.19 0.22

0.85 0.21

0.22 0.22

48 0.25 0.25

1.01 0.25

0.25 0.25

72 0.28 0.32

1.20 0.30

0.28 0.32

96 0.28 0.32

1.23 0.31

0.28 0.35

Lampiran 11b Tabel analisis deskriptif pengaruh lama fermentasi terhadap total asam terlarut (TAT) pada cairan fermentasi (%)

N Mean Std. Deviation Std. Error

95% Confidence Interval for

Mean Minimum Maximum

Lower Bound Upper Bound

0 4 .0320 .00000 .00000 .0320 .0320 .03 .03

24 4 .2130 .01600 .00800 .1875 .2385 .19 .22

48 4 .2520 .00000 .00000 .2520 .2520 .25 .25

72 4 .2995 .01790 .00895 .2710 .3280 .28 .32

96 4 .3075 .03012 .01506 .2596 .3554 .28 .35

Total 20 .2208 .10413 .02328 .1721 .2695 .03 .35

(17)

89 Lampiran 11c Tabel analisis ragam pengaruh lama fermentasi terhadap total asam

terlarut (TAT) pada cairan fermentasi (%)

Sum of Squares df Mean Square F Sig.

Between Groups .202 4 .050 169.855 .000

Within Groups .004 15 .000

Total .206 19

Lampiran 11d Tabel uji lanjut Duncan pengaruh lama fermentasi terhadap total asam terlarut (TAT) pada cairan fermentasi (%)

Waktu N Subset for alpha = 0.05

1 2 3 4

0 4 .0320

24 4 .2130

48 4 .2520

72 4 .2995

96 4 .3075

Sig. 1.000 1.000 1.000 .521

Lampiran 12a Tabel pengaruh lama fermentasi terhadap pH pada cairan fermentasi

Lama fermentasi (jam)

Ulangan

Jumlah Rata-rata

1 2

0 6.36 6.34

25.51 6.38

6.34 6.47

24 3.7 3.81

15.07 3.77

3.82 3.74

48 4.02 3.92

15.90 3.98

4.03 3.93

72 4.2 4.08

16.57 4.14

4.18 4.11

96 4.19 4.03

16.49 4.12

4.2 4.07

(18)

Lampiran 12b Tabel analisis deskriptif pengaruh lama fermentasi terhadap pH pada cairan fermentasi

N Mean Std. Deviation Std. Error

95% Confidence Interval for

Mean Minimum Maximum

Lower Bound Upper Bound

0 4 6.3775 .06238 .03119 6.2782 6.4768 6.34 6.47

24 4 3.7675 .05737 .02869 3.6762 3.8588 3.70 3.82

48 4 3.9750 .05802 .02901 3.8827 4.0673 3.92 4.03

72 4 4.1425 .05679 .02839 4.0521 4.2329 4.08 4.20

96 4 4.1225 .08539 .04270 3.9866 4.2584 4.03 4.20

Total 20 4.4770 .98629 .22054 4.0154 4.9386 3.70 6.47

Lampiran 12c Tabel analisis ragam pengaruh lama fermentasi terhadap pH pada cairan fermentasi

Sum of Squares df Mean Square F Sig.

Between Groups 18.419 4 4.605 1092.924 .000

Within Groups .063 15 .004

Total 18.483 19

Lampiran 12d Tabel uji lanjut Duncan pengaruh lama fermentasi terhadap pH pada cairan fermentasi

Waktu N Subset for alpha = 0.05

1 2 3 4

24 4 3.7675

48 4 3.9750

96 4 4.1225

72 4 4.1425

0 4 6.3775

Sig. 1.000 1.000 .669 1.000

(19)

91 Lampiran 13a Tabel pengaruh lama fermentasi terhadap amilase ekstraseluler yang

dihasilkan oleh kultur campuran pada cairan fermentasi (unit/ml)

Lama fermentasi (jam)

Ulangan

Jumlah Rata-rata

1 2

0 0.03 0.03

0.11 0.03

0.03 0.03

24 0.05 0.05

0.21 0.05

0.05 0.05

48 0.09 0.08

0.34 0.09

0.09 0.09

72 0.17 0.18

0.73 0.18

0.18 0.20

96 0.30 0.30

1.20 0.30

0.31 0.29

Lampiran 13b Tabel Analisis deskriptif pengaruh lama fermentasi terhadap amilase ekstraseluler yang dihasilkan oleh kultur campuran pada cairan fermentasi (unit/ml)

N Mean Std. Deviation Std. Error

95% Confidence Interval for

Mean Minimum Maximum

Lower Bound Upper Bound

0 4 .0270 .00000 .00000 .0270 .0270 .03 .03

24 4 .0520 .00245 .00122 .0481 .0559 .05 .06

48 4 .0858 .00287 .00144 .0812 .0903 .08 .09

72 4 .1837 .01021 .00511 .1675 .2000 .17 .20

96 4 .3012 .00929 .00464 .2865 .3160 .29 .31

Total 20 .1299 .10364 .02317 .0814 .1785 .03 .31

Lampiran 13c Tabel Analisis ragam pengaruh lama fermentasi terhadap amilase ekstraseluler yang dihasilkan oleh kultur campuran pada cairan fermentasi (unit/ml)

Sum of Squares df Mean Square F Sig.

Between Groups .203 4 .051 1242.165 .000

Within Groups .001 15 .000

Total .204 19

(20)

Lampiran 13d Tabel uji lanjut Duncan pengaruh lama fermentasi terhadap amilase ekstraseluler yang dihasilkan oleh kultur campuran pada cairan fermentasi (unit/ml)

Waktu N Subset for alpha = 0.05

1 2 3 4 5

0 4 .0270

24 4 .0520

48 4 .0858

72 4 .1837

96 4 .3012

Sig. 1.000 1.000 1.000 1.000 1.000

Lampiran 14 Tabel kadar air tepung pisang (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi Tanpa 14.08 14.03 28.11 14.05

Dengan 14.16 14.06 28.22 14.11

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Tanpa 15.01 14.83 29.84 14.92

Dengan 13.87 13.56 27.43 13.71

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Tanpa 14.97 15.13 30.10 15.05

Dengan 13.20 13.50 26.70 13.35

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Tanpa 14.82 14.67 29.49 14.75

Dengan 13.53 13.98 27.51 13.76

(21)

93 Lampiran 15a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan pemanasan otoklaf terhadap kadar pati resisten tepung pisang (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Tanpa Pemanasan otoklaf

5.36 7.18

25.55 6.39

5.71 7.30

Pemanasan otoklaf 12.19 13.79

51.96 12.99

12.19 13.79

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Tanpa Pemanasan otoklaf

5.48 6.44

24.08 6.02

5.60 6.56

Pemanasan otoklaf 14.95 11.38

52.32 13.08

14.83 11.15

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Tanpa Pemanasan otoklaf

6.58 5.03

23.46 5.87

6.70 5.15

Pemanasan otoklaf 13.57 13.10

52.87 13.22

13.33 12.87

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Tanpa Pemanasan otoklaf

7.34 5.68

25.79 6.45

6.98 5.80

Pemanasan otoklaf 11.74 15.45

54.85 13.71

11.97 15.69

(22)

Lampiran 15b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar pati resisten tepung pisang (% bk)

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf 6.3865 .99410 4

Pemanasan otoklaf 12.9910 .92030 4

Total 9.6887 3.63994 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf 6.0205 .55621 4

Pemanasan otoklaf 13.0793 2.09714 4

Total 9.5499 4.03155 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf 5.8650 .89872 4

Pemanasan otoklaf 13.2180 .30055 4

Total 9.5415 3.97900 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf 6.4468 .83352 4

Pemanasan otoklaf 13.7123 2.14722 4

Total 10.0795 4.16603 8

Total

Tanpa Pemanasan

otoklaf 6.1797 .78968 16

Pemanasan otoklaf 13.2501 1.43947 16

Total 9.7149 3.76899 32

Lampiran 15c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar pati resisten tepung pisang (% bk)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 402.126

a

7 57.447 36.057 .000

Intercept 3020.141 1 3020.141 1895.602 .000

Fermentasi 1.527 3 .509 .320 .811

Pemanasan otoklaf 399.929 1 399.929 251.017 .000

Fermentasi *

Pemanasan otoklaf .670 3 .223 .140 .935

Error 38.238 24 1.593

Total 3460.505 32

Corrected Total 440.364 31

(23)

95 Lampiran 16a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan

pemanasan otoklaf terhadap kadar pati tepung pisang (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Tanpa Pemanasan otoklaf

68.16 72.42

281.15 70.29

68.16 72.42

Pemanasan otoklaf 66.82 58.70

251.03 62.76

66.82 58.70

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Tanpa Pemanasan otoklaf

63.46 68.39

269.73 67.43

67.81 70.08

Pemanasan otoklaf 59.48 65.83

259.23 64.81

62.03 71.89

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Tanpa Pemanasan otoklaf

60.35 68.87

263.91 65.98

63.17 71.52

Pemanasan otoklaf 67.33 59.84

252.57 63.14

65.56 59.84

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Tanpa Pemanasan otoklaf

74.89 65.06

279.91 69.98

74.89 65.06

Pemanasan otoklaf 65.52 58.73

248.49 62.12

65.52 58.73

(24)

Lampiran 16b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar pati tepung pisang (% bk)

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf 70.2890 2.45836 4

Pemanasan otoklaf 62.7580 4.68577 4

Total 66.5235 5.31080 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf 67.4318 2.81819 4

Pemanasan otoklaf 64.8065 5.39555 4

Total 66.1191 4.22487 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf 65.9768 5.11907 4

Pemanasan otoklaf 63.1430 3.88311 4

Total 64.5599 4.47071 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf 69.9775 5.67478 4

Pemanasan otoklaf 62.1230 3.92252 4

Total 66.0502 6.16620 8

Total

Tanpa Pemanasan

otoklaf 68.4187 4.23195 16

Pemanasan otoklaf 63.2076 4.16618 16

Total 65.8132 4.90636 32

Lampiran 16c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar pati tepung pisang (% bk)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 284.463

a

7 40.638 2.112 .081

Intercept 138604.021 1 138604.021 7203.631 .000

Fermentasi 17.801 3 5.934 .308 .819

Pemanasan otoklaf 217.247 1 217.247 11.291 .003

Fermentasi *

Pemanasan otoklaf 49.416 3 16.472 .856 .477

Error 461.781 24 19.241

Total 139350.265 32

Corrected Total 746.244 31

(25)

97 Lampiran 17a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan

pemanasan otoklaf terhadap kadar amilosa tepung pisang (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Tanpa Pemanasan otoklaf

24.48 25.40

99.75 24.94

25.42 24.45

Pemanasan otoklaf 25.51 26.19

104.02 26.01

26.35 25.97

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Tanpa Pemanasan otoklaf

24.04 21.89

92.66 23.16

24.76 21.96

Pemanasan otoklaf 26.40 24.07

102.15 25.54

26.32 25.35

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Tanpa Pemanasan otoklaf

24.14 22.94

96.33 24.08

25.19 24.05

Pemanasan otoklaf 26.58 25.40

103.69 25.92

26.04 25.67

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Tanpa Pemanasan otoklaf

21.55 20.44

84.65 21.16

22.22 20.44

Pemanasan otoklaf 24.59 24.53

98.63 24.66

24.52 24.99

(26)

Lampiran 17b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar amilosa tepung pisang (% bk)

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf 24.9365 .54695 4

Pemanasan otoklaf 26.0055 .36278 4

Total 25.4710 .71492 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf 23.1643 1.45605 4

Pemanasan otoklaf 25.5375 1.08532 4

Total 24.3509 1.73858 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf 24.0818 .92030 4

Pemanasan otoklaf 25.9228 .50877 4

Total 25.0023 1.20095 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf 21.1622 .87318 4

Pemanasan otoklaf 24.6560 .22277 4

Total 22.9091 1.95845 8

Total

Tanpa Pemanasan

otoklaf 23.3362 1.70442 16

Pemanasan otoklaf 25.5304 .79293 16

Total 24.4333 1.71826 32

Lampiran 17c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap kadar amilosa tepung pisang (% bk)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 74.585

a

7 10.655 15.096 .000

Intercept 19103.576 1 19103.576 27065.554 .000

Fermentasi 29.843 3 9.948 14.094 .000

Pemanasan otoklaf 38.518 1 38.518 54.571 .000

Fermentasi *

Pemanasan otoklaf 6.223 3 2.074 2.939 .054

Error 16.940 24 .706

Total 19195.101 32

Corrected Total 91.525 31

(27)

99 Lampiran 17d Tabel uji lanjut Duncan pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 terhadap kadar amilosa tepung pisang (% bk)

Fermentasi N Subset

1 2 3

Fermentasi 3 : 1 8 22.9091

Fermentasi 1 : 1 8 24.3509

Fermentasi 2 : 1 8 25.0023 25.0023

Tanpa Fermentasi 8 25.4710

Sig. 1.000 .134 .276

Lampiran 18a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan pemanasan otoklaf terhadap daya cerna pati tepung pisang secara in vitro (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Tanpa Pemanasan otoklaf

26.98 31.35

118.61 29.65

27.52 32.77

Pemanasan otoklaf 68.43 70.24

278.66 69.66

67.36 72.63

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Tanpa Pemanasan otoklaf

20.59 21.20

82.60 20.65

19.61 21.20

Pemanasan otoklaf 56.55 60.20

234.44 58.61

57.00 60.69

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Tanpa Pemanasan otoklaf

18.48 20.49

78.88 19.72

18.48 21.43

Pemanasan otoklaf 50.08 57.76

225.80 56.45

60.20 57.76

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Tanpa Pemanasan otoklaf

26.45 22.67

97.72 24.43

26.45 22.15

Pemanasan otoklaf 64.32 71.27

272.11 68.03 64.32 72.19

(28)

Lampiran 18b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap daya cerna pati tepung pisang secara in vitro (% bk)

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf 29.6535 2.84698 4

Pemanasan otoklaf 69.6643 2.30620 4

Total 49.6589 21.52073 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf 20.6500 .75353 4

Pemanasan otoklaf 58.6107 2.13889 4

Total 39.6304 20.34511 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf 19.7208 1.48114 4

Pemanasan otoklaf 56.4498 4.39903 4

Total 38.0853 19.86625 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf 24.4298 2.34339 4

Pemanasan otoklaf 68.0270 4.29138 4

Total 46.2284 23.52252 8

Total

Tanpa Pemanasan

otoklaf 23.6135 4.42274 16

Pemanasan otoklaf 63.1879 6.68249 16

Total 43.4007 20.86232 32

Lampiran 18c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap daya cerna pati tepung pisang secara in vitro (% bk)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 13300.275

a

7 1900.039 237.434 .000

Intercept 60275.916 1 60275.916 7532.227 .000

Fermentasi 717.039 3 239.013 29.868 .000

Pemanasan otoklaf 12529.089 1 12529.089 1565.666 .000 Fermentasi *

Pemanasan otoklaf 54.148 3 18.049 2.255 .108

Error 192.058 24 8.002

Total 73768.250 32

Corrected Total 13492.333 31

(29)

101 Lampiran 18d Tabel uji lanjut Duncan pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 terhadap daya cerna pati tepung pisang secara in vitro (% bk)

Fermentasi N Subset

1 2 3

Fermentasi 2 : 1 8 38.0853 Fermentasi 1 : 1 8 39.6304

Fermentasi 3 : 1 8 46.2284

Tanpa Fermentasi 8 49.6589

Sig. .286 1.000 1.000

Lampiran 19a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan pemanasan otoklaf terhadap total asam tertitrasi (TAT) tepung pisang (% bk)

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Pemanasan Otoklaf

0.33 0.34

1.35 0.34

0.33 0.34

Tanpa Pemanasan otoklaf

0.34 0.32

1.32 0.33

0.34 0.32

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Pemanasan otoklaf 0.33 0.34

1.35 0.34

0.33 0.34

Tanpa Pemanasan otoklaf

0.35 0.32

1.34 0.34

0.35 0.32

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Pemanasan otoklaf 0.33 0.36

1.39 0.35

0.33 0.36

Tanpa Pemanasan otoklaf

0.32 0.33

1.29 0.32

0.32 0.33

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Pemanasan otoklaf 0.34 0.33

1.36 0.34

0.34 0.33

Tanpa Pemanasan otoklaf

0.34 0.34

1.37 0.34

0.34 0.34

(30)

Lampiran 19b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap total asam tertitrasi (TAT) tepung pisang (% bk)

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf .3365 .00520 4

Pemanasan otoklaf .3310 .00808 4

Total .3338 .00694 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf .3370 .00808 4

Pemanasan otoklaf .3355 .01328 4

Total .3363 .01021 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf .3470 .01732 4

Pemanasan otoklaf .3230 .00231 4

Total .3350 .01719 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf .3390 .00577 4

Pemanasan otoklaf .3420 .00231 4

Total .3405 .00438 8

Total

Tanpa Pemanasan

otoklaf .3399 .01020 16

Pemanasan otoklaf .3329 .01007 16

Total .3364 .01059 32

Lampiran 19c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap total asam tertitrasi (TAT) tepung pisang (% bk)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model .001

a

7 .000 2.430 .049

Intercept 3.621 1 3.621 42722.602 .000

Fermentasi .000 3 6.883E-5 .812 .500

Pemanasan otoklaf .000 1 .000 4.625 .042

Fermentasi *

Pemanasan otoklaf .001 3 .000 3.316 .037

Error .002 24 8.475E-5

Total 3.624 32

Corrected Total .003 31

(31)

103 Lampiran 20a Tabel pengaruh rasio L. plantarum kik dan L. fermentum 2B4 dan

pemanasan otoklaf terhadap pH tepung pisang

Metode Pembuatan Tepung Pisang

Pemanasan Otoklaf

Ulangan

Jumlah Rata- rata

1 2

Tanpa Fermentasi

Pemanasan Otoklaf

5.98 5.91

23.82 5.96

5.98 5.95

Tanpa Pemanasan otoklaf

6.86 6.59

26.90 6.73

6.86 6.59

L. plantarum kik : L. fermentum 2B4

(1 : 1)

Pemanasan otoklaf 4.67 5.17

19.77 4.94

4.71 5.22

Tanpa Pemanasan otoklaf

6.28 6.41

25.41 6.35

6.29 6.43

L. plantarum kik : L. fermentum 2B4

(2 : 1)

Pemanasan otoklaf 4.67 4.9

19.16 4.79

4.68 4.91

Tanpa Pemanasan otoklaf

6.33 6.31

25.33 6.33

6.35 6.34

L. plantarum kik : L. fermentum 2B4

(3 : 1)

Pemanasan otoklaf 5.19 4.86

20.12 5.03

5.19 4.88

Tanpa Pemanasan otoklaf

6.46 6.21

25.38 6.35

6.47 6.24

(32)

Lampiran 20b Tabel analisis deskriptif pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap pH tepung pisang

Fermentasi Pemanasan otoklaf Mean Std. Deviation N

Tanpa Fermentasi

Tanpa Pemanasan

otoklaf 5.9550 .03317 4

Pemanasan otoklaf 6.7250 .15588 4

Total 6.3400 .42460 8

Fermentasi 1 : 1

Tanpa Pemanasan

otoklaf 4.9425 .29273 4

Pemanasan otoklaf 6.3525 .07848 4

Total 5.6475 .77935 8

Fermentasi 2 : 1

Tanpa Pemanasan

otoklaf 4.7900 .13292 4

Pemanasan otoklaf 6.3325 .01708 4

Total 5.5613 .82916 8

Fermentasi 3 : 1

Tanpa Pemanasan

otoklaf 5.0300 .18493 4

Pemanasan otoklaf 6.3450 .13916 4

Total 5.6875 .71904 8

Total

Tanpa Pemanasan

otoklaf 5.1794 .49950 16

Pemanasan otoklaf 6.4388 .19802 16

Total 5.8091 .74094 32

Lampiran 20c Tabel analisis ragam pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 dan pemanasan otoklaf terhadap pH tepung pisang

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 16.453

a

7 2.350 99.605 .000

Intercept 1079.847 1 1079.847 45762.273 .000

Fermentasi 3.073 3 1.024 43.417 .000

Pemanasan otoklaf 12.688 1 12.688 537.707 .000

Fermentasi *

Pemanasan otoklaf .691 3 .230 9.759 .000

Error .566 24 .024

Total 1096.865 32

Corrected Total 17.019 31

(33)

105 Lampiran 20d Tabel uji lanjut Duncan pengaruh rasio L. plantarum kik dan L.

fermentum 2B4 terhadap pH tepung pisang

Fermentasi N Subset

1 2

Fermentasi 2 : 1 8 5.5613 Fermentasi 1 : 1 8 5.6475 Fermentasi 3 : 1 8 5.6875

Tanpa Fermentasi 8 6.3400

Sig. .132 1.000

Lampiran 21a Tabel pengaruh fermentasi terhadap serat pangan larut, serat pangan tidak larut, dan total serat pangan tepung pisang modifikasi (% bk)

Kombinasi Pemanasan

Otoklaf Serat Pangan Ulangan

Jumlah Rata-rata

1 2

Tanpa Fermentasi

Larut 1.89 2.87 4.76 2.38

Tidak Larut 14.48 15.49 29.97 14.99

Total 16.37 18.37 34.73 17.37

Fermentasi

Larut 2.55 2.00 4.54 2.27

Tidak Larut 14.20 13.07 27.27 13.64

Total 16.74 15.07 31.81 15.91

Lampiran 21b Tabel uji t student pengaruh fermentasi terhadap serat pangan larut tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference

F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper Serat

larut

Equal variances assumed

6.084E1

5 .000 .193 2 .865 .10902 .56487 -2.32142 2.53946 Equal variances

not assumed .193 1.564 .869 .10902 .56487 -3.10101 3.31906

(34)

Lampiran 21c Tabel uji t student pengaruh fermentasi terhadap serat pangan tidak larut tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper Serat

tidak larut

Equal variances assumed

3.931E1

5 .000 1.451 2 .284 .94783 .65343 -1.86364 3.75930 Equal variances

not assumed 1.451 1.622 .310 .94783 .65343 -2.59442 4.49008

Lampiran 21d Tabel uji t student pengaruh fermentasi terhadap total serat pangan tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference

F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper

Total serat

Equal variances assumed

1.365E1

5 .000 1.750 2 .222 1.83153 1.04680 -2.67249 6.33556 Equal variances

not assumed 1.750 1.856 .232 1.83153 1.04680 -3.02516 6.68823

Lampiran 22a Tabel pengaruh fermentasi terhadap pati cepat cerna (RDS) dan pati lambat cerna (SDS) tepung pisang modifikasi (% bk)

Kombinasi Pemanasan

Otoklaf Pati Ulangan

Jumlah Rata-rata

1 2

Tanpa Fermentasi

Cepat cerna 58.11 60.86

236.50 59.13 56.68 60.86

Lambat cerna

48.82 46.85

190.99 47.75 48.82 46.50

Tanpa Fermentasi

Cepat cerna 54.34 51.91

212.51 53.13 54.69 51.56

Lambat cerna

52.92 49.21

204.74 51.19

52.69 49.92

(35)

107 Lampiran 22b Tabel uji t student pengaruh fermentasi terhadap pati cepat cerna

(RDS) tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference

F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper SDS Equal variances

assumed 1.251 .306 4.546 6 .004 5.99819 1.31958 2.76930 9.22708 Equal variances

not assumed 4.546 5.648 .005 5.99819 1.31958 2.71995 9.27643

Lampiran 22c Tabel uji t student pengaruh fermentasi terhadap pati lambat cerna (SDS) tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference

F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper

SDS

Equal variances

assumed 10.696 .017 3.033 6 .023 3.43972 1.13428 .66425 6.21519 Equal variances

not assumed 3.033 5.183 .028 3.43972 1.13428 .55470 6.32474

(36)

Lampiran 23 Tabel pengaruh fermentasi terhadap hidrolisis pati tepung pisang modifikasi (% bk)

Kombinasi Pemanasan Otoklaf

Waktu (menit)

Ulangan

Jumlah Rata-rata

1 2

Tanpa Fermentasi

30 33.91 32.41

134.26 33.57 33.91 34.03

60 44.14 43.22

174.70 43.68 44.14 43.22

90 45.75 45.92

183.34 45.83 45.75 45.92

120 47.90 47.00

189.80 47.45 47.90 47.00

150 51.13 49.70

203.28 50.82 52.21 50.24

180 53.29 51.32

209.75 52.44 53.29 51.86

Fermentasi

30 26.69 30.38

115.19 28.80 27.74 30.38

60 41.87 37.43

158.06 39.51 41.87 36.89

90 44.49 37.43

163.83 40.96 44.49 37.43

120 47.10 37.43

169.11 42.28 46.06 38.52

150 45.01 45.57

182.20 45.55 46.06 45.57

180 48.67 48.82

194.99 48.75

48.67 48.82

(37)

109 Lampiran 24a Tabel pengaruh fermentasi terhadap nilai C ekuilibrium (C∞), konstanta kinetik (k), indeks hidrolisis (IH₉₀), dan estimasi indeks glikemik secara in vitro tepung pisang modifikasi (% bk)

Kombinasi Pemanasan

Otoklaf Ulangan

Jumlah Rata-rata

1 2

Tanpa Fermentasi

C∞ 53.40 51.70 105.10 52.55

k 0.033 0.033 0.033 0.033

IH₉₀ 32.71 31.67 64.38 32.19

EIG 65.47 64.64 130.11 65.06

Fermentasi

C∞ 49.10 49.20 98.30 49.15

k 0.027 0.027 0.027 0.027

IH₉₀ 27.61 27.66 55.27 27.63

EIG 61.38 61.42 122.80 61.40

Lampiran 24b Tabel uji t student pengaruh fermentasi terhadap estimasi indeks glikemik secara in vitro tepung pisang modifikasi (% bk)

Levene's Test for Equality of

Variances

t-test for Equality of Means

95% Confidence Interval of the

Difference

F Sig. t df Sig. (2-

tailed)

Mean Difference

Std. Error

Difference Lower Upper

IG

Equal variances

assumed . . 8.734 2 .013 2.50005 .28625 1.26843 3.73167 Equal variances

not assumed 8.734 1.006 .072 2.50005 .28625 -1.08761 6.08772

Lampiran 25 Tabel jumlah kultur awal bakteri asam laktat dan Enteropatogenik E.

coli (EPEC) pada pengujian prebiotik

Bakteri Jumlah awal (0 jam) cfu/ml log cfu/ml

L. acidophilus 151500 5.18

L. plantarum sa28k 144000 5.16

L. fermentum 2B4 139500 5.14

Enteropatogenik E.

coli (EPEC) 121500 5.08

(38)

Lampiran 26 Tabel jumlah kultur bakteri asam laktat setelah 24 jam pada media yang mengandung TPM dan FOS

Jenis Media Bakteri Jumlah setelah 24 jam cfu/ml log cfu/ml Akuades + 2.5%

TPM tanpa fermentasi

L. acidophilus 8275000 6.92

L. plantarum sa28k 3375000 6.53

L. fermentum 2B4 6075000 6.78

Akuades + 2.5%

TPM fermentasi

L. acidophilus 3575000 6.55

L. plantarum sa28k 4175000 6.62

L. fermentum 2B4 5925000 6.77

mMRSB

L. acidophilus 73500000 7.87

L. plantarum sa28k 96500000 7.98 L. fermentum 2B4 88500000 7.95

MRSB

L. acidophilus 1210000000 9.08 L. plantarum sa28k 2377272727 9.38 L. fermentum 2B4 795000000 8.90 mMRSB + 2.5%

TPM tanpa fermentasi

L. acidophilus 196666666.7 8.29 L. plantarum sa28k 675000000 8.83 L. fermentum 2B4 170250000 8.23 mMRSB + 2.5%

TPM fermentasi

L. acidophilus 204772727.3 8.31 L. plantarum sa28k 242196969.7 8.38 L. fermentum 2B4 170000000 8.23 mMRSB + 2.5%

FOS

L. acidophilus 148500000 8.17

L. plantarum sa28k 142500000 8.15 L. fermentum 2B4 148636363.6 8.17

Lampiran 27 Tabel jumlah kultur Enteropatogenik E. coli (EPEC) setelah 24 jam pada media yang mengandung TPM dan FOS

Jenis Media Bakteri Jumlah setelah 24 jam cfu/ml log cfu/ml

MRSB Enteropatogenik E.

coli (EPEC) 425000000 8.63

mMRSB + 2.5%

TPM tanpa fermentasi

Enteropatogenik E.

coli (EPEC) 842500000 8.93

mMRSB + 2.5%

TPM fermentasi

Enteropatogenik E.

coli (EPEC) 270416666.7 8.43 mMRSB + 2.5%

FOS

Enteropatogenik E.

coli (EPEC) 870000000 8.94

(39)

111

Referensi

Dokumen terkait