• Tidak ada hasil yang ditemukan

Laporan Pendahuluan Praktikum TURBIN PELTON

N/A
N/A
Protected

Academic year: 2021

Membagikan "Laporan Pendahuluan Praktikum TURBIN PELTON"

Copied!
13
0
0

Teks penuh

(1)

ABSTRAK

ABSTRAK

Turbin air merupakan sarana untuk mengubah energi potensial air menjadi energi mekanis. Tujuan Turbin air merupakan sarana untuk mengubah energi potensial air menjadi energi mekanis. Tujuan dari praktikum ini adalah untuk mengetahui performansi atau efisiensi dari turbin pelton. Alat yang dari praktikum ini adalah untuk mengetahui performansi atau efisiensi dari turbin pelton. Alat yang digunakan dalam praktikum ini yaitu; Turbin pelton, rem prony, indikator volume, Indikator tekanan, digunakan dalam praktikum ini yaitu; Turbin pelton, rem prony, indikator volume, Indikator tekanan, on/off sakelar, pe

on/off sakelar, pengukur ngukur tekanan, pengutekanan, pengukur gaya rem, spekur gaya rem, spear, tachometer, penar, tachometer, pengaris, pompa dgaris, pompa danan motor. Data-data yang didapatkan terdiri dari beberapa variabel yang meliputi kapasitas, tekanan, motor. Data-data yang didapatkan terdiri dari beberapa variabel yang meliputi kapasitas, tekanan, putaran turbin

putaran turbin, putaran pada pompa, dan , putaran pada pompa, dan beban pada turbbeban pada turbin. Kesimpulan dari praktikum ini bin. Kesimpulan dari praktikum ini bahwaahwa efisiensi dari turbin pelton merupakan perbandingan dari BHP

efisiensi dari turbin pelton merupakan perbandingan dari BHP dan WHP.dan WHP.

ABSTRACT

ABSTRACT

Water turbine is a means to convert the potential energy of water into mechanical energy. The Water turbine is a means to convert the potential energy of water into mechanical energy. The purpose of this lab is to determine the performance or efficiency of pelton turbine. The tools used in purpose of this lab is to determine the performance or efficiency of pelton turbine. The tools used in this lab

this lab are; turbine peltoare; turbine pelton, n, PronProny y brakbrake, e, voluvolume me indindicatoicator, r, prespressure indicasure indicator, on tor, on / / off switch,off switch, pressure gauge, brake force gauge, spear, tachometer, pengaris, pumps and motors. The data pressure gauge, brake force gauge, spear, tachometer, pengaris, pumps and motors. The data obtained consists of several variables, including capacity, pressure, turbine wheel, spin the pump, obtained consists of several variables, including capacity, pressure, turbine wheel, spin the pump, and the load on the

and the load on the turbine. The conclusion of this lab that tturbine. The conclusion of this lab that t he efficiency of pelton turbine is the he efficiency of pelton turbine is the ratioratio of BHP and WHP.

(2)

BAB I

DASAR TEORI

Turbin pelton atau biasa disebut turbin impuls adalah suatu alat yang bekerja untuk merubah energi kinetik air yang diakibatkan karena adanya energi potensial yang dimiliki oleh air, menjadi energi kinetik berupa putaran pada poros turbin tersebut. Dan perputaran poros dari poros tersebut bisa digunakan untuk memutar generator listrik, yang kemudian bisa dihasilkan energi listrik Pada roda turbin terdapat sudu dan fluida kerja mengalir melaui ruang di antara sudu tersebut. Apabila kemudian ternyata bahwa roda turbin dapat berputar, maka tentu ada gaya yang bekerja pada sudu. Gaya tersebut timbul karena terjadinya perubahan momentum dari fluida kerja yang mengalir  di antara sudunya. Jadi, sudu haruslah dibentuk sedemikian rupa sehingga dapat terjadi perubahan momentum pada fluida kerja tersebut. Dari sebuah mekanisme turbin pelton ada beberapa ukuran yang sering dijadikan acuan didalam penggunaannya. Ukuran-ukuran tersebut antara lain :

1. D= Diameter dari lingkaran sudu Turbin pelton yang terkena pancaran air, disingkat sebagai Diameter lingkaran pancar (diameter roda rata-rata).

2. d= Diameter pancaran air yang mengenai sudu-sudu turbin.

3. n = Kecepatan putar roda turbin akibat dari energi kinetik air yang melaluinya.

Gambar 1 Turbin Pelton

http://www.jfccivilengineer.com/images/turbin4.gif 

Dua hal yang penting yang selalu menjadi acuan didalam menentukan ukuran utama Turbin pelton ialah kecepatan spesifik (ns) dan batas tinggi jatuh yang diinginkan (Hmaks). Ns ( Spesific Speed ) merupakan parameter untuk memilih pompa digunakan oleh para desainer pompa (perencana / perancang pompa). Q pompa berkaitan erat dengan kapasitas pompa , dengan mengetahui kapasitas pompa maka kita dapat menentukan berapa besarnya power dari pompa tersebut. Perbandingan D/d, tidak boleh lebih kecil daripada harga standar. Pengaruh harga ini adalah adalah

(3)

pada saat pemilihan kecepatan putar roda turbin Pelton dan penentuan jumlah nosel yang digunakan.

Diketahui tinggi air jatuh H. dengan demikian diketahui pula kecepatan air keluar. c1 =

2 g H

(TIM DOSEN MIPA, 2007)

Selain itu dapat juga dihitung kecepatan tangensial roda (u =c1/2). Diameter roda (D = 60.u/

π

n) ditentukan menurut hasil pemilihan kecepatan putar roda turbin (n). Sedangkan dalam pemilihan kecepatan putar roda turbin harus disesuaikan terhadap besarnya harga kecepatan spesifik dan apakah harga kecepatan spesifik tersebut memenuhi tinggi air jatuh H yang diijinkan. Selain itu untuk untuk n tinggi, apakah diameter roda tidak terlalu kecil, karena dikhawatirkan nanti akan menyulitkan pembuatan ember sudu dan penampung lintang kaki sudu yang menerima beban terlalu kecil. Diameter pancaran air diperoleh dari persamaan kontinuitas

V = A . c1 (A = d2.

π

/4) Karena c1 =

2 g H

(TIM DOSEN MIPA, 2007) Maka : V = A . c1 → V / A = c1 V / A =

2 g H V / d2.

π

/4 =

2 g H d =

(4 /

[2g]

π

)  H  V   d =

(4 /

[2.9,8] 3,14)  H  V   d = 0,536 .  H  V   d = 0,54 .  H  V  

(Tahara,Haruo & Sularso, 2000)

,dimana V = debit dalam m3/detik, dan H dalam meter 

Persamaan – persamaan dalam menenentukan efisiensi turbin, yang digunakan adalah :

A. BHP Turbin.

BHP dapat didefinisakan sebagai daya yang dihasilkan oleh fluida penggerak turbin untuk menggerakkan turbin pada torsi dan kecepatan tertentu, atau bisa disebut juga input power ke turbin dari fluida

(4)

Dimana : N = Putaran turbin (Rps) Mt = Momen puntir =

(

)

95 , 0 16 , 0 . g  x m (N.m) m.g = Beban

B. Head Turbin

Head adalah energi persatuan berat yang harus disediakan untuk mengalirkan sejumlah zat cair yang direncanakan yang sesuai dengan kondisi instalasi. Head turbin dapat dirumuskan sebagai berikut :

Dimana : Ht : head turbin (m)

P1 : tekanan pada permukaan fluida 1 (N/m2) P2 : tekanan pada permukaan fluida 2 (N/m2) V1 : kecepatan aliran dititik 1 (m/s)

V2 : kecepatan aliran dititik 2 (m/s)  p : massa jenis suatu fluida (kg/m3)

g : gravitasi bumi (=9,8 m/s2) Z1 : tinggi aliran dititik 1 (m)

Z2 : tinggi aliran dititik 2 (m)

C. Momen torsi (Mt)

Mt =

rem

 FxL

η 

(Tahara, Haruo & Sularso, 2000)

Dimana : Mt = momen torsi turbin ( N.m ) F = gaya pada rem prony ( N )

η

rem = efesiensi rem dengan harga 0,95 L = panjang lengan momen ( m )

D. Kecepatan aliran (v)

v =

 A Q

(Tahara, Haruo & Sularso, 2000)

Dimana : v = kecepatan aliran (m/s) Q = kapasitas / debit air (m3/s)

(5)

 A = luas penampang pipa (m2)

E. WHP (Daya Air)

WHP dapat didefinisikan sebagai daya efektif yang diterima oleh air dari pompa per satuan waktu

(Tahara,Haruo & Sularso, 2000) Dimana:

γ 

=

ρ

x g = 1000 (kg/m3. m/s2) Q = Debit Air {m3/s)

Ht = Head turbin (m)

F. Effisiensi

Efisiensi merupakan suatu ukuran dalam membandingkan rencana penggunaan keluaran (output) dengan penggunaan masukan pada turbin. Nilai maksimum dari efisiensi adalah 1 atau 100%. Pada praktikum turbin pelton, output yang digunakan adalah daya pengereman pada turbin (BHP) sedangkan input yang digunakan adalah daya air itu sendiri (WHP).

η =  X  100% WHP 

 BHP 

(6)

BAB II

TAHAPAN PRAKTIKUM

2.1. TUJUAN PRAKTIKUM

Tujuan dari praktikum ini adalah untuk mengetahui performansi atau efisiensi dari turbin pelton.

2.2. PERALATAN PRAKTIKUM

Turbin pelton.

 Alat yang akan diamati unjuk kerjanya.

Rem prony.

Digunakan untuk mengerem putaran turbin

Indikator volume.

Digunakan untuk mengukur besarnya volume yang masuk dalam bak air 

Indikator tekanan.

Digunakan untuk mengukur tekanan pada turbin

Motor 

Digunakan untuk menyalakan pompa

pengukur tekanan.

Digunakan untuk mengukur besarnya tekanan pada pompa.

Pengukur gaya rem.

Digunakan untuk mengukur besarnya gaya rem pada turbin

Spear.

Digunakan untuk mengatur kapasitas fluida yang menuju turbin.

Tachometer 

Digunakan untuk menghitung putaran turbin

Pompa

Sebagai penyuplai air ke turbin

(7)

2.4. LANGKAH PERCOBAAN

Didalam melakukan pecobaan ini harus diperhatikan urutan langkah-langkah percobaan sebagai berikut :

Memeriksa Alat

a. Penunjukkan beban pada motor maupun rem proni harus pada keadaan nol b. Mengisi bak air 

c. Menyiapkan 1 buah Tachometer  Langkah Percobaan

a. Menghidupkan motor pompa dengan putaran pada kedudukan low

b. Mengatur kapasitas fluida yang menuju turbin dengan mengatur spear pada kedudukan satu

c. Mengatur rem prony untuk setiap kedudukan spear, sehingga putaran turbin. d. Mengukur dan mencatat semua data yang diperlukan

e. Ulangi langkah poin b, c, dan d, untuk kedudukan spear pada kedudukan 2, 3, dan seterusnya, dengan memutar spear 2 kali putaran untuk setiap perubahan kedudukan.

2.5. TABEL PENGAMBILAN DATA

Spear 1

No.

RPM

Turbin

Q

(l/s)

P

(mH

2

0)

F

(kgf)

1.

2.

(8)

3.

4.

5.

I.

Spear 2

No.

RPM

Turbin

Q

(l/s)

P

(mH

2

0)

F

(kgf)

1.

2.

3.

4.

5.

II.

Spear 3

No.

RPM

Turbin

Q

(l/s)

P

(mH

2

0)

F

(kgf)

1.

2.

3.

4.

5.

III.

Spear 4

No.

RPM

Turbin

Q

(l/s)

P

(mH

2

0)

F

(kgf)

1.

2.

3.

4.

5.

Surabaya, ……… 2011

GRADER I,

………...

NRP. GRADER II,

………

NRP.

(9)

BAB III

ANALISA DATA

3.1. PERHITUNGAN

Dari data-data percobaan yang didapat maka dapat dilakukan perhitungan sebagai berikut :

Menghitung kecepatan fluida

Dari data percobaan didapatkan nilai Q yang kemudian kita cari nilai kecepatan fluida dengan menggunakan rumus perhitungan data diatas.

V = Q / A

Dimana : Q = kapasitas fluida (m3/ s )  A = luas penampang pipa ( m2 )

V = kecepatan aliran fluida ( m/s ) Gaya yang bekerja pada turbin

Beban yang terdapat pada turbin dalam satuan kilogram sedangkan gaya dalam satuan Newton konversi dari kilogram ke Newton.

F (Newton) = beban (kg) x g

Menghitung momen torsi

Dalam menghitung momen torsi diketahui panjang lengan gaya pada rem prony sepanjang 16 cm dari pusat putaran torsi. Dengan menggunakan rumus perhitungan momen torsi, akan didapatkan :

Mt = ( F.L ) /

η

rem

Dimana : Mt = momen turbin ( N.m ) F = gaya pada rem prony ( N )

η

rem = efesiensi rem dengan harga 0.95

L = panjang lengan momen ( m ) Menghitung head total dari instalasi

Untuk menghitung head total instalasi pada system, beriktu ini rumusan head total dari sistem instalasinya :

Ht = ( P/γ ) + ( V2/2g ) + Z + Hl Dimana Ht = head total ( m )

(10)

V = velocity (m/s) g = grativy = 10 m/s2 Z = head static (m) =Z1-Z2 Hl = head loses (m) Menghitung BHP

Dengan menggunakan rumus perhitungan Ht kita dapat menghitung daya BHP , yaitu : BHP = 2π.Mt.n ( watt )

Dimana Mt = momen torsi ( N.m) n = putaran (rps )

Menghitung WHP

Untuk menghitung WHP dapat menggunakan rumusan yang telah ada yaitu : HP = γ x Q x Ht

Dimana WHP = daya yang dibutuhkan ( watt ) Ht= head total

γ = berat jenis zat cair (kg/m2) Q= kapasitas ( m3/s)

Menghitung efesiensi dari turbin

Efisiensi turbin merupakan perbandingan BHP dan WHP, berikut ini cara mencari efesiensi ηt =  x100%

WHP   BHP 

3.2. ANALISA GRAFIK

(11)

Gambar 2 

1. Grafik fungsi Q terhadap n η =  X  100% WHP   BHP  η = [(2π x Mt x n) /(γ .Q.Ht) x 100% η.Q = [(2π x Mt x n) /(γ .Ht) x 100% → Q ≈ n

(12)

2. Grafik fungsi H terhadap Q WHP = γ .Q.Ht

Ht = WHP / γ .Q → Ht ≈ 1/Q

3. Grafik fungsi Efisiensi terhadap n η =  X  100%

WHP   BHP 

η = [(2π x Mt x n) /(γ .Q.Ht) x 100% → η ≈ n

4. Grafik fungsi BHP terhadap Q η =  X  100% WHP   BHP  η.WHP = BHP x 100% η. γ.Q.Ht = BHP x 100% → η ≈ Q

5. Grafik fungsi Effisiensi terhadap BHP η =  X  100%

WHP   BHP 

→ η ≈ BHP

6. Grafik fungsi Effisiensi terhadap Q η =  X  100%

WHP   BHP 

η = [ BHP / (γ.Q.Ht ) ] x 100%

→ η ≈ 1/Q

7. Grafik fungsi F terhadap n BHP = 2π x Mt x n

BHP = 2π x ((F x l) /

η

rem) x n BHP / l = 2π x l /

η

remx n

8. Grafik fungsi WHP terhadap n η =  X  100%

WHP   BHP 

η.WHP = 2π x Mt x n x 100% → WHP ≈ n

(13)

η =  X  100% WHP 

 BHP 

→ η ≈ 1 / WHP

10. Grafik fungsi BHP terhadap n BHP = 2π x Mt x n → BHP ≈ n

DAFTAR PUSTAKA

Dietzel, Fritz, ”Turbin, Pompa dan kompresor”, Erlangga, Jakarta.

Tahara,Haruo & Sularso, 2000, “Pompa dan kompresor”, Jakarta, PT Pradnya Paramita. TIM DOSEN MIPA, 2007, ”FISIKA DASAR 1”, FMIPA-ITS.

Gambar

Gambar 1 Turbin Pelton

Referensi

Dokumen terkait

tekanan ketika masuk ke sudu jalan turbin dirubah menjadi energi kecepatan. Turbin pelton merupakan turbin impuls. Turbin Pelton terdiri dari satu set. sudu jalan yang diputar

Turbin impuls memanfaatkan energi kecepatan (energi kinetik) berupa pancaran air melalui nosel dengan kecepatan tinggi.Turbin jenis ini disebut turbin tanpa tekanan, karena

Yang dimaksud dengan turbin impuls adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air (yang teridiri dari energi potensial-tekanan- kecepatan)

Yang dimaksud dengan turbin impuls adalah turbin air yang cara bekerjanya dengan merubah seluruh energi air (yang terdiri dari energi potensial + tekanan +

Perubahan energi pada turbin air Francis secara garis besar adalah dari energi potensial menjadi energi tekanan sebelum masuk guide vane, kemudian menjadi energi kinetik setelah

Prinsip perubahan energi adalah sama dengan turbin impuls pelton yaitu energi kinetik dari pengarah dikenakan pada sudu-sudu pada tekanan yang sama.. Turbin crossflow

2.4.1 Turbin Impuls Turbin reaksi adalah turbin air yang cara kerjanya merubah seluruh energi air yang terdiri dari energi potensial, tekanan, kecepatan yang tersedia menjadi energi

Untuk turbin impuls, head yang tersedia hanya dari muka air bendungan hingga ujung keluaran nozzle, sehingga Gross Head untuk Turbin Impuls adalah H1– z, dimana z adalah beda level