• Tidak ada hasil yang ditemukan

BAB III PENGUMPULAN DAN PENGOLAHAN DATA

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB III PENGUMPULAN DAN PENGOLAHAN DATA"

Copied!
33
0
0

Teks penuh

(1)

42

BAB III

PENGUMPULAN DAN PENGOLAHAN DATA

3.1. Identifikasi Penelitian

Dalam proses operasi generator, faktor stress dialami generator yang berputar secara terus menerus adalah tegangan tinggi, faktor panas, listrik, lingkungan dan stress mekanik. Menurut statistik penyebab kegagalan paling umum pada mesin yang berputar generator berhubungan dengan kegagalan isolasi. Pada tingkat tertentu kegagalan isolasi sebagian atau PD diperbolehkan terjadi dalam isolasi stator, Namun unsur degradasi isolasi terus menurun akibat faktor umur dari generator, mengakibatkan nilai PD meningkat khususnya pada

winding generator. Sehingga dibutuhkan pengukuran secara berkala untuk

mengetahui trending peningkatan PD. Metode pengukuran online continues

dipilih agar data trending pengukuran PD pada kondisi pengukuran kondisi nyata

dapat diperoleh, pengukuran dimana generator terhubung dengan sistem beban pada tegangan nominalnya 16.5kv.

(2)

3.2. Instrumen Penelitian

Adapun instrumen yang digunakan untuk melakukan penelitian ini adalah: 1. Permanently Capactive Coupler

Digunakan coupling capasitor MCC 124 dengan tegangan maksimum 24kV.

2. Filter signal PD

Digunakan modul OMS600 PD merk omicron, merupkan digital band-pass filter

3. Monitoring server

Digunakan monitoring system PDM 600 untuk analisa data pengukuran, dan penyimpanan data pengukuran berupa trending.

Sistem ini terhubung jaringan internet, sehingga dapat dilakukan pemantauan dari jarak jauh tanpa datang ke perangkat

4. Software monitoring

Digunakan monitoring software untuk menampilkan data pengukuran

3.2.1 PDM 600

PDM 600 adalah modul yang terdiri dari 3 modul MPD 600 di dalamnya.

(3)

Tabel 3.1 Spesifikasi Sistem PDM 600 Modul System PDM 600 Spesifikasi

Primary Switcher Vin 100-240 V AC Vout 12 V DC Isolation Transformer 5000 V 60 VA 230 / 230 V AC 0.26 A Surge Arrester Vn 240V AC Vc 350V AC Vp 1.4 kV Imax 40 kA

Tabel 3.2 Data Spesifikasi Modul MPD 600

Charateristic Rating

Maksimum pulse rate 1..5 x 106 pulsa/second per FO network

Time domain

Integration range 100 ns … 8µs Frequency domain

Center Frequency 0 Hz…32 Mhz free adjustable

Bandwidth (standart) 9 kHz, 40 kHz, 100 kHz, 160 kHz, 300 kHz, 650 kHz, 1 MHz, 1.5MHz

Bandwidth (with broadband filters)

9 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3MHz

Input

Coaxial cable for low-frequency voltage input (V) and high frequency

partial discharge detect input (PD) V input

(4)

Frequency range 0 Hz – 4.3 Hz Impedance 1µF // 1 MΩ Tegangan 102 dB PD input Frequency range 0 Hz – 20 MHz Impedance 50 Ω Tegangan 10 Vrms (max)

Dynamic range 132 dB (overall) 70 dB (per input range)

Tabel 3.3 Data Teknis Insulation Transformer

Karakteristik Rating

Input

Voltage 100 – 260 VAC

Frequency range 50 – 60 Hz No-load loss (typically) 3.3 W Output

Voltage 2 x 115 V or 1 x 230 V

Power 60 VA

Test Voltage 500 V, 50 Hz

Tabel 3.4 Data Teknis Primary Switcher

Karakteristik Rating Input Voltage nominal 100 – 240 V AC 100 – 353 V DC Current 0.28 A Voltage range 90 – 264 V AC Output Voltage accuracy < ± 2%

(5)

Temperatur coefficient 0.01 % / Kelvin Overloadprotection / Short

circuit Continius

Insulation (prim./sec.) 3.3 kV AC Insulation resistance > 1GΩ

Tabel 3.5 Data Teknis Surge Arrester

Karakteristik Rating Nominal voltage 240 V AC (230 V AC…240 V AC) 240 V AC (230 V AC…240 V AC) 415 V AC (L-L) (400 V AC…415 V AC) Rated voltage (L-N) 350 V AC Rated voltage (N-PE) 264 V AC Nominal frequency 50/60 Hz Rated load current 40 A

63 A (10 mm2) Max. discharge surge current 40 kA

Protection level (L-N) 1.4 kV Protection level (N-PE) ≤ 1.5 kV

Tabel 3.6 Data Teknis MCU 502 Controller

Karakteristik Rating

Connector 1 x USB 2.0

(6)

3.2.2 Coupling Capasitor

Gambar 3.2 MCC 124 Coupling Capasitor

Tabel 3.7 Data Teknis Coupling Capasitor

Karakteristik Rating

Construction Indoor post insulator

Material Epoxy resin

Mounting Vertical or horizontal

Nominal voltage (L-E) 24 kV Nominal capacitance 1.1 nF

Internal PD < 2 pC

Overvoltage protection Overvoltage protection 90 V Integrated surge arrester 90 V

for

signal output

Integrated surge arrester 90 V for signal output

(7)

3.2.3 Desain Monitoring System

Gambar 3.3 Desain Monitoring Sistem PD

Tabel 3.8 Penjelasan Gambar 3.3 Nomor Qty/Gen Unit Deskripsi

B1 1 pcs / rotM Modul PDM 600

B2 1 pcs / location Server monitoring

B3 1 pcs / location MCU 502 dan Fiber Optic

B4 3 pcs / rotM Kabel sensor dengan konektror BNC-TNC B5 3 pcs / rotM Couppling capasitor MCC 124 ke busbar B6 3 pcs / rotM Kabel Couppling capasitor MCC 124 B7 1 pcs / rotM Kabel sensor dari MCC 124 ke busbar B8 1 pcs / rotM AC atau DC kabel power

(8)

3.2.4 Peralatan Utama Monitoring Partial Discharge PLTA Cirata

Gambar 3.4. Gambar Modul PDM 600 dan Koneksi Dari Generator

Gambar 3.5 Monitoring Server

(9)

Gambar 3.7 Coupling capacitors MCC 124

3.3. Metode Pengumpulan Data

Pengukuran data di pembangkit PLTA Cirata dilakukan pada dua periode. Fungsi : melakukan analisa performa unit 7. Investigasi dilakukan untuk melihat trend diagram. PD magnitude pada phasa naik secara signifikan dari 20nC sampai 120nC, kenaikan terjadi selama 9 bulan pengukuran periode 2013.

1. Periode 1

Pengukuran trending selama 9 bulan, dilakukan pada januari 2013 - September 2013. Dilaksanakan oleh bapak Constant PT Citra Wahana Sekar Buana beserta tim Inspection PLTA Cirata Unit 7, bapak Yohanes Mulyana; Wahab Winoto; Ugan Suganda

2. Periode 2

Pengukuran trending dilakukan pada bulan januari 2014 – desember 2014. Dilakukan pengukuran kembali untuk mengetahui kondisi PD terakhir.

(10)

Trending Diagram

METODE PENGUKURAN PARTIAL DISCHARGE STATOR GENERATOR UNIT 7 PLTA CIRATA

Pengukuran Ulang Metode PRPD Phasa R S T Trending Meningkat ? Ya Nilai PD Tinggi? Mulai Metode Visualisai 3PARD PD = Partial Discharge PRPD = Phase Resolved Partial Discharge

3 PARD = Multi Chanel PD (Diagram Phasor)

Jumlah Titik / Cluster PD

Analisa Cluster Metode PRPD per Phasa Cluster

Nilai PD Satuan Coloumb

Analisa Jenis PD (Tabel dasar jenis PD

Pada Pengukuran PRPD) Selesai Ya Tidak Tidak

(11)

3.3. Hasil Pengukuran Monitoring Partial Discharge Unit 7 Periode 1 Hasil pengukuran PD magnitude phasa S. Waktu pengukuran dilakukan selama 9 bulan pada bulan januari 2013 – September 2013. Diperlihatkan pada grafik 3.7 peningkatan PD terjadi pada phasa S secara signifikan dari nilai 20nC sampai 120nC selama 9 bulan pengukuran.

Gambar 3.9.a Monitoring PD Unit 7 Selama 9 Bulan Tahun 2013

Observasi selanjutnya dilakukan pada pengukuran dua phasa lainya, phasa R dan phasa T, hasil pengukuran diperlihatkan grafik trending berikut.

(12)

Gambar 3.9.c Pengukuran Pada Phasa T

Diperlihatkan kenaikan nilai PD pada phasa S gambar 3.9.b dan phasa T gambar 3.9,c. namun peningkatan besaran nilai PD hanya sedikit.

3.3.1 Analisa data PD Dengan PRPD

Hasil peningkatan trending partial discharge unit 7 dianalisa lebih lanjut

dengan melihat pola / pattern dengan menggunakan visualisai PRPD. PRPD adalah visualisai pengukuran dengan pola / pattern yang komplek menggunakan beberapa sumber PD yang dapat dilihat bersamaan, pola pada phasa R, phasa S dan phasa T.

(13)

3.3.2 Analisa data PD Dengan 3PARD

Metode selanjutnya untuk menganalisa data digunakan visualisai pengukuran PD dengan teknik multi-channel dimana sumber PD berbeda di aplikasikan pada 3PARD. 3PARD (star diagram) memvisualisaikan hubungan

antara pengukuran single PD pada satu phasa dan pengukuran signal dua phasa. Dengan pengulangan prosedur dari sejumlah besar pengukuran pulsa PD, sumber PD pada pengujian diluar noise ditampilkan pada gambar 3.11 dalam diagram 3PARD. Kosentrasi PD divisualisasikan pada gambar 3.11 tujuh kelompok titik (cluster) dapat diidentifikasikan dengan visualisasi warna orange ataupun merah yang terlihat. Analisa difokuskan dengan memilih masing masing titik (cluster) 1 – 7.

Gambar 3.11 Sumber PD yang Dipisahkan Dengan 3 PARD

Dikarenakan kopling elektromagnetik pada gulungan pembangkit, mengakibatkan pulsa yang dihasilkan oleh sumber PD terletak di salah satu fase dapat terlihat dalam dua fase lain. Dalam melakukan penelitian ini hanya fase di mana sumber-sumber ini menunjukkan amplitudo tertinggi yang akan diteliti lebih lanjut.

(14)

3.3.3 Analisa Data Pada Cluster (Titik) Peluahan Cluster 1 dan Cluster 2

Penjelasan pengukuran pada cluster 1, nilai pengukuran phasa S memperlihatkan pengukuran PD tertinggi dengan nilai 56.40 nC (gambar 3.12) dimana pada phasa lain memperlihatkan nilai lebih rendah sekitar 9nC, diperlihatkan gambar 3.13. Bentuk signal pengukuran cluster 1 pada phasa S dapat terjadi karena terjadinya PD pada bagian permukaan winding / surface discharge. Lihat teori bab II Sub bab 2.5.1 PD pada lokasi S1 (Omicron Monitoring Software PD, 2012)

Penjelasan pengukuran pada cluster 2, phasa S memperlihatkan nilai PD yang lebih besar 4.8nC dimana pada phasa lain memperlihatkan nilai lebih rendah sekitar 1.7nC, diperlihatkan gambar 3.15. Bentuk signal pengukuran cluster 2 pada phasa S dapat terjadi karena adanya gap dischrage yang terjadi karena adanya void, berdasarkan teori bab II bentuk signal menyerupai peluahan pada permukaan endwinding (E1). (Omicron Monitoring Software PD, 2012)

Pengukuran Cluster 1 Pengukuran Cluster 2

(15)

Gambar 3.13 3-Channel PRPD Pada Cluster 1 Gambar 3.15 Chanel PRPD Pada Cluster 2

Cluster 3

Penjelasan pengukuran pada cluster 3, di presentasikan fenomena PD pada phasa R, diperlihatkan gambar 3.17 dengan nilai 4.79nC lebih besar daripada phasa lainya. Bentuk signal pada cluster 3 pada phasa R berdasarkan teori bab II bentuk signal menyerupai peluahan pada celah stator /slot discharge (S3).

(Omicron Monitoring Software PD, 2012). Terkikisnya lapisan isolasi antara slot

stator dengan isolasi winding stator.

3-Chanel PRPD Cluster 3 PRPD Phasa R Cluster 3

(16)

Cluster 4

Pada cluster 4 diperlihatkan fenomena PD diantara phasa. PD terjadi antara dua phasa dan PD terdeteksi disalah satu phasa cenderung bergeser kekanan (dekat dengan persimpangan titik 0 derajat pada siklus AC), sebaliknya PD yang sama pada phasa lainya cenderung bergeser ke kiri (dekat dengan puncak siklus AC). Diperlihatkan gambar berikut.

PRPD Phasa R PRPD Phasa S

Gambar 3.18. PRPD Phasa R Pada Cluster 4 Gambar 3.19. PRPD Phasa S Pada Cluster 4 PRPD Phasa T

(17)

.3-Chanel PRPD

(18)

Cluster 5

Penjelasan pengukuran pada cluster 5 phasa T memperlihatkan nilai PD yang lebih besar 2.17nC dimana pada phasa lain memperlihatkan nilai lebih rendah sekitar 1nC, diperlihatkan gambar 3.22, namun nilai PD masih rendah untuk semua phasa. Bentuk signal pengukuran cluster 5 pada phasa T dapat terjadi karena adanya gap dischrage yang terjadi. Aktifitas ini terjadi antara bar stator pada winding terjadi penumpukan atau pengepresan bar pada winding overhang / endwinding tidak sempurna. This activity will occur between bars in the winding overhang or between a bar and the press finger of the stator core. (sumber : case

studies monitoring in electrical rotaring machines). Kondisi ini mengakibatkan adanya korona atau loncatan elektrostatis yang disebabkan oleh ionisasinyafluida

(perpindahan elektron) yang mengelilingi sebuah konduktor, yang terjadi saat kekuatan medan listrik melebihi nilai tertentu, tapi kondisinya tidak cukup untuk menimbulkan busur api. Berdasarkan teori bab II bentuk signal menyerupai peluahan pada permukaan endwinding (E2). (Omicron Monitoring Software PD, 2012).

PRPD Phasa T Cluster 5 3 PRPD Phasa R Cluster 5

(19)

Cluster 6

Sama dengan cluster 4, cluster 6 memperlihatkan fenomena PD antara phasa. PD terjadi antara dua phasa dan PD terdeteksi disalah satu phasa cenderung bergeser ke kanan (dekat dengan persimpangan titik 0 derajat pada siklus AC), sebaliknya PD yang sama pada phasa lainya cenderung bergeser ke kiri (dekat dengan puncak siklus AC)

.3-Chanel PRPD

(20)

PRPD Phasa R S T Cluster 6

Gambar 3.25. PRPD Phasa R Pada Cluster 6

Gambar 3.26. PRPD Phasa S Pada Cluster 6

(21)

Cluster 7

Penjelasan pengukuran pada cluster 7, di presentasikan fenomena PD pada phasa T, diperlihatkan gambar 3.29 dengan nilai 2.24nC lebih besar daripada phasa lainya. Bentuk signal pada cluster 7 pada phasa T berdasarkan teori bab II bentuk signal menyerupai peluahan pada celah stator /slot discharge (S3).

(Omicron Monitoring Software PD, 2012). Terkikisnya lapisan isolasi antara slot

stator dengan isolasi winding stator.

3 PRPD Cluster 7 PRPD Phasa T Cluster 7

(22)

3.5 Hasil Pengukuran Monitoring Partial Discharge Unit 7 Tahun 2014 Hasil pengukuran PD magnitude phasa R S T. Waktu pengukuran dilakukan selama bulan 1 januari 2014 – 23 desember 2014. Diperlihatkan pada gambar grafik 3.30 peningkatan PD terjadi secara signifikan dari nilai 120nC sampai 160nC selama pengukuran di tahun 2014 pengukuran. Pada pengukuran sebelumnya tahun September 2013 nilai PD mencapai 120nC.

Gambar 3.30 Monitoring PD Unit 7 periode 1 januari 2014 - 23 desember 2014

Observasi selanjutnya dilakukan dengan menghitung total peluahan yang terjadi pada unit 7 selama periode selama periode 1 januari 2014 - 23 desember 2014. Dengan menggunakan table perhitungan pada Microsoft excel di dapat nilai sebagai berikut :

(23)

Gambar 3.31 Data Peluahan PD Unit 7 periode 1 januari 2014 - 23 desember 2014

Nilai total peluahan periode 1 januari 2014 - 23 desember 2014 adalah 418000 Coulumb. Dengan perhitungan sebagai berikut :

= Sum (F2:F37954) = 418E-04

= 418000 coulumb

Dimana =Sum adalah total penjumlahan data, F2 adalah data awal pengukuran pada tanggal 1/1/2014 dan F37954 adalah data akhir pengukuran pada tanggal 23/12/2014.

3.5.1 Analisa Trending Tiap Phasa Tahun 2014

Untuk mengetahui nilai PD pada phasa yang mengalami signifikan peningkatan, grafik pengukuran trending peluahan partial discharge di lihat peningkatan trendingnya per phasa. Pengukuran trending ini dilakukan secara total selama periode Periode 1 januari 2014 - 23 desember 2014

(24)

Gambar 3.32 Monitoring PD Unit 7

Phasa R Periode 1 januari 2014 - 23 desember 2014

Gambar 3.33 Monitoring PD Unit 7 Phasa S Periode 1 januari 2014 - 23 desember 2014

(25)

Gambar 3.34 Monitoring PD Unit 7 Phasa T Periode 1 januari 2014 - 23 desember 2014

Pada gambar 3.38 pengukuran peluahan partial discharge phasa R terjadi sampai pada 25nC. Pada phasa S nilai peluahan sampai pada nilai 160nC diperlihatkan gambar 3.39. Pada phasa T nilai peluahan sampai pada nilai 28.2nC diperlihatkan gambar 3.40. Data ini di dapatkan dengan melakukan pengolahan data dengan Microsoft excel diperlihatkan gambar 3.41.

Gambar 3.35 Microsoft Excel Pengolahan Data Peluahan PD Unit 7 Periode 1 januari 2014 - 23 desember 2014

(26)

3.5.2 Analisa Trending Phasa S Pada Nilai Peluahan > 80nC

Pengukuran trending dapat dilakukan dengan cara lainya, yaitu menganalisa nilai peluahan diatas 80nC pada phasa S dengan melihat indikasi warning yang terekam pada peralatan.

Gambar 3.36 Partial Discharge Phasa S > 80nC

(27)

3.5.3 Pengukuran PD Pada Satu Waktu

Pengukuran PD pada satu waktu ini adalah pengukuran ulang partial discharge pada satu waktu yaitu tanggal 23 desember 2014, ini merupakan

pengukuran peluahan partial discharge terakhir dari penelitian ini. Metode yang

digunakan menggunakan visualisai PRPD untuk melihat pola / pattern partial discharge yang terjadi. Pengukuran dilakukan pada jam 08.03 AM dengan kondisi

beban 100 MW dan MVar 40 diperlihatkan gambar rekaman beban pada jam tersebut gambar 3.38.

Gambar 3.38 Kondisi Beban Saat Pengukuran

3.5.4 Analisa Data PD Dengan PRPD

Hasil peningkatan trending partial discharge unit 7 dianalisa lebih lanjut

dengan melihat pola / pattern dengan menggunakan visualisai PRPD. PRPD adalah visualisai pengukuran dengan pola / pattern yang komplek menggunakan beberapa sumber PD yang dapat dilihat bersamaan, yaitu pola pada phasa R, phasa S dan phasa T. Pattern partial discharge yang diukur pada tanggal 23

(28)

3.5.5 Hasil Pengukuran PRPD Tiap Phasa

Pengukuran pada tanggal 23 Desember 2014 jam 8.03 PM. Diperlihatkan nilai PD pada phasa R 10.85nC dan Phasa T 9.11nC.

Gambar 3.39 Nilai PD Tanggal 23 desember 2014

(29)

Gambar 3.41 PRPD Phasa T 23 Desember 2014

3.5.6 Analisa Data Pada Phasa S

Gambar 3.42 PRPD Phasa S 23 Desember 2014

Bentuk signal pengukuran pada phasa S dapat terjadi karena terjadinya PD pada bagian permukaan winding / surface discharge. Lihat teori bab II Sub bab

2.5.1 PD pada lokasi S1 (Omicron Monitoring Software PD, 2012). Type PD yang

terjadi sesuai dengan pengukuran pada tahun 2013 cluster 1 PD pada permukaan winding namun dengan nilai yang lebih besar. Tahun 2013 nilai PD pada titik ini 56.40nC pada tahun 2014 nilai PD 63.83nC.

(30)

3.6 Data Visual Kondisi Belitan Stator Unit 7 (27 September 2013)

Pada 27 September 2013 PT PJB UP Cirata mengadakan pengecekan secara visual pada saat unit sedang Overhaul AI (unit sedang masuk masa

pemeliharaan). Stator winding dilepas dari ruang generator untuk dilakukan pengecekan terhadap isolasi stator. Dimana ini merupakan pengecekan visual tindak lanjut dari pengukuran partial discharge pada periode januari 2013 – september 2013.

Gambar 3.43. Stator PLTA Cirata Unit 7 Dilepas Dari Ruang Generator

Selama pengecekan visual ditemukan beberapa akibat terjadinya partial discharge pada slot stator no 7, 44, 80, 99, 234, 252. Fakta ini memperlihatkan

kondisi visual pengecekan dan trend data dari pengukuran online partial discharge, diperlihatkan pada gambar 3.43 sampai gambar 3.48. bahwa telah

(31)

Gambar 3.44. PD Unit 7 Slot no.7

Gambar 3.45. PD Unit 7 Slot no.44

(32)

Gambar 3.47. PD Unit 7 Slot No.99

Gambar 3.48 PD Unit 7 Slot no.234 Sisi Kanan dan Kiri

(33)

Tabel 3.9 Data Kerusakan Akibat PD Pada Stator Generator Unit 7

Tahun Inspeksi Nomor Slot

2013 Slot no. 7 Slot no.44 Slot no.80 Slot no.99 Slot no.234 Slot no 252

Kerusakan akibat PD pada isolasi stator ditandai dengan adanya serbuk putih di sekitartitik kerusakan sebagai produk dari mekanisme discharge yang melibatkan material isolasi akibat terjadinya stress tegangan berlebih pada bagian tersebut.

Hasil dari monitoring partial discharge secara online atau kondisi unit beroperasi dan visualisai kondisi stator diperlukan untuk menginvestigasi lebih lanjut permasalahan pada isolasi. Tindakan perbaikan dapat dilakukan sesuai dengan tingkat kerusakan sehingga mencegah kerusakan isolasi lebih parah dan dapat menghindari kerugian unplanned outage / shutdown dengan durasi panjang

yang disebabkan oleh kegagalan isolasi belitan stator yang mengakibatkan breakdown atau bahkan stator terbakar karena kegagalan isolasi.

Gambar

Tabel 3.3 Data Teknis Insulation Transformer
Gambar 3.2 MCC 124 Coupling Capasitor
Gambar 3.8. Diagram Alir Metode Pengukuran Partial Discharge
Gambar 3.9.b  Pengukuran pada Phasa R
+7

Referensi

Dokumen terkait

Grafik perbandingan antara data hasil pengukuran temperatur dengan data hasil polynomial curve fitting untuk stasiun GeoB10055-2 ditampilkan pada Gambar 3.21.

Menimbang : bahwa untuk melaksanakan ketentuan Pasal 3 Peraturan Menteri Pendayagunaan Aparatur Negara dan Reformasi Birokrasi Nomor 6 Tahun 2015 tentang

EEPROM merupakan gabungan dari kemampuan akses yang fleksibel dari RAM dan penyimpanan data yang tidak mudah terhapus dari EPROM menjadi satu. Isi dan data yang berada dalam

Dari perkembangan roda omni directional robot tersebut dapat diteliti dari sistem kinematika untuk pergerakan atau perpindahan terhadap posisi awalnya, dengan

Negara pihak pada Persetujuan di Negara pihak lainnya pada Persetujuan atau dari harta gerak yang merupakan bagian dari suatu tempat usaha tetap yang tersedia bagi penduduk

Dalam hal ini Undang – Undang tentang Perseroan Terbatas mempunyai asumsi bahwa pelaksanaan akuisisi tersebut dilakukan untuk kepentingan pemegang saham mayoritas

Tahap ini adalah bagian yang penting pada penelitian pemerolehan bahasa kedua karena dalam tahap ini peneliti berupaya menjelaskan proses pemerolehan B2 (Corder

Dalam hal ini kerusakan tulang akibat proses penyakit dimana dengan trauma minor dapat mengakibatkan fraktur dapat juga terjadi pada berbagai