• Tidak ada hasil yang ditemukan

Directory UMM :Journals:Journal_of_mathematics:EJQTDE:

N/A
N/A
Protected

Academic year: 2017

Membagikan "Directory UMM :Journals:Journal_of_mathematics:EJQTDE:"

Copied!
13
0
0

Teks penuh

(1)

ISSN1842-6298 (electronic), 1843-7265 (print) Volume5(2010), 35 – 47

SOME APPLICATIONS OF GENERALIZED

RUSCHEWEYH DERIVATIVES INVOLVING A

GENERAL FRACTIONAL DERIVATIVE

OPERATOR TO A CLASS OF ANALYTIC

FUNCTIONS WITH NEGATIVE COEFFICIENTS I

Waggas Galib Atshan and S. R. Kulkarni

Abstract. For certain univalent functionf, we study a class of functionsfas defined by making use of the generalized Ruscheweyh derivatives involving a general fractional derivative operator, satisfying

Re

z(J1λ,µf(z))′ (1−γ)J1λ,µf(z) +γz2(Jλ,µ

1 f(z)) ′′

> β.

A necessary and sufficient condition for a function to be in the class Aλ,µ,νγ (n, β) is obtained. In addition, our paper includes distortion theorem, radii of starlikeness, convexity and close-to-convexity, extreme points. Also, we get some results in this paper.

1

Introduction

Let Ω denote the class of functions which are analytic in the unit diskU ={z∈C :

|z|<1} and letA(n) denote the subclass of Ω consisting of functions of the form:

f(z) =z−

∞ X

k=n+1

akzk, (ak≥0, n∈IN), (1.1)

where f(z) is analytic and univalent in the unit diskU. Then the function f(z)∈

A(n) is said to be in the class S(n, α), if and only if

Re

zf′

(z) f(z)

> α , (z∈U,0≤α <1). (1.2)

A function f(z) ∈S(n, α) is called starlike function of order α. A function f(z) ∈

A(n) is said to be in the class C(n, α) if and only if

Re

1 +zf

′′

(z) f′(z)

> α, (z∈U,0≤α <1). (1.3)

2000 Mathematics Subject Classification: 30C45.

(2)

A function f(z)∈C(n, α) is called convex function of order α. It is observed that

f(z)∈C(n, α) if and only ifzf′(z)∈S(n, α) ∀ n∈IN [2]. (1.4)

A functionf(z)∈A(n) is said to be in the classK(n, α) if there is a convex function g(z) such that

Re

f′

(z) g′(z)

> α, (∀z∈U,0≤α <1). (1.5)

A function f(z)∈K(n, α) is called close-to-convex of orderα.

We shall need the fractional derivative operator ([10], [11]) in this paper. Let a, b, c ∈C withC 6= 0,1,2,· · ·. The Gaussian hypergeometric function

2F1 is defined by

2F1(z)≡ 2F1(a, b;c;z) =

∞ X

n=0

(a)n(b)n

(c)n

zn

n!, (1.6)

where (λ)nis the pochhammer symbol defined, in terms of the Gamma function, by

(λ)n=

Γ(λ+n) Γ(λ) =

1 (n= 0)

λ(λ+ 1)· · ·(λ+n−1) (n∈IN)

Definition 1. Let 0≤λ < 1 and µ, ν ∈ IR. Then, in terms of familiar (Gauss’s) hypergeometric function 2F1, the generalized fractional derivative operatorJ0λ,µ,ν,z of a functionf(z) is defined by:

J0λ,µ,ν,z f(z) =

  

 

1 Γ(1−λ)

d dz

zλ−µRz

0(z− E)

−λf(E)·

2F1(µ−λ,1−ν; 1−λ; 1−Ez)dE (0≤λ <1)

dn

dznJ

λ−n,µ,ν

0,z f(z), (n≤λ < n+ 1, n∈IN)

(1.7) where the functionf(z) is analytic in a simply-connected region of thez-plane con-taining the origin, with the order

f(z) =O(|z|ǫ),(z→0), (1.8)

for ǫ >max{0, µ−ν} −1, and the multiplicity of(z− E)−λ is removed by requiring

log(z− E) to be real, when z− E >0.

The fractional derivative of order λ of a function f(z) is defined by

Dzλ{f(z)}= 1 Γ(1−λ)

d dz

Z z

0

f(E)

(z− E)λdE, 0≤λ <1, (1.9)

where f(z) it is chosen as in (1.7), and the multiplicity of (z− E)−λ is removed by

(3)

By comparing (e1.7) with (1.9), we find

J0λ,λ,ν,z f(z) =Dλz{f(z)}, (0≤λ <1). (1.10)

In terms of gamma function, we have

J0λ,µ,ν,z zk= Γ(k+ 1)Γ(1−µ+ν+k) Γ(1−µ+k)Γ(1−λ+ν+k)z

k−µ, (1.11)

(0≤λ <1, µ, ν ∈IR and k >max{0, µ−ν} −1).

Definition 2. Let f(z) ∈ A(n) be given by (1.1). Then the class Aλ,µ,νγ (n, β) is

defined by

Aλ,µ,νγ (n, β) =

(

f ∈A(n) :Re

(

z(J1λ,µf(z))′ (1−γ)J1λ,µf(z) +γz2(Jλ,µ

1 f(z))′′

)

> β,

(z∈U,0≤γ <1, n∈IN; 0≤β <1;λ >−1)}, (1.12)

where J1λ,µf is a generalized Ruscheweyh derivative defined by Goyal and Goyal [3, p. 442] as

J1λ,µf(z) = Γ(µ−λ+ν+ 2) Γ(ν+ 2)Γ(µ+ 1)zJ

λ,µ,ν

0,z (z

µ−1f(z)) (1.13)

= z−

∞ X

k=n+1

akC1λ,µ(k)zk, (1.14)

where

C1λ,µ(k) = Γ(k+µ)Γ(ν+ 2 +µ−λ)Γ(k+ν+ 1)

Γ(k)Γ(k+ν+ 1 +µ−λ)Γ(ν+ 2)Γ(1 +µ). (1.15) For µ = λ= α, ν = 1, the generalized Ruscheweyh derivatives reduces to ordinary Ruscheweyh derivatives of f(z) of order α [7]:

Dαf(z) = z Γ(α+ 1)D

α(zα−1f(z)) =z

∞ X

k=n+1

akCk(α)zk, (1.16)

where

Ck(α) =

(α+ 1)(α+ 2)· · ·(α+k−1)

(k−1)! . (1.17)

The class Aλ,µ,νγ (n, β) contains many well-known classes of analytic functions, for

example:

(i) Ifµ=λ=α, ν= 1, n= 1, we get the classAλ,λ,γ 1(1, β)was studied by Tehranchi

(4)

(ii) If µ=λ= 0, ν = 1, α=β, γ = 0, we get the class of starlike function of order said to be properly subordinate to f.

2

Main Results

(5)

or equivalently

and so by the mean value theorem, we have

Re and so the proof is complete.

Corollary 6. Let f ∈Aλ,µ,νγ (n, β), then

ak<

1−β(1−γ)

(6)

Theorem 7. The class Aλ,µ,νγ (n, β) is convex set.

Proof. Letf(z), g(z) be the arbitrary elements ofAλ,µ,νγ (n, β), then for everyt (0<

t <1), we show that (1−t)f(z) +tg(z)∈Aλ,µ,νγ (n, β) thus, we have

(1−t)f(z) +tg(z) =z−

∞ X

k=n+1

[(1−t)ak+tbk]zk

and

∞ X

k=n+1

γβ(1 +k−k2) +kβ 1−β(1−γ)

[(1−t)ak+tbk]C1λ,µ(k)

= (1−t)

∞ X

k=n+1

γβ(1 +k−k2) +kβ 1−β(1−γ) akC

λ,µ

1 (k)

+t

∞ X

k=n+1

γβ(1 +k−k2) +kβ 1−β(1−γ) bkC

λ,µ

1 (k)<1.

This completes the proof.

Corollary 8. Assume that f(z) and g(z) belong to Aλ,µ,νγ (n, β), then the function

y(z) defined by y(z) = 12(f(z) +g(z))also belong to Aλ,µ,νγ (n, β).

3

Distortion Theorem

In the next theorem, we will find distortion bound forJ1λ,µf(z).

Theorem 9. Let f(z)∈Aλ,µ,νγ (n, β), then

|z| − 1−β(1−γ)

γβ(2 +n−(1 +n)2) + (n+ 1)β|z|

n+1≤ |Jλ,µ

1 f(z)|

≤ |z|+ 1−β(1−γ)

γβ(2 +n−(1 +n)2) + (n+ 1)β|z|

n+1.

Proof. Letf(z)∈Aλ,µ,νγ (n, β). By Theorem5, we have

∞ X

k=n+1

C1λ,µ(k)ak<

1−β(1−γ)

γβ(2 +n−(1 +n)2) + (n+ 1)β, n∈IN ={1,2,· · · }.

Therefore

|J1λ,µf(z)| ≤ |z|+|z|n+1

∞ X

k=n+1

C1λ,µ(k)ak<|z|+

1−β(1−γ)

γβ(2 +n−(1 +n)2) + (n+ 1)β|z|

(7)

and

This completes the proof.

4

Radii of Starlikeness, Convexity and Close-to-convexity

(8)

By using (1.4) (Alexander’s theorem [2] : fis convex if and only ifzf′ the proof of Theorem 11.

(9)

Proof. Letf(z)∈Aλ,µ,νγ (n, β). Then by Theorem 5

≤1 but, by Theorem5above inequality

holds true if

|z|k−1 (1−δ)[βγ(1 +k−k2) +k−β] k(1−β(1−γ)) C

λ,µ

1 (k).

This completes the proof.

5

Extreme Points

Proof. Firstly, let us expressf as in the above theorem, therefore we can write

(10)

where

gk=

1−β(1−γ) [γβ(1 +k−k2) +kβ]Cλ,µ

1 (k) σk.

Therefore, f ∈Aλ,µ,νγ (n, β), since

∞ X

k=n+1

gk[γβ(1 +k−k2) +k−β]C1λ,µ(k)

1−β(1−γ) =

∞ X

k=n+1

σk= 1−σn<1.

Conversely, assume thatf ∈Aλ,µ,νγ (n, β), then by (2.1) we may set

σk=

[γβ(1 +k−k2) +kβ]Cλ,µ

1 (k)

1−β(1−γ) ak, k≥n+ 1 and 1−

∞ X

k=n+1

σk=σn.

Then

f(z) = z−

∞ X

k=n+1

akzk=z−

∞ X

k=n+1

(1−β(1−γ))σk

[γβ(1 +k−k2) +kβ]Cλ,µ

1 (k) zk

= z−

∞ X

k=n+1

σk(z−fk(z)) =z 1−

∞ X

k=n+1 σk

!

+

∞ X

k=n+1

σkfk(z)

= σnz+

∞ X

k=n+1

σkfk(z) =

∞ X

k=n

σkfk(z).

This completes the proof.

6

Subordination

Theorem 14. For n= 1, let f(z)∈Aλ,µ,νγ (1, β) and h(z) be an arbitrary element

of A(1) such that h≺f, defined in Definition 4, and if

hk=

1 k!

dk(f(w(z)))

dzk

z=0

(6.1)

also if

∞ P

k=2

[β(1−γ) +βγk(k−1)−k]|hk|

|h1|

<(1−β(1−γ)). (6.2)

(11)

Proof. Since h ≺ f by definition of subordination there is analytic function w(z) such that |w(z)| ≤ |z| and h(z) = f(w(z)). But h(z) is the composition of two analytic functions in the unit disk, therefore we can expand this function in terms of Taylor series at origin as below

h(z) =

Therefore, we can write

h(z) =h1z+

, and using the mean value theorem, we have to prove

Re

(12)

References

[1] E. S. Aqlan, Some problems connected with geometric function theory, Ph.D. Thesis (2004), Pune University, Pune.

[2] P. L. Duren, Univalent Functions, Grundelheren der Mathematischen Wissenchaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983. MR708494 (85j:30034).Zbl 0514.30001.

[3] S. P. Goyal and Ritu Goyal, On a class of multivalent functions defined by generalized Ruscheweyh derivatives involving a general fractional derivative op-erator, Journal of Indian Acad. Math. 27(2) (2005), 439-456. MR2259538

(2007d:30005).Zbl 1128.30008.

[4] S. Kanas and A. Wisniowska,Conic regions andk-uniformly convexity II, Folia Sci. Tech. Reso. 170(1998), 65-78.MR1693661(2000e:30017).Zbl 0995.30013.

[5] R. K. Raina and T. S. Nahar, Characterization properties for starlikeness and convexity of some subclasses of analytic functions involving a class of fractional derivative operators, Acta Math. Univ. Comen., New Ser.69, No.1, 1-8 (2000). ISSN 0862-9544. MR1796782 (2001h:30014).Zbl 0952.30011.

[6] V. Ravichandran, N. Sreenivasagan, and H. M. Srivastava, Some inequalities associated with a linear operator defined for a class of multivalent functions, JIPAM, J. Inequal. Pure Appl. Math. 4, No. 4, Paper No. 70, 12 p., electronic only (2003). ISSN 1443-5756. MR2051571(2004m:30022). Zbl 1054.30013.

[7] T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighbourhoods and partial sums of starlike functions based on Ruscheweyh derivatives, JIPAM, J. Inequal. Pure Appl. Math. 4, No. 4, Paper No. 64, 8 p., electronic only (2003). ISSN 1443-5756. MR2051565. Zbl 1054.30014.

[8] S. Shams and S. R. Kulkarni, Certain properties of the class of univalent func-tions defined by Ruscheweyh derivative, Bull. Calcutta Math. Soc. 97 (2005), 223-234. MR2191072.Zbl 1093.30012.

[9] H. Silverman,Univalent functions with negative coefficients, Proc. Amer. Math. Soc.51 (1975), 109-116.MR0369678 (51 #5910).Zbl 0311.30007.

[10] H. M. Srivastava, Distortion inequalities for analytic and univalent functions associated with certain fractional calculus and other linear operators (In Ana-lytic and Geometric Inequalities and Applications eds. T. M. Rassias and H. M. Srivastava), Kluwar Academic Publishers, 478(1999), 349-374.MR1785879

(13)

[11] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, 118 (2001), 1-52.

MR1805158 (2001m:26016). Zbl 1022.26012.

[12] A. Tehranchi and S. R. Kulkarni,Study of the class of univalent functions with negative coefficients defined by Ruscheweyh derivatives (II), J. Rajasthan Acad. Phy. Sci., 5(1) (2006), 105-118.MR2214020. Zbl 1138.30015.

Waggas Galib Atshan S. R. Kulkarni

Department of Mathematics, Department of Mathematics, College of Computer Science and Mathematics, Fergusson College, Pune - 411004, University of AL-Qadisiya, Diwaniya, Iraq. India.

Referensi

Dokumen terkait

Hasil analisa untuk mendeskripsikan dimensi dari variabel entrepreneurial leadership dapat dijabarkan dengan menunjukan skor tertinggi berdasarkan perolehan

Panitia Pengadaan pada Badan Kepegawaian Negara Kantor Regional VIII Banjarmasin akan melaksanakan Pelelangan Umum dengan pascakualifikasi untuk paket pekerjaan

Batas Akhir Pemasukan Dokumen Penawaran dan Pembukaan Dokumen Penawaran, waktu dan tempat ditentukan pada saat acara pemberian penjelasan Dokumen Pengadaan. Pendaftaran

Saran yang diberikan untuk perusahaan ini yaitu, perlunya perusahaan menjaga hubungan baik dengan pihak ekspedisi untuk mendistribusikan barang ke berbagai wilayah,

Berdasarkan Surat Penetapan Pemenang Pelelangan Pelaksana Pekerjaan Pengadaan Alat Kesehatan Puskesmas, Kegiatan Pengadaan Sarana Kesehatan (DPPID) Dinas

Dari daftar panjang tersebut diambil 3 (tiga) perusahaan dengan nilai terbaik untuk dimasukkan ke dalam daftar pendek konsultan yang diundang untuk mengikuti

Restrukturisasi organisasi yang dilakukan oleh PT. Samudra Alam Raya dilakukan untuk mencari solusi atau jalan keluar bagi masalah menurunnya kinerja

Strategi pengembangan bisnis yang dapat dilakukan perusahaan dengan melalui fungsi sumber daya manusia yang dimiliki oleh perusahaan adalah dengan meningkatkan