• Tidak ada hasil yang ditemukan

suppmat1664. 1026KB Jun 05 2011 09:30:55 PM

N/A
N/A
Protected

Academic year: 2017

Membagikan "suppmat1664. 1026KB Jun 05 2011 09:30:55 PM"

Copied!
7
0
0

Teks penuh

(1)

Supplementary Material:

A Partition Function Algorithm for Nucleic Acid

Secondary Structure Including Pseudoknots

ROBERT M. DIRKS1, NILES A. PIERCE2

1

Department of Chemistry, California Institute of Technology, Pasadena, CA 91125 2

Department of Applied & Computational Mathematics and Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125

Received 16 December 2002; Accepted 5 March 2003; J Comput Chem 24: 1664–1677, 2003

α

2

α2 α

3

α

3

α3 α3

α3

α

3

α1 α2

α

1

α

3

α

3 α3α3

α

2

α2

α

3

α

3

α

2

Figure S1. Multiloop energy expression. For this example there are three base pairs defining the multiloop (B= 3) and six unpaired bases in the multiloop (U = 6) soGmulti=α

(2)

functionfastiloops(i, j, l, Qb, Qx, Qx2)

//QxrecursionforO(N3) internal loop contributions toQb if(l≥15) //smallest subsequence not added toQbas special case

L1= 4 //explicitly add in terms forL1= 4,L2≥4 //Next convertQxinto interior loop energies fors= 8, l7

if(sequence permitsi·jbase pair) Qb

i,j+=Qxi,sexp{−γ3(i, j, i+1, j−1)/RT}

//Extend loops fromstos+2 for future calculation //ofQb

//Add small inextensible interior loop terms toQbas special cases forL1= 0,3

//Add bulge loops and large asymmetric loops as special cases

forL1= 0,3 //CasesL1= 0,1,2,3,L24

Figure S2. Pseudocode for computing interior loop con-tributions to Qb in O(N3) as an alternative to the

O(N4)

interior loop recursion of Figure 8. Here, N is the length of the strand andl=j−i+1 is the length of the substrand under consideration at any given point during the recursive process. A schematic representation of “fastiloops” is pro-vided in Supplementary Material Figure S3. The smallest “possible extensible loop” is the caseL1=L2= 4 with size

s= 8. Therefore, the smallest subsequence for which Qx

can be employed isl= 15 (adding the four bases fori, d, e, j

and a minimum hairpin of three bases between d·e). For a giveni and j, Qx

i,s already contains the contributions to

Qb

i,jfor all extensible loops of sizesexcept for the two cases

when eitherL1= 4 orL2= 4 (which cannot be obtained by

extending smaller loops that use a different energy expres-sion). EnrichingQxi,swith these two new possible extensible

loops, we then convertQxi,sinto contributions toQ b i,j by

in-troducing the term for closing these loops with pairi·j. Qxi,s

is then extended to provide future values ofQxi−1,s+2. All other interior loop contributions (cases with either L1 ≤3

or L2 ≤ 3) are then added directly to Qbi,j using the

spe-cial energy expressions of the standard model implied by

Ginternal

i,d,e,j . Note that the subsequence lengthlis fixed inside

each call to the function “fastiloops”. Hence, specifying i

implies j = i+l−1. For subsequences of length l, we use

Qx

i,s(j implied) to computeQxi−1,s+2 (j+1 implied) which will later be used to compute contributions toQb

i−1,j+1for subsequences of lengthl+2. Thus, for a given value ofl, the values ofQx

i,sneed only be stored for all legal values ofiand

suntillhas been incremented 3 times, at which point it can be discarded. This is accomplished by usingQx1

i,s and Q x2

i,s

(3)

0 1 2 3 4 5 6 7 8 9 10 11 12 L2

L1

0

1

2

3

4

5

6

7 8

9 10

11

12

Figure S3. Schematic for interpreting the pseudocode of Supplementary Material Figure S2, which computes the interior loop contributions to the partition function inO(N3

). For a giveni(withjimplied by the current subsequence lengthl), the grid illustrates the method of computing contributions to Qb

i,j for all interior loops with sides of lengthL1 andL2. For the

depicted case, the maximum interior loop size iss=L1+L2= 12. Adding seven bases to account for the closing basesi, d, e, j

and the smallest allowed hairpin of three bases betweend·e, the subsequence under consideration is therefore of lengthl= 19. TheO(N) pale gray cases with eitherL1 ≤3 orL2 ≤3 use special energy functions and are added explicitly toQbi,j. The

medium gray and dark gray cases are the possible extensible loop contributions that are computed usingQxi,s. Each diagonal

line spans the terms that will be stored in Qxi,s for a particular value of s. The medium gray terms are the new possible

extensible loops with eitherL1 = 4 orL2= 4. The dark gray terms were previously incorporated into toQxi,s by extending

(4)

β3

Figure S4. Illustration of the pseudoknot energy expression. a) An external pseudoknot. Bases external to the pseudoknot have no associated energy. The penalty for forming an external pseudoknot is β1 . Base pairs that border the pseudoknot

interior receive penaltyβ2 while unpaired bases on the pseudoknot interior receive penaltyβ3. The energies associated with

the stacked base pairs are described using the standard model. b) A pseudoknot inside a multiloop. The penalty for forming a pseudoknot inside a multiloop isβm

1 . The treatment ofβ2 andβ3 inside the pseudoknot remains the same. In addition, the

standard penalty for formation of a multiloop isα1, the two pseudoknot base pairs that border the multiloop are given the

standard multiloop penaltyα2, and unpaired bases that are inside the multiloop are given penaltyα3. c) A pseudoknot within

a pseudoknot. The energy treatment for the exterior pseudoknot remains the same. The penalty for forming a pseudoknot inside a pseudoknot is β1p. Base pairs from the interior pseudoknot that border the exterior pseudoknot receive penalty

β2. Otherwise, the energetic treatment of the interior pseudoknot is the same as for an exterior pseudoknot. The partition

(5)

Initialize (Q, Qb, Qm, Qp, Qz) //O(N2) space Qi,j= 1 //empty recursion Qz

Figure S5. Pseudocode implementation of anO(N8)

(6)

a)

b)

Figure S6. Examples of pseudoknots that are excluded from the partition function recursions. Neither structure can be decomposed into two spanning regions as required by Figure 15. The structure prediction recursions of Rivas and Eddy25

(7)

functionfastiloops(i, j, l, Qg, Qx, Qx2)

//QxrecursionforO(N5) internal loop contributions toQg if(l≥17) //smallest subsequence not added toQgas special case

ford=i+6, j−10

//ConvertQxinto interior loop energies if(l17 & sequence permitsi·jbase pair)

//Extend loops for future use

if(i6= 1 &j6=N)

//Add small inextensible interior loops toQgas special cases forL1= 0,min(3, di2)

//Add bulge loops and large asymmetric loops as special cases

forL1= 0,min(3, di2) //CasesL1= 0,1,2,3,L24

Figure S7. Pseudocode for computing interior loop con-tributions to Qg inO(N5) as an alternative to the

O(N6)

interior loop recursion of Figure 19. Here, N is the length of the strand andl=j−i+1 is the length of the substrand under consideration at any given point during the recursive process. The smallest “possible extensible loop” is the case

L1=L2= 4 with size s= 8. Therefore, the smallest

subse-quence for whichQx can be employed isl= 17 (adding the

four closing basesi, c, f, j, the additional spanning paird·e, and a minimum hairpin loop of three bases). For given val-ues ofi,dande,Qx

i,d,e,s already contains the contributions

toQgi,d,e,jfor all extensible loops of sizesexcept for the two cases when either L1= 4 or L2= 4 (which cannot be

ob-tained by extending smaller loops that use a different energy expression). EnrichingQx

i,d,e,s with these two new possible

extensible loops, we then convertQxi,d,e,s into contributions

to Qgi,d,e,j by introducing the term for closing these loops with pair i·j. Qxi,d,e,s is then extended to provide future

values ofQxi−1,d,e,s+2. All other interior loop contributions (cases with eitherL1≤3 orL2≤3) are then added directly

toQbi,j using the special energy expressions of the standard

model implied byGinternali,d,e,j . Note that the subsequence length

lis fixed inside each call to the function “fastiloops”. Hence, specifyingiimpliesj=i+l−1. For subsequences of length

l, we useQx

i,d,e,s (j implied) to compute Qxi−1,d,e,s+2 (j+1 implied) which will later be used to compute contributions toQgi

−1,d,e,j+1for subsequences of lengthl+2. Thus, for a given value ofl, the values of Qx

i,d,e,s need only be stored

for all legal values of i, d, e, and s until l has been incre-mented 3 times, at which point it can be discarded. This is accomplished by usingQx1

i,d,e,s andQ x2

i,d,e,s to store future

Gambar

Figure S1. Multiloop energy expression. For this example there are three base pairs defining the multiloop (unpaired bases in the multiloop (B = 3) and sixU = 6) so Gmulti = α1 + 3α2 + 6α3.
Figure S2. Pseudocode for computing interior loop con-tributions to Qb in O(N 3) as an alternative to the O(N 4)interior loop recursion of Figure 8
Figure S3. Schematic for interpreting the pseudocode of Supplementary Material Figure S2, which computes the interiorloop contributions to the partition function in O(N 3)
Figure S4. Illustration of the pseudoknot energy expression. a) An external pseudoknot
+4

Referensi

Dokumen terkait

Berdasarkan surat Penetapan Penyedia Barang/Jasa Nomor 027 t lSrls lULPl2012 langgal 27 September 2012, dengan ini Kelompok Kerja Unit Layanan Pengadaan mengumumkan Hasil

Dengan ini kami mengundang Bapak / Ibu untuk menghadiri acara klarifikasi dan pembuktian dokumen kualifikasi untuk pekerjaan Penyusunan Dokumen Lingkungan Permukiman

Salah satunya adalah dakwah di dalam dan melalui cyberspace harus disertai dengan kemampuan semiotic dan pencitraan ( imagology ), yaitu.. dengan

The addition of the neem products (Achook and Suneem G) and two combinations (urea plus neem products) compost and urea signi®cantly ( P R 0.05) reduced the total number

Selama melaksanakan Praktek Kerja Lapangan (PKL) di Departemen Sosial Jakarta, penulis ditempatkan pada bagian Organisasi Hukum dan Humas (OHH) yang berada dibawah

Tidak ada gejala yang spesifik yang dapat dihubungkan dengan peningkatan tekanan darah, selain penentuan tekanan arteri oleh dokter yang memeriksa. Hal ini berarti

Other articles in this issue have been contributed by Stamenka Uvalic-Trumbic of the Division of Higher Education in UNESCO Headquarters, who has written about

Pengelolaan hipertensi bertujuan untuk mencegah morbiditas dan mortalitas akibat komplikasi kardiovaskuler yang berhubungan dengan pencapaian dan pemeliharaan tekanan darah