• Tidak ada hasil yang ditemukan

AT-kaneko. 120KB Jun 04 2011 12:08:22 AM

N/A
N/A
Protected

Academic year: 2017

Membagikan "AT-kaneko. 120KB Jun 04 2011 12:08:22 AM"

Copied!
7
0
0

Teks penuh

(1)

23 11

Article 00.2.9

Journal of Integer Sequences, Vol. 3 (2000),

2

3 6 1 47

The Akiyama-Tanigawa algorithm for

Bernoulli numbers

Masanobu Kaneko

Graduate School of Mathematics Kyushu University Fukuoka 812-8581, Japan

Email address: mkaneko@math.kyushu-u.ac.jp

Abstract

A direct proof is given for Akiyama and Tanigawa’s algorithm for computing Bernoulli numbers. The proof uses a closed formula for Bernoulli numbers expressed in terms of Stirling numbers. The outcome of the same algorithm with different initial values is also briefly discussed.

1

The Algorithm

In their study of values at non-positive integer arguments of multiple zeta

func-tions, S. Akiyama and Y. Tanigawa [1] found as a special case an amusing

algorithm for computing Bernoulli numbers in a manner similar to “Pascal’s triangle” for binomial coefficients.

Their algorithm reads as follows: Start with the 0-th row 1, 1

2, 1 3,

1 4,

1 5, . . .

and define the first row by 1·(1−1

2), 2·( 1 2−

1 3),3·(

1 3−

1

4), . . . which produces

the sequence 1

2, 1 3,

1

4, . . . .Then define the next row by 1·( 1 2−

1 3),2·(

1 3−

1 4),3·

(1

4− 1

5), . . . ,thus giving 1 6,

1 6,

3

20, . . . as the second row. In general, denoting the

m-th (m = 0,1,2, . . .) number in then-th (n= 0,1,2, . . .) row byan,m, the

m-th number in the (n+ 1)-st rowan+1,mis determined recursively by

(2)

Then the claim is that the 0-th componentan,0of each row (the “leading

diag-onal”) is just then-th Bernoulli numbersBn, where

Note that we are using the definition of the Bernoulli numbers in whichB1=12.

This is the definition used by Bernoulli (and independently Seki, published one year prior to Bernoulli). Incidentally, this is more appropriate for the Euler

formulaζ(1−k) =−Bk/k (k= 1,2,3, . . .) for the values of the Riemann zeta

(3)

2

Proof

The proof is based on the following identity for Bernoulli numbers, a variant

of which goes as far back as Kronecker (see [4]). Here we denote by n

m the

Stirling number of the second kind:

xn= n

X

m=0

n

m

xm,

wherexm=x(x1)· · ·(xm+ 1) form1 and x0 = 1. (We use Knuth’s

notation [7]. For the Stirling number identities that we shall need, the reader is

referred for example to [5].)

Theorem 1

Bn= n

X

m=0

(−1)mm!n+1

m+1

m+ 1 , ∀n≥0.

We shall give later a proof of this identity for the sake of completeness. Once we have this, the next proposition ensures the validity of our algorithm.

Proposition 2 Given an initial sequence a0,m (m = 0,1,2, . . .), define the

sequencesan,m (n≥1)recursively by

an,m= (m+ 1)·(an−1,m−an−1,m+1) (n≥1, m≥0). (1)

Then

an,0=

n

X

m=0

(−1)mm!

n+ 1

m+ 1

a0,m. (2)

Proof. Put

gn(t) =

X

m=0

an,mtm.

By the recursion (1) we have forn≥1

gn(t) =

X

m=0

(m+ 1)(an−1,m−an−1,m+1)tm

= d

dt(

X

m=0

an−1,mt

m+1) d

dt(

X

m=0

an−1,m+1t

m+1)

= d

dt(tgn−1(t))−

d

dt(gn−1(t)−an−1,0)

= gn−1(t) + (t−1)

d

dt(gn−1(t))

= d

(4)

Hence, by putting (t−1)gn(t) =hn(t) we obtain

hn(t) = (t−1)

d

dt(hn−1(t)) (n≥1),

and thus

hn(t) =

(We have used the recursionn+1

m+1 = (m+ 1)

Proof of Theorem 1. We show the generating series of the right hand side

coincide with that ofBn. To do this, we use the identity

ex(ex1)m

which results from the well-known generating series for the Stirling numbers (cf.

(5)

by replacingmwithm+ 1 and differentiating with respect tox. With this, we

This proves Theorem 1.

Remark. A referee suggested the following interpretation of the algorithm using generating function:

Suppose the first row isa0, a1, a2, . . . ,with ordinary generating function

function ✑

(x) =

This follows from (2) and (3), the calculation being parallel to that of the proof

of Theorem 1. To get the Bernoulli numbers we takea0= 1, a1=12, a2= 13, . . .

withA(x) =−log(1−x)/x, and find

(x) =xex/(ex1).

3

Poly-Bernoulli numbers

If we replace the initial sequence 1,12,13,14, . . . by 1,21k,

(6)

Proposition 3 For anyk∈Zandn≥0, we have

D(k)

n = (−1) n

n

X

m=0

(−1)mm!n+1

m+1

(m+ 1)k .

Proof. The proof can be given completely in the same way as the proof of Theorem 1 using generating series, and hence will be omitted.

Acknowledgements

I should like to thank the referee for several comments and suggestions.

References

[1] Akiyama, S. and Tanigawa, Y. : Multiple zeta values at non-positive

inte-gers,preprint(1999).

[2] Arakawa, T. and Kaneko, M. : Multiple zeta values, poly-Bernoulli

num-bers, and related zeta functions,Nagoya Math. J.153(1999), 189–209.

[3] Arakawa, T. and Kaneko, M. : On poly-Bernoulli numbers, Comment.

Math. Univ. Sanct. Pauli48-2(1999), 159–167.

[4] Gould, H. G. : Explicit formulas for Bernoulli numbers, Amer. Math.

Monthly79 (1972), 44–51.

[5] Graham, R., Knuth, D. and Patashnik, O.: Concrete Mathematics,

Addison-Wesley, (1989).

[6] Kaneko, M. : Poly-Bernoulli numbers, Jour. Th. Nombre Bordeaux 9

(1997), 199–206.

[7] Knuth, D. : Two notes on notation,Amer. Math. Monthly99(1992), 403–

422.

(The Bernoulli numbers are A027641/A027642. The table in Figure 1 yields sequences A051714/A051715. Other sequences which mention this paper are A000367, A002445, A026741, A045896, A051712, A051713, A051716, A051717, A051718, A051719, A051720, A051721, A051722, A051723.)

(7)

Gambar

Figure 1: Akiyama-Tanigawa triangle

Referensi

Dokumen terkait

2017 yang dibentuk berdasarkan Surat Keputusan Kepala Unit Layanan Pengadaan Kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas I Dumai Nomor :

Pada hari ini Sabtu tanggal Delapan bulan April tahun Dua Ribu Tujuh Belas (Jumat, 08-04- 2017) , bertempat di ruang pertemuan Kantor Kesyahbandaran dan Otoritas Pelabuhan Kelas II

Secara parsial informasi akuntansi memberikan kontribusi/pengaruh sebesar 48,6% terhadap kinerja manajerial pada Dinas di Pemerintah Daerah Kabupaten Bandung ketika

LAR merupakan rasio luas daun dengan berat tanaman pada fase tanaman setelah berumur 60 hst yang memiliki korelasi nega- tif dengan bobot biji.. Dengan demikian dapat

Parameter pengamatan yang diamati yaitu tinggi tanaman, jumlah daun, warna hijau daun, luas daun, berat segar tanaman, berat kering ta- naman, berat segar tongkol tanpa kelobot,

Dari hasil penelitian didapat besarnya tingkat keeratan hubungan (korelasi) yang sangat erat diperoleh yaitu sebesar 0,783 maka hubungan ini menurut aturan kriteria guildford

Norepinephrine released by the postganglionic sympathetic fibres terminal binds to the 1 adrenergic receptors either in the cell membrane of sinu-atrial and atrio- ventricular node

[r]