• Tidak ada hasil yang ditemukan

Performance Analysis Of Six Axis Industrial Robot.

N/A
N/A
Protected

Academic year: 2017

Membagikan "Performance Analysis Of Six Axis Industrial Robot."

Copied!
24
0
0

Teks penuh

(1)

PERFORMANCE ANALYSIS OF SIX AXIS

INDUSTRIAL ROBOT

MOHAMAD FIRDHAUS BIN MOHAMAD LAJIS

(2)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERFORMANCE ANALYSIS OF

SIX AXIS INDUSTRIAL ROBOT

Thesis submitted in accordance with the partial requirements of the Universti Teknikal Malaysia Melaka (UTeM) for the

Bachelor of Manufacturing Engineering (Robotic and Automation) with Honours

By

MOHAMAD FIRDHAUS BIN MOHAMAD LAJIS

(3)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PSM

* Jika laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak organisasi berkenaan dengan menyatakan sekali sebab dan tempoh tesis ini perlu dikelaskan sebagai SULIT atau TERHAD.

(TANDATANGAN PENULIS) Alamat Tetap:

JKR 1864, Berek Polis Lenggeng, 71750 Seremban, Negeri Sembilan.

Tarikh: _______________________

(TANDATANGAN PENYELIA)

Cop Rasmi:

Tarikh: _______________________

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

TERHAD SULIT

JUDUL:

Performance Analysis of Six Axis Industrial Robot

SESI PENGAJIAN:

Semester 2 2007/2008

Saya Mohamad Firdhaus bin Mohamad Lajis

mengaku membenarkan laporan PSM / tesis (Sarjana/Doktor Falsafah) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM / tesis adalah hak milik Universiti Teknikal Malaysia Melaka dan

penulis.

2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan

untuk tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM / tesis ini sebagai bahan

pertukaran antara institusi pengajian tinggi.

4. *Sila tandakan ()

(4)

DECLARATION

I hereby declare that this report entitled “PERFORMANCE ANALYSIS OF SIX

AXIS INDUSTRIAL ROBOT” is the result of my own research except as cited in

the references.

Signature :

(5)

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing

Engineering (Robotic and Automation) with Honours. The members of the supervisory committee are as follow:

(6)

ABSTRACT

(7)

ABSTRAK

Projek ini bertujuan menganalisis persembahan robot industri enam sendi (paksi) dan telah fokus terhadap mencari ketepatan dan kebolehulangan robot industri enam sendi iaitu robot COMAU dengan menggunakan laser interferometer. Projek ini telah mengkaji adakah ketepatan dan kebolehulangan menjejaskan keupayaan robot industri dengan menggunakan dua pembolehubah iaitu beban dan jarak sebagai penentu. Ianya telah bermula dengan kajian literal dari internet, buku, manual, jurnal dan artikel. Sistem Laser Interferometer dari Renishaw telah di pilih sebagai alat untuk mengukur ketepatan dan kebolehulangan robot COMAU. Projek ini berjaya memperoleh keputusan untuk memenuhi objektif projek. Laser interferometer telah mengeluarkan nilai ketepatan dan kebolehulangan robot COMAU untuk di analisis dan telah menunjukkan bahawa ianya lebih baik berbanding spesifikasi yang telah diberikan pengeluar robot ini. Selain itu, beban dan jarak telah menunjukkan sememangnya menjejaskan ketepatan dan kebolehulangan robot ini.

(8)

DEDICATION

To my beloved parents Mohamad Lajis b. Hasan

Hanisah bt. Kames

And my lovely siblings Faizah bt. Mohamad Lajis Fadiahtul Amni bt. Mohamad Lajis

(9)

ACKNOWLEDGEMENTS

I would like to praise to ALLAH swt with His love and merciful I able to finish my Final Year Project (Projek Sarjana Muda). Besides that, I would like to give my thanks and gratitude to my supervisor Mrs. Syamimi bt. Shamsuddin for her support and idea in helping me to complete the project successfully. My thanks and grateful also goes to Universiti Teknikal Malaysia Melaka (UTeM) which is the place I completed my project and study, and also to other lecturers who help me in completing the project.

Not to forget to my beloved family that supports me from start of my life until now. Without divided support makes me able to stand sturdily. Also, to my friends and peers who are good companions at times in need.

(10)

TABLE OF CONTENTS

List of Abbreviations, Symbols, Specialized Nomenclatures xvi

1. INTRODUCTION 1

1.1. Background 1

1.2. Problem Statement 3

1.3. Objective 4

1.4. Scope 5

1.5. Project Schedule 6

2.LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Robot 8

2.3 Types of Robot 10

2.3.1Autonomous Robot 10

2.3.2Manual Robot 11

2.3.3Mobile Robot 12

2.3.4Humanoid Robot 13

2.3.5Industrial Robot 14

2.3.5.1Applications of Industrial Robot 16

2.3.5.1.1Welding 16

(11)

2.3.5.1.3Assembly Operation 18 2.3.5.1.4Loading and Unloading Operation 19 2.3.5.1.5Cutting Applications 20

2.4 Robot Features 20

2.4.1Robot Classification 20

2.4.1.1Cartesian Robot 21

2.4.1.2Cylindrical Robot 22

2.4.1.3Spherical Robot 23

2.4.1.4Articulated Robot 24

2.4.1.5SCARA Robot 25

2.4.2Robot Power Sources 26

2.4.2.1Hydraulic 26

2.4.2.2Pneumatic 26

2.4.2.3Electrical 27

2.4.2.4Mechanical Gear and Cam 27

2.4.3Motion Control 28

2.4.4Robot Tooling 29

2.4.4.1Standard Gripper 29

2.4.4.2Vacuum Gripper 30

2.4.4.3Magnetic Gripper 31

2.4.4.4Other Gripper 31

2.4.5Robot Manipulator Component 32

2.4.5.1Link 33

2.4.7Sensing Capability 38

2.5 Performance Specification 38

2.4.1Payload 39

2.4.2Speed 39

(12)

2.4.3Acceleration 39

2.4.4Accuracy 40

2.4.5Repeatability 44

2.6 Robot Manufacturers of Industrial Robot 46

2.6.1ABB 46

2.6.2Fanuc Robotic 47

2.6.3COMAU 48

2.7 Robot Performance Measuring Methods 49

2.7.1Laser Interferometer 50

2.7.2Laser Interferometer in the Market 51 2.7.2.1Canon Micro Laser Interferometer 51 2.7.2.2(API), Tracker3 Laser Tracking System 52 2.7.2.3Renishaw XL80, Laser Interferometer System. 52

2.8 Past Research 53

2.8.1Force/Torque Sensor System: Optimizing Robot Performance 54 2.8.2Self-Calibration of laser Tracking System 55

3. METHODOLOGY 57

3.1 Introduction 57

3.2 Research Tools 57

3.2.1Internet 58

3.2.2Journals And Articles 58

3.2.3Books and Manual 58

3.3 Project Planning 59

3.3.1 Topic Selection 60

3.3.2Proposal 60

3.3.3Data Collection 60

3.3.4 Designing Method 61

3.3.5 Analyzing and Testing 61

3.3.6 Analyze Robot Performance 61

3.3.7 Discussion and Conclusion 62

(13)

3.3.8.1 Introduction 62

3.3.8.2Literature Review 63

3.3.8.3Methodology 63

3.3.8.4 Result and Analysis 63

3.3.8.5Discussion 64

3.3.8.6Conclusion and Suggestion 64

3.4 Project Tools 64

3.4.1.Personal Computer 65

3.4.2 COMAU Robot 65

3.4.3.1 Technical Specification 66

3.4.3 C4G Controller 68

3.4.4 XL80 Renishaw Laser System 68

3.4.4.1 Renishaw Laser Specifications 70

3.5 Experimental Set Up 72

4. EXPERIMENTAL SET UP 73

4.1 Introduction 73

4.2 Equipments 74

4.3 Experimental Set Up 74

4.3.1COMAU’s Programming 75

4.3.2XL80 Renishaw Laser System Set Up 81

4.3.3Set Up For The Loads 84

4.4 Experiment 86

4.5 Result 87

5. RESULT AND ANALYSIS 88

5.1 Introduction 88

5.2 Results Data 88

5.2.1 Environment Data 89

5.2.2 Repeatability and Accuracy 95

5.2.2.1Repeatability 96

5.2.2.2Accuracy 99

(14)

5.3 Discussion 102

5.4 Suggestion 103

6. CONCLUSION 104

REFERENCES 105

(15)

LIST OF FIGURES

Figure 2.1 Autonomous Robot 11

Figure 2.2 Manual Robot Control by Wireless Remote 12

Figure 2.3 Mobile Robot 12

Figure 2.4 Asimo; First Humanoid Robot by HONDA 13

Figure 2.5 Welding Application 17

Figure 2.6 Spray Painting 17

Figure 2.7 Assembly Operation 18

Figure 2.8 ABB Robot for Loading and Unloading Operation 19

Figure 2.9 Application of Cartesian Robot 21 Figure 2.18 Vacuum Cup with Sensor and Vacuum Generator 30

Figure 2.19 Magnetic Gripper 31 Figure 2.26 Accuracy in Two Dimensions Frame Without Mechanical

Inaccuracy Consideration 41

Figure 2.27 Accuracy and Spatial Resolution Represented by

A Statistical Distribution 41

(16)

Figure 2.28 Errors Affecting the Robot Structure 42 Figure 2.29 Accuracy in Normal Distribution 43 Figure 2.30 Example of Representation of Resolution, Accuracy,

And Repeatability of a Robot Arm 45

Figure 2.31 ABB product 46

Figure 2.32 Six axes Fanuc Robot 47

Figure 2.33 SMART NS 48

Figure 2.34 (a) Michelson Interferometer, (b) Mach-Zehnder Interferometer 50 Figure 2.35 (a) Sagnac Interferometer, (b) Fabry-Perot Interferometer 51 Figure 2.36 Conan Micro Laser Interferometer 51 Figure 2.37 API Track3 Laser Tracking Systems 52

Figure 2.38 Renishaw XL80 53

Figure 2.39 Set Up of the Laser Interferometer 56

Figure 3.1 SMART NS 65

Figure 3.2 CG4 68

Figure 3.3 Renishaw Laser Interferometer and QuickViewXL™ Software 69 Figure 3.4 Suggestion Set Up of the Experiment 72

Figure 4.1 Illustrative Linear Movement of Robot. 76 Figure 4.2 The X, Y and Z Axis of the COMAU Robot. 76 Figure 4.3 The Program in the Teach Pendant. 78 Figure 4.4 COMAU Robot Programming for Distance of 500 mm. 79 Figure 4.5 Programs for Distance of 750 mm. 80 Figure 4.6 Programming for Distance of 1000 mm. 80 Figure 4.7 Laser and Measurement Optic Alignment. 81 Figure 4.8 XL80 Renishaw Laser System. 82 Figure 4.9 XL80 Renishaw Laser System Set Up. 83

Figure 4.10 The XC80 Set Up. 84

Figure 4.11 The Load Position. 85

(17)

Figure 5.1 The Example of Multidirectional Movement. 103

(18)

LIST OF TABLES

Table 1.1 Project Planning PSM1 6

Table 1.2 Project Planning PSM2 7

Table 3.1 Family of COMAU Robot 66

Table 3.2 Technical Specification of COMAU Robot 67 Table 3.3 Renishaw’s System Performance 70 Table 3.4 XL80 Renishaw Laser System Specification 71 Table 3.5 XC80 Environmental Compensator 71

Table 4.1 Sets of Experiment Conducted. 75

Table 5.1 Initial Environment Data. 89 Table 5.2 Final Environment Data. 90 Table 5.3 Repeatability and Accuracy. 95

Table 5.4 Repeatability

97

(19)

LIST OF CHARTS

Chart 2.1 Robot Controller Diagram 36

Chart 3.1 Project Planning Flow Chart 59

Chart 4.1 The Process Flow of the Experiment 73

(20)

LIST OF GRAPHS

Graph 5.1 Initial Air Temperature. 91

Graph 5.2 Final Air Temperature. 91

Graph 5.3 Initial Material Temperature 92 Graph 5.4 Final Material Temperature 92

Graph 5.5 Initial Air Pressure 93

Graph 5.6 Final Air Pressure 93

Graph 5.7 Initial Relative Humidity 94 Graph 5.8 Final Relative Humidity 94 Graph 5.9 Repeatability vs Distance 98 Graph 5.10 Repeatability vs Load 99

Graph 5.11 Accuracy vs Distance 100

(21)

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED

NOMENCLATURE

DOF - Degrees of Freedom

SCARA - Selective Compliant Articulated Robot Arm

ISO - International Organization for Standardization

DC - Direct Current

ABB Asea Brown Bovery

PSM - Projek Sarjana Muda

MB - Mega Byte

RAM - Random Access Memory

(22)

CHAPTER 1

INTRODUCTION

1.1 Background

Recently, manufacturing had moved forward drastically. In order to fulfill the demands of the market, the industries had to finish the product in time and in large amount. So, manufacturing or manu factura which mean making by hand in the Latin word being define as the use of tools and labor to make things for use or sale. The term may refer to a vast range of human activity, from handicraft to high tech, but is most commonly applied to industrial production, in which raw materials are transformed into finished goods on a large scale.

In Malaysia, manufacturing industries were brought in by our former prime minister; Tun Dr. Mahathir bin Mohamad by introduce the first national carmaker, PROTON

(Perusahaan Otomobil Nasional). In collaboration with Mitsubishi Motors, the

manufacturing technologies had being used in Malaysia industries and since then industries had being developed days by days. Furthermore, the manufacturing industries in Malaysia being widely develop and become one of the important contributors in Malaysia economies.

(23)

According to the Robot Institute of America, the robot being defined as a re-programmable multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for performances of a variety of tasks [2]. From the definition, the most important features of the robot system are the programmable and re-programmable. These features means a robot have the degree of intelligence. Robots were described in anatomical language: they had arms, wrists, hands, fingers, and, brains. A robot manipulator system consists of links, joints, actuator, sensors, and controllers.

Their being for replace human work is the most important thing in manufacturing industries. The robotics system being use in manufacturing as it being defined earlier; transform raw material into finished products in large scale. The use of robot is very important in order to produce the products in large scale, faster and will reduce cost on human worker.

The field of robotics may be more practically defined as the study, design and use of robot systems for manufacturing. An industrial robot being defined by ISO as an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes. An industrial robot also can be defined as a manipulator designed to move materials, parts and tools, and perform a variety of programmed tasks in manufacturing and production settings. Industrial robots are reshaping the manufacturing industry. They are often used to perform duties that are dangerous or not suit for human workers. The industrial robot is a good fit for many applications.

Many factors determine which robot is best suited for a specific application like being listed in industrial robotic systems. Each application demands a performance capability that matches the task. This performance capability is now still being the subject that being study to improve the industrial robot for reduces cost and increase productivity. The performance of the industrial robot is being measure in term of robot’s accuracy, repeatability, exchangeability, speed, cornering, warm-up drift, etc.

(24)

This project will research about the robot performance in term of accuracy and repeatability only. Also, this research will also cover the method that recently used in measuring robot performance.

1.2 Problem Statement

Robots have been used widely in industries to reduce human factor, increase productivity and shorten the cycle time to produce a product. However, there is a catch in dealing with the industrial robot. Focusing on the six axis of industrial robot, some problems had been identified.

Repeatability and accuracy are two important term in measuring the performance of the robot. However, repeatability is much important compare with accuracy. This is because the robot had being taught (programmed) to do a job in the first time and will repeat the same work. But, due to some factor, the positioning error had occurred and will affect the production performance. This situation will bring the problem on other performance specification which is accuracy.

One of the problems was that the precision of the industrial robot will be lessening when it performs the same task over and over again. In other word, the 6 axis robot will have problem when it comes to the repeatability task. The accuracy and precision might be less as the error become bigger as the robot repeatedly doing its task. For example, the first task was done perfectly by the 6 axis robot but as it gets to the 101 production task, the result may become vary from the first one.

Referensi

Dokumen terkait

Tujuan penelitian ini adalah membuktikan metode KLT Densitometri yang akan digunakan untuk melakukan penetapan kadar campuran deksametason dan deksklorfeniramin

Pada dokumen yang relevan baik yang berupa lembar kerja, hasil karya, maupun kumpulan dokumen yang dipelajari siswa terutama yang berupa tugas dari pendidik

Sekolah berperan aktif dalam mengikuti dan mengadakan berbagai kegiatan lingkungan hidup yang melibatkan masyarakat dan berbagai kerjasama yang dilaksanakan dengan

Oleh karena itu komitmen pada karyawan terhadap organisasi atau perusahaan harus diupayakan secara maksimal, maksudnya perusahaan berusaha memenuhi hak-hak karyawan sehingga

Pertama, bentuk pemakaian disfemia pada terjemahan Alquran surah Al- Baqarah dikelompokkan menjadi empat, yaitu (a) berupa kata, terdiri dari kata monomorfemik dan

[r]

DAFTAR PESERTA SERTIFIKASI GURU YANG MELENGKAPI/MEMPERBAIKI BERKAS KABUPATEN KOLAKA

Dari definisi setiap kata di atas dapat disimpulkan pengertian judul “ Fisheries Research Center Di Gresik” yaitu : suatu kawasan bangunan yang berfungsi sebagai