• Tidak ada hasil yang ditemukan

BAB II DASAR TEORI. 2.1 Analisis Kestabilan Lereng Batuan

N/A
N/A
Protected

Academic year: 2021

Membagikan "BAB II DASAR TEORI. 2.1 Analisis Kestabilan Lereng Batuan"

Copied!
13
0
0

Teks penuh

(1)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

8

BAB II

DASAR TEORI

Eskavasi terbuka adalah memindahkan suatu massa dari material tanah (soil) ataupun batuan (rocks) dengan tujuan untuk memudahkan pembuatan konstruksi yang telah direncanakan sebelumnya. Dalam usaha untuk mencapai tujuan di atas, suatu studi terperinci mengenai karakteristik tanah dan/atau batuan serta pengaruh kondisi geologi sekitar sangatlah diperlukan. Kondisi geologi yang ada di lapangan sangat berpengaruh terhadap kecepatan penggalian dan metoda eskavasi yang digunakan. Informasi geologi yang didapat merupakan suatu parameter yang dapat menentukan tingkat kestabilan dan sebagai referensi untuk pemilihan desain perkuatan lereng tersebut.

2.1 Analisis Kestabilan Lereng Batuan

Secara umum perpaduan orientasi diskontinuitas batuan akan membentuk tiga tipe longsoran/keruntuhan utama pada batuan (Gambar 2.1), yaitu :

- Keruntuhan geser planar (plane sliding failure) - Keruntuhan geser baji (wedge sliding failure) - Keruntuhan jungkiran (toppling failure)

Namun demikian, seringkali tipe keruntuhan yang ada merupakan gabungan dari beberapa keruntuhan utama sehingga seakan-akan membentuk suatu tipe keruntuhan yang tidak beraturan (raveling failure) atau seringkali disebut sebagai tipe keruntuhan kompleks.

Untuk mengetahui adanya potensi tipe keruntuhan pada suatu aktivitas pemotongan lereng batuan, perlu dilakukan pemetaan orientasi diskontinuitas yang dilakukan, baik sebelum maupun sesudah lereng batuan tersebut tersingkap. Sementara itu, metode analitik untuk memprediksi potensi keruntuhan batuan dan cara penanggulangannya seringkali tidak efektif (Maerz, 2000). Oleh karena itu, penggunaan desain empiris dan klasifikasi massa batuan menjadi penting (Franklin dan Maerz, 1996).

(2)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

9 Gambar 2.1. Tipe keruntuhan utama pada batuan.

2.2 Klasifikasi Massa Batuan untuk Evaluasi Kestabilan Lereng

Desain empiris (empirical design) merupakan salah satu metodologi desain yang tidak menggunakan metode desain formal (yang pada umumnya menggunakan perhitungan atau persamaan analitis), namun lebih mendasarkan pada pengalaman kumulatif dari berbagai hasil penelitian terdahulu.

Sementara itu dalam kaitannya dengan rekayasa batuan, klasifikasi massa batuan (rock mass classification) berarti mengumpulkan data dan mengklasifikasikan singkapan batuan berdasarkan parameter-parameter yang telah diyakini dapat mencerminkan perilaku massa batuan tersebut. Salah satu contoh skema klasifikasi yang cukup populer dan yang telah memasukan elemen desain di dalamnya yaitu rock mass rating (RMR) atau geomechanics classification system (Bieniawski, 1984). Selain itu, terdapat juga beberapa sistem klasifikasi massa batuan yang dirancang khusus untuk lereng, misalnya sistem slope mass rating (SMR) yang dikemukakan oleh Romana (1985). Sistem ini mendasarkan pada hasil RMR dengan memberikan beberapa penyesuaian.

2.2.1 Klasifikasi Sistem RMR (Geomechanics Classification System)

Klasifikasi geomekanika diusulkan oleh Bieniawski pada tahun 1984. Dalam menggunakan klasifikasi geomekanika, massa batuan dibagi menjadi beberapa kelompok daerah yang didasarkan kesamaan sifat dan karakteristik. Meskipun massa batuan bersifat diskontinuitas secara alamiah, namun pada setiap kelompok daerah yang telah dibagi akan memiliki kesamaan, seperti misalnya tipe batuan yang sama atau jarak spasi antar bidang diskontinuitas yang relatif sama. Setelah kelompok

(3)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

10 daerah ditentukan maka selanjutnya dicari parameter-parameter klasifikasi pada setiap kelompok daerah dengan melakukan pengukuran lapangan.

Di dalam klasifikasi ini, lima parameter dasar diukur atau diestimasi secara langsung di lapangan, meliputi :

a. Kuat tekan uniaksial material batuan (intact rock) b. RQD (rock quality designation)

c. Spasi diskontinuitas d. Kondisi diskontinuitas e. Kondisi keairan/airtanah

Setelah parameter-parameter klasifikasi diperoleh, kemudian dihitung rating dari massa batuan dengan menggunakan rock mass rating system (Tabel 2.1). Penjabaran lebih detail mengenai parameter kondisi diskontinuitas diberikan pada Tabel 2.2 yang mengikutsertakan karakteristik diskontinuitas secara lebih menyeluruh. Kemudian diberikan Tabel 2.3 sebagai suatu pembagian massa batuan berdasarkan total nilai pembobotan yang secara langsung didapatkan dari Tabel 2.1. Lebih lanjut lagi, Tabel 2.4 diberikan dengan tujuan untuk memaparkan setiap kelas massa batuan agar memudahkan pengaplikasian dalam hal kerekayasaan berdasarkan kelas massa batuan tersebut. Gambar 2.3 sampai 2.5 merupakan grafik yang digunakan untuk menginterpolasi nilai pembobotan untuk parameter kekuatan batuan (intact rock), RQD, dan spasi bidang diskontinuitas. Sementara itu, Gambar 2.6 memperlihatkan hubungan antara spasi bidang diskontinuitas dengan nilai RQD.

Hasil akhir penilaian RMR kemudian dapat digunakan untuk mendeterminasi kemampuan lereng akan stabil tanpa diberi perkuatan dan memilih jenis perkuatan yang dibutuhkan.

(4)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

11 Gambar 2.2. Grafik perbandingan nilai rating untuk

setiap parameter kekuatan intact rock.

Gambar 2.3. Grafik perbandingan nilai rating untuk setiap spasi bidang diskontinuitas.

Gambar 2.4. Grafik perbandingan nilai rating terhadap nilai RQD.

(5)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa

Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat 12

Tabel 2.1. Parameter-parameter klasifikasi RMR dan nilai-nilai pembobotannya.

Parameter Ranges of values

Point load strength index

(MPa) Uniaxial compressive strength (MPa) > 10 > 250 4 – 10 100 – 250 2 – 4 50 – 100 1 – 2 25 – 50

For this low range, uniaxial compressive test is preferred 5 – 25 1 – 5 < 1 1 Strength of intact rock material Rating 15 12 7 4 2 1 0

2 Drill core quality RQD (%) 90 – 100 75 – 90 50 – 75 25 – 50 < 25

Rating 20 17 13 8 3

3 Spacing of discontinuities > 2 m 0,6 – 2 m 200 – 600 mm 60 – 200 mm < 60 mm

Rating 20 15 10 8 5

4 Condition of discontinuities Very rough surfaces Not continuous No separation Unweathered wall rock

Slighlty rough surface Separation < 1 mm Slightly weathered walls

Slighlty rough surface Separation < 1 mm Highly weathered walls

Slickensided surfaces or Gouge < 5 mm thick or Separation 1 – 5 mm Continuous

Soft gouge > 5 mm thick or Separation > 5 mm Continuous

Rating 30 25 20 10 0

5 Groundwater Inflow per 10 m tunnel

length (L min-1 ) Joint water pressure Ratio Major principal stress General conditions None or 0 or Completely dry < 10 or < 0,1 or Damp 10 – 25 or 0,1 – 0,2 or Wet 25 – 125 or 0,2 – 0,5 or Dripping > 125 or > 0,5 or Flowing Rating 15 10 7 4 0

(6)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan

Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat 13

Tabel 2.2. Pembobotan setiap karakteristik diskontinuitas untuk parameter kondisi diskontinuitas.

Parameter Ratings

Discontinuity length (persistence/continuity)

< 1 m 1 – 3 m 3 – 10 m 10 – 20 m > 20 m

6 2 4 1 0

Separation (aperture) None < 0,1 mm 0,1 – 1,0 mm 1 – 5 mm > 5 mm

6 5 4 1 0

Roughness Very rough Rough Slightly rough Smooth Slickensided

6 5

Hard filling

3 1

Soft filling 0 Infilling (gouge) None < 5 mm > 5 mm < 5 mm > 5 mm

6 4 2 2 0

Weathering Unweathered Slightly weathered Moderately weathered Highly weatehered Decomposed 6 5 3 1 0

(7)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan

Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

14

Tabel 2.3. Pengklasifikasian massa batuan dari total nilai pembobotan.

Rating

Class

Description

100 – 81

I

Very good rock

80 – 61

II

Good rock

60 – 41

III

Fair rock

40 – 21

IV

Poor rock

< 20

V

Very poor rock

Tabel 2.4. Deskripsi terkait dari setiap kelas massa batuan.

Class I II III IV V

Average stand-up time Cohesion of the rock mass (kPa) Friction angle of the rock mass (deg)

20 y for 15 m span > 400 > 45 1 y for 10 m span 300 – 400 35 – 45

1 week for 5 m span 200 – 300

25 – 35

10 h for 2,5 m span 100 – 200

15 - 25

30 min for 1 m span < 100

(8)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

15 2.2.2 Klasifikasi Slope Mass Rating (SMR)

Romana (1985) telah memodifikasi sistem klasifikasi RMR untuk menentukan kestabilan lereng dengan sistem klasifikasi SMR. Romana (1985) menambahkan faktor penyesuai seperti orientasi bidang diskontinuitas dan metoda eskavasi lereng. Faktor penyesuaian untuk orientasi bidang diskontinuitas lebih memberikan gambaran yang lebih spesifik tentang bagaimana menentukan sifat menguntungkan atau tidaknya orientasi bidang diskontinuitas terhadap orientasi lereng (favourability of discontinuity orientation), hal tersebut tidak dijelaskan secara lengkap pada sistem klasifikasi RMR (Bieniawski, 1984). Pendekatan ini sangat cocok untuk penilaian awal kestabilan lereng batuan, termasuk batuan lunak atapun massa batuan yang sangat terkekarkan (heavily jointed rock mass).

Nilai SMR diperoleh dari perhitungan bobot menurut klasifikasi RMR dan faktor-faktor penyesuaian F1, F2, F3, dan F4.

4 3 2 1 ) (F F F F RMR SMR= basic+ ⋅ ⋅ + dengan,

§ F1 bergantung kepada perbedaan besar sudut antara jurus bidang diskontinuitas (αj) dengan jurus dari permukaan lereng (αs), memiliki kisaran nilai 1,0 (jika

j

α dan αs mendekati paralel) sampai 0,15 (jika sudut antara αj dan αs lebih dari 30º dan kemungkinan terjadinya keruntuhan sangat kecil).

(

)

[

]

2

1 1 sin s j F = − α −α

§ F2 merupakan harga tangensial sudut kemiringan bidang diskontinuitas, dengan

j

β adalah sudut kemiringan diskontinuitas. Nilai F2 berkisar 1,00 (apabila sudut kemiringan bidang diskontinuitas lebih dari 45º) sampai 0,15 (untuk βj kurang dari 20º). Untuk jenis longsoran jungkiran (toppling failure) nilai F2 berkisar 1,00.

j

F

(9)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

16 § F3 mencerminkan hubungan antara permukaan lereng dan kemiringan bidang diskontinuitas. Dalam tipe longsoran planar (planar sliding failure), F3 berhubungan dengan kemungkinan terjadinya bidang luncur bebas (“day light”) ke arah permukaan lereng.

§ F merupakan faktor penyelarasan yang berkaitan dengan metode eskavasi.4

Besarnya bobot F1, F2, F3 diberikan pada Tabel 2.5 sedangkan F4 pada Tabel 2.6.

Setelah niai SMR diperoleh, maka nilai tersebut akan berada dalam salah satu kelas dengan nilai bobot tertentu. Tabel 2.7 mendeskripsikan setiap kelas pada sistem klasifikasi SMR.

Tabel 2.5. Penyesuaian pembobotan untuk diskontinuitas

Case Very

favorable Favorable Fair Unfavorable

Very unfavorable P T P/T j – s| |( j – s) –180º| F1 > 30º 0,15 30 – 20º 0,40 20 – 10º 0,70 10 – 5º 0,85 < 5º 1,00 P P T j| F2 F2 < 20º 0,15 1 20 – 30º 0,40 1 30 – 35º 0,70 1 35 – 45º 0,85 1 > 45º 1,00 1 P T P/T j– s j + s F3 > 10º < 110º 0 10 – 0º 110 – 120º -6 0º > 120º -25 0 – (-10º) -50 < -10º -60

P = keruntuhan bidang (plane failure) j= joint dip direction j = joint dip

T = keruntuhan jungkiran (toppling failure) s = slope dip direction s = slope dip

Tabel 2.6. Penyesuaian pembobotan untuk metoda ekskavasi lereng

Method Natural slope Presplitting Smooth blasting Blasting or mechanical Deficient blasting F4 +15 +10 +8 0 -8

(10)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

17 Tabel 2.7. Deskripsi untuk setiap kelas SMR (Romana, 1985)

Class SMR Description Stability Failure Support

I 81 – 100 Very good Completely

stable

None None

II 61 – 80 Good Stable Some blocks Occasional

III 41 – 60 Normal Partially stable Some joints or many wedges

Systematic

IV 21 – 40 Bad Unstable Planar or big

wedges

Important/ corrective

V 0 – 20 Very bad Completely

unstable

Big planar or soil-like

Reexcavation

2.3 Analisis Kinematika untuk Evaluasi Kestabilan Lereng Batuan

Berbagai jenis longsoran lereng (slope failure) berhubungan dengan struktur-struktur geologi yang mengakibatkan adanya suatu diskontinuitas pada suatu massa batuan. Salah satu metode yang seringkali digunakan untuk melakukan identifikasi dan karakterisasi bidang diskontinuitas pada singkapan lereng batuan yaitu metoda scan line (Hudson dan Harrison, 1997).

Dalam kaitannya dengan usaha pemetaan diskontinuitas batuan, scan line sampling harus dilakukan secara sistematik pada seluruh singkapan batuan yang ada. Parameter yang diukur di lapangan adalah panjang lintasan scan line (L), jumlah diskontinuitas (N) dalam lintasan pengukuran, dan kedudukan bidang-bidang diskontinuitas. Dengan demikian, maka frekuensi dikontinuitas (λ) dapat dinyatakan sebagai :

L N = λ

dan rata-rata spasi diskontinuitas ( x ) adalah :

N L x =

Dalam memperhitungkan stabilitas lereng batuan, data kedudukan bidang-bidang diskontinuitas hasil pengukuran scan line sampling digambarkan di dalam stereoplot. Pada umumnya, jika data struktur geologi tersebut telah diplot, beberapa konsentrasi kutub yang signifikan dapat hadir di dalam stereoplot (Gambar 2.2).

(11)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

18 Gambar 2.5. Penggambaran kutub bidang-bidang struktur pada umumnya

memperlihatkan konsentrasi kutub, misalnya kutub A dan B.

Adalah sangat berguna untuk dapat memilah antara bidang-bidang yang berpotensi mengalami keruntuhan, dengan bidang-bidang yang kemungkinan tidak akan terlibat di dalam longsoran.

Faktor kinematik lereng dikatakan memenuhi syarat untuk menyebabkan ketidakstabilan apabila pada lereng terdapat ruang bagi blok massa batuan untuk bergerak pada bidang gelincirnya menuju ruang tersebut (Hoek dan Bray, 1981).

2.3.1 Analisis Kinematika dari Keruntuhan Geser Planar (Plane Failure)

Longsoran bidang (plane failure) adalah bentuk longsoran yang paling mudah untuk diidentifikasi dan dianalisis. Longsoran bidang dapat terjadi dengan bidang gelincir tunggal ataupun set bidang gelincir. Kondisi-kondisi yang dapat menyebabkan keruntuhan tipe ini adalah :

- kemiringan lereng ( s) lebih besar daripada kemiringan bidang gelincir ( j)

- jejak bagian bawah bidang diskontinuitas yang menjadi bidang gelincir harus muncul di muka lereng.

- bidang gelincir memiliki jurus (αj) yang sejajar atau hampir sejajar (maksimal 20º) dengan jurus permukaan lereng (αs).

(12)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

19 2.3.2 Analisis Kinematika dari Keruntuhan Geser Baji (Wedge Failure)

Berbeda dengan keruntuhan geser planar, keruntuhan geser baji akan terjadi bila ada dua bidang diskontinuitas atau lebih berpotongan sedemikian rupa sehingga membentuk baji terhadap lereng. Persyaratan lain yang harus terpenuhi di antaranya adalah :

- arah garis perpotongan (trend) kedua bidang diskontinuitas harus mendekati arah kemiringan muka lereng.

- sudut lereng lebih besar daripada sudut garis potong kedua bidang diskontinuitas - garis perpotongan kedua bidang diskontinuitas harus menembus permukaan

lereng.

- plunge dari garis perpotongan kedua bidang diskontinuitas lebih besar daripada sudut geser dalamnya.

Uji Markland (Hoek dan Bray, 1981) dilakukan untuk menentukan kemungkinan terjadinya keruntuhan geser baji (wedge sliding failure), dengan arah luncuran terjadi pada penunjaman garis perpotongan antara dua buah bidang diskontinu planar (Gambar 2.3B). Uji ini juga mencakup longsoran bidang yang merupakan kasus khusus dari longsoran baji (Gambar 2.3C). Pada longsoran baji, jika kontak pada kedua bidang tetap terjadi, luncuran hanya dapat terjadi pada arah penunjaman garis perpotongan.

2.3.3 Analisis Kinematika dari Keruntuhan Jungkiran (Toppling Failure)

Keruntuhan jungkiran umumnya terjadi pada massa batuan yang kemiringan bidang-bidang diskontinuitasnya berlawanan arah dengan kemiringan lereng. Bidang-bidang-bidang diskontinuitas tersebut membentuk kolom-kolom yang akan mengguling bila bidang diskontinuitas yang menghubungkan antar kolom menggelincir.

Analisis keruntuhan jungkiran lebih rumit bila dibandingkan dengan bentuk keruntuhan planar dan baji. Karena interaksi antar kolom-kolom yang mengguling secara simultan serta gaya-gaya geser yang terjadi antar kolom harus diperhatikan. Beberapa kondisi yang dapat menyebabkan keruntuhan tipe jungkiran adalah :

(13)

Analisis Kestabilan Lereng Batuan dengan Menggunakan Metode Kinematik dan Klasifikasi Massa Batuan; Studi Kasus di Area Penambangan Andesit, Desa Jelekong, Kecamatan Bale Endah, Kabupaten Bandung, Jawa Barat

20 - jurus dari bidang diskontinuitas harus paralel atau mendekati paralel dengan jurus

permukaan lereng (perbedaan arah maksimal 20º).

- sudut kemiringan bidang diskontinuitas harus sama besar dengan kemiringan permukaan lereng.

- plunge dari bidang gelincir harus lebih kecil dari kemiringan permukaan lereng dikurangi sudut geser dalam dari bidang gelincir tersebut (Goodman, 1980).

Gambar 2.6. Model stereoplot kondisi struktur yang dapat menyebabkan jenis-jenis longsoran utama pada batuan (Hoek, 2000).

a. Keruntuhan planar

b. Keruntuhan baji

Gambar

Gambar 2.3. Grafik perbandingan nilai rating untuk              setiap spasi bidang diskontinuitas.
Tabel 2.5. Penyesuaian pembobotan untuk diskontinuitas
Gambar 2.6. Model stereoplot kondisi struktur yang dapat menyebabkan jenis-jenis longsoran utama pada batuan (Hoek, 2000).

Referensi

Dokumen terkait

Analisis kestabilan lereng dilakukan dengan parameter dari data hasil pengeboran yang merupakan data sekunder, sedangkan untuk data primer berupa kondisi batuan di

Berdasarkan latar belakang di atas maka skripsi kali ini bermaksud mengambil judul “ Analisis Kestabilan Lereng Dan Rekomendasi Lereng Final Di Blok Tuban

Hasil analisis menunjukkan kualitas massa batuan dan tingkat kestabilan lereng berdasarkan nilai SMR untuk scanline I, VII dan IX sangat baik dengan kondisi

Penelitian ini dilakukan untuk mengetahui kualitas massa batuan penyusun lereng berdasarkan nilai SMR ( Slope Mass Rating ) dan analisis kinematika.. Data yang digunakan

Longsoran merupakan salah satu jenis gerakan massa tanah atau batuan, ataupun percampuran keduanya, tejadinya longsor pada lereng akibat dari terganggunya

Longsoran translasional juga dapat terjadi pada lereng di mana terdapat bidang lemah yang mempunyai jurus yang sejajar dengan permukaan lereng serta sudut kemiringan

Berdasarkan hasil investigasi diskontinuitas pada tiap segmen lereng penelitian (lihat Lampiran A), dapat disimpulkan bahwa pada umumnya bukaan yang ada memiliki lebar dengan kisaran

Analisis kualitas massa batuan dengan metode RMR diklasifikasikan dengan menjumlahkan bobot dari parameter-parameter maupun sub parameter dari RMR tersebut, diantaranya kekuatan batuan