• Tidak ada hasil yang ditemukan

PERSAMAAN DIFERENSIAL BESSEL DAN PENERAPANNYA. Skripsi

N/A
N/A
Protected

Academic year: 2021

Membagikan "PERSAMAAN DIFERENSIAL BESSEL DAN PENERAPANNYA. Skripsi"

Copied!
108
0
0

Teks penuh

(1)

PERSAMAAN DIFERENSIAL BESSEL

DAN PENERAPANNYA

Skripsi

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Pendidikan Program Studi Pendidikan Matematika

Oleh:

Patrisia Esti Widyaningrum

NIM. 031414016

PROGRAM STUDI PENDIDIKAN MATEMATIKA

JURUSAN PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SANATA DHARMA

YOGYAKARTA 2008

(2)
(3)
(4)

HALAMAN PERSEMBAHAN

“ Segala Perkara dapat kutanggung di dalam Dia yang memberi kekuatan kepadaku. “

(Filipi 4 : 13)

” Sukacita yang terbesar di dalam hidup ini bukan ketika kita dapat menyelesaikan masalah. Namun justru ketika kita menyadari bahwa di balik masalah ada maksud Tuhan yang indah. Tuhan tidak akan menguji kita melebihi kekuatan kita. ”

(Anonim)

Dengan penuh kasih aku persembahkan karyaku ini untuk : Tuhan Yesus dan Bunda Maria

Orang tuaku tercinta A. Parwoto & A. Endah Martiniati yang selalu mengasihiku

Adikku K. Bayu Prianggono & T. Tirto Tri W

Keluarga, sahabat, dan rekan-rekanku yang selalu mendukungku Almamaterku,Universitas Sanata Dharma

(5)
(6)

ABSTRAK

Tujuan dari penulisan skripsi ini dengan judul Persamaan Diferensial Bessel dan Penerapannya adalah mengetahui penyelesaian Persamaan Diferensial Bessel dengan metode deret kuasa dan mengetahui terapan Persamaan Diferensial Bessel dalam bidang fisika.

Metode yang dipakai dalam penulisan skripsi ini adalah metode studi pustaka yaitu mempelajari buku teks yang berkaitan dengan penyelesaian Persamaan Diferensial Bessel dengan metode deret kuasa.

Persamaan Diferensial Bessel merupakan bentuk khusus dari persamaan diferensial linear homogen orde kedua dengan koefisien variabel, dimana bentuk umum Persamaan Diferensial Bessel adalah x2y''+xy'+

(

x2−p2

)

y=0, dengan p adalah suatu konstanta sembarang, sehingga persamaan diferensial tersebut disebut dengan Persamaan Diferensial Bessel orde p.

Langkah-langkah menyelesaikan Persamaan Diferensial Bessel : 1. Menentukan akar persamaaan indicial

Dengan metode Frobenius, jika adalah titik singular regular diperoleh penyelesaian deret kuasa berbentuk

0 x

( )

(

)

= − − = 0 n n o n r o a x x x x x y , dengan r

adalah akar dari persamaan indicial dari titik singular regular tersebut dan diperoleh r = p dan r = -p.

2. Menentukan relasi perulangan untuk r = p dan menentukan fungsi Bessel jenis pertama dengan orde p.

Jika r = p, diperoleh

(

)

p n n a an n 2 2 + − = −

, dengan n 2 sehingga diperoleh

untuk n adalah bilangan bulat positif dan ≥ 0 = n a

( )

(

)

! ! 2 1 2 2 p n n a n n n + − − = .

Karena p adalah bilangan bulat positif, maka diperoleh fungsi

( )

( )

(

)

n p n n p x J = x p n n + ∞ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + −

2 0 ! ! 2 1

yang sering disebut dengan fungsi Bessel jenis pertama dengan orde p.

3. Menentukan relasi perulangan untuk r = -p dan menentukan fungsinya. Jika r = -p diperoleh

(

)

p n n a an n 2 2 − − = −

, dengan n≥ 2 dan n 2p, sehingga diperoleh untuk n adalah bilangan bulat ganjil dan ≠ 0 = n a

( )

(

)

! ! 1 2 n n n n − − 2 2 p n =−

a . Jika kedua akarnya bukan bilangan bulat positif

maka penyelesaiannya menjadi Jp

( )

x , yaitu

( )

( )

(

)

∞ = − − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − 1n p − 0 2 2 ! ! n p n p x n n x J = . vi

(7)

4. Menentukan penyelesaian kedua dari Persamaan Diferensial Bessel dengan kombinasi linear antara J dan p y . p

Karena akar-akar persamaan indicialnya berbeda, maka penyelesaian kedua Persamaan Diferensial dapat dinyatakan menjadi

, dengan c adalah kostanta dan c

( )

x a x cJ

( )

x x y p p n n n p ln 0 + = ∞ − =

≠0.

Penyelesaian kedua Persamaan Diferensial Bessel orde p merupakan kombinasi linear dari dan , maka kombinasi linear Persamaan Diferensial Bessel orde p dilambangkan dengan

p J yp

( )

x Yp dan dinyatakan menjadi

( )

{ ( )

( ) ( )

(

) }

! ! 1 2 1 ! 2 1 2 ln 2 1 2 0 1 1 2 0 n n x k k n p x x x J x Y p n p n p n k n k p n n n p − − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + + ⎟ ⎠ ⎞ − ⎢⎣ ⎡ + = − − = + = = + ∞ =

∑ ∑

π 1 ! n n ⎜ ⎝ ⎛ p + ⎥⎦ ⎤ γ

dengan n = p dan γ adalah kostanta Euler dan penyelesaian ini disebut Fungsi Bessel jenis kedua orde p.

5. Menentukan penyelesaian umum dari Persamaan Diferensial Bessel.

Penyelesaian umum Persamaan Diferensial Bessel orde p adalah

( )

x c J x J

c

y= 1 p + 2 −p

( )

, dimana c1 dan c2 adalah konstanta sebarang.

Penerapan dari Persamaan Diferensial Bessel dapat ditemukan pada getaran yaitu pada getaran rantai yang digantung dan getaran membran lingkaran.

(8)

Abstract

The purpose of this graduating paper with title Bessel’s Differential Equation and Application is to show how the power series method can be modified to obtain solution of Bessel’s Differential Equation and to acknowledge the application in physics.

The method applied in this graduating paper is the library research which is focused on studying and researching text books relevant to the subject matter solution of Bessel’s Differential Equation with power series method.

Bessel’s Differential Equation is a special form of second order linear homogen differential equation with variable coefficient, where the general form Bessel’s Differential Equation is x2y''+xy'+

(

x2 −p2

)

y=0, with p is arbitrary constant and is called Bessel’s Differential Equation order – p.

The steps of the problem solving of Bessel’s Differential Equation: 1. Determine the roots of the indicial equation

By using Frobenius method, we observe that x0 =0 is a regular singular point, obtain solution of power series is

( )

(

)

∞ = − = 0 0 n n x x a x y0 n r x x , with r

is the roots of the indicial equation and has r = and p r =−p.

2. Determine recurrence relation to r = and Bessel function of the first kind p

of order p. If r = p, we obtain

(

)

p n n a a n n 2 2 + − = −

, with and the known value

with n is positive integer, thus

2 ≥ n 0 = n a

( )

(

)

! ! 22nn −1 2 p n n n + − = a . Because p is a

positive integer obtain function

( )

( )

(

)

∞ = + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ! 1n p − = 0 2 2 ! n p n p x n n x J is called Bessel Function of the first kind of order p.

3. Determine recurrence relation to r =−p and function it. If r =−p, we obtain

(

)

p n n a a n n 2 2 + − = −

, with and and we

obtain 2 ≥ n n≠2p 0 = n

a where n is an odd integer and

( )

(

p

)

! n + ! 1 2 n n n − 22n − = a . If the roots

is unequal an odd integer, has a solution

( )

(

( )

)

∞ =0 ! n n − − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − = 2 2 ! 1n n p p x p n x J .

4. Determine the second solution of Bessel’s Differential Equation with linear combination of Jp dan yp.

(9)

Because the roots of indicial equation unequal the second solution of Bessel’s Differential Equation has form , where c is constant and . The second solution of Bessel’s Differential Equation order p is linear combination of , we obtain

( )

x a x c J

( )

x x y p n p n n p ln 0

∞ = − + = p p dan y 0 ≠ c J Yp

( )

x and is assumed

( )

( )

( ) ( )

(

)

⎪ ⎪ ⎭ ⎪ ⎪ ⎬ ⎫ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ − − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + ⎥⎦ ⎤ ⎢⎣ ⎡ + =

∑ ∑

− = − + = = + ∞ = 1 0 1 2 1 1 2 0 1 2 1 1 ! ! 2 1 2 ln 2 p n n p n k n k p n n n n p n n p x k k p n n x x x J x Y γ π

where n = p and γ is a number called Euler’s constant and the solution is called Bessel Function of the second kind of order p.

5. Determine the general solution of Bessel’s Differential Equation

The general solution of of Bessel’s Differential Equation of order p is given by y=c1Jp

( )

x +c2Jp

( )

x , where c1 andc2 is arbitrary constants.

Application of Bessel’s Differential Equation arises in the oscilation of a hanging chain and the circular membrane.

(10)
(11)

KATA PENGANTAR

Puji dan syukur ke hadirat Allah Bapa di Surga karena penulis dapat menyelesaikan skripsi dengan judul “Persamaan Diferensial Bessel dan Penerapannya”. Skripsi ini penulis susun untuk memenuhi salah satu syarat memperoleh gelar Sarjana Pendidikan pada Program Studi Pendidikan Matematika, Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam, Fakultas Keguruan dan Ilmu Pendidikan di Universitas Sanata Dharma Yogyakarta.

Selama penyusunan skripsi ini banyak kesulitan dan hambatan yang penulis alami. Namun dengan bantuan berbagai pihak semua kesulitan dan hambatan tersebut dapat teratasi. Untuk itu, dalam kesempatan ini penulis dengan tulus hati ingin mengucapkan terima kasih yang tak terhingga kepada :

1. Tuhan Yesus dan Bunda Maria yang selalu menjaga, melindungi, dan menuntun langkahku. Puji syukur atas segala berkat dan anugerah yang telah kuterima.

2. Bapak Drs. A. Tutoyo, M.Sc. selaku dosen pembimbing yang telah membimbing, mengarahkan dengan sabar, menyediakan waktu, dan memberikan masukan serta kritikan yang berharga kepada penulis selama proses penyusunan skripsi ini.

3. Bapak Dr. St. Suwarsono selaku Ketua Program Studi Pendidikan Matematika dan Bapak Drs. Al. Haryono selaku dosen pembimbing akademik 2003 dan Drs. A. Mardjono dan Dr. Susento M.Si selaku dosen penguji yang telah

(12)

xi

banyak memberikan bantuan selama penulis menempuh kuliah serta atas masukan dan kritikan yang bermanfaat untuk penyempurnaan skripsi ini. 4. Segenap dosen dan karyawan JPMIPA yang telah membantu penulis selama

kuliah hingga penyelesaian skripsi ini.

5. Kedua orang tuaku dan kedua adikku atas doa yang tak pernah kunjung henti, cinta, kasih sayang, perhatian, kesempatan, nasehat, dan dorongan yang diberikan baik secara materiil maupun spiritual.

6. Sahabat-sahabatku yang telah membantuku mengetik. Terima kasih untuk semuanya dan kebersamaannya.

7. Semua pihak yang tidak dapat disebutkan satu persatu yang telah rela membantu penulis hingga selesainya proses penyusunan skripsi ini.

Semoga segala bantuan, perhatian, serta dukungan yang telah diberikan akan mendapat imbalan dari Tuhan Yang Maha Esa. Penulis menyadari masih banyak kekurangan dan kesalahan dalam skripsi ini. Karena itu penulis sangat mengharapkan masukan dan saran dari pembaca demi perbaikan skripsi ini.

Akhir kata, penulis berharap semoga skripsi yang tidak sempurna ini bermanfaat bagi setiap pembaca.

Yogyakarta, 26 Mei 2008

(13)

DAFTAR ISI

HALAMAN JUDUL………... i

HALAMAN PERSETUJUAN PEMBIMBING………. ii

HALAMAN PENGESAHAN………... iii

HALAMAN PERSEMBAHAN……….iv

PERNYATAAN KEASLIAN KARYA……….v

ABSTRAK……….…………vi ABSTRACT……….………..viii KATA PENGANTAR………....x DAFTAR ISI………...xii BAB 1. PENDAHULUAN ………..…..1 1.1. Latar Belakang ……….…....1 1.2. Rumusan Masalah ………...4 1.3. Tujuan Penulisan ………...4 1.4. Metode Penulisan ………....4 1.5. Sistematika Penulisan ……….5

BAB 2. LANDASAN TEORI………...………6

2.1. Deret Tak Hingga……… ………....6

2.2. Deret Kuasa……… ………..………..…..11

2.3. Persamaan Diferensial Linear Homogen orde dua dengan koefisien berubah………...22

(14)

xiii

2.3.1. Titik biasa dan titik singular……..……….22

2.3.2. Deret kuasa sebagai penyelesaian di sekitar titik biasa ……….25

2.3.3. Deret kuasa sebagai penyelesaian di sekitar titik singular……..……...29

BAB 3. PERSAMAAN DIFERENSIAL BESSEL..………..54

3.1. Penyelesaian Persamaan Diferensial Bessel dengan orde nol………..…..…55

3.2. Penyelesaian deret Persamaan Diferensial Bessel dengan orde p.…...….63

3.3. Penerapan Penyelesaian Persamaan Diferensial Bessel…...………..77

3.3.1 Getaran rantai yang digantung…..…..………..77

3.3.2 Getaran membran lingkaran……….………81

BAB 4. .PENUTUP………..89

(15)

BAB 1

PENDAHULUAN

1.1. LATAR BELAKANG MASALAH

Persamaan diferensial adalah persamaan yang memuat turunan atau derivatif dan diferensial dari satu fungsi atau lebih yang tidak diketahui. Persamaan diferensial dibedakan menjadi dua, yaitu persamaan diferensial biasa dan persamaan diferensial parsial. Jika fungsi yang belum diketahui dalam persamaaan diferensial bergantung hanya pada satu variabel bebas, maka persamaan itu disebut persamaan diferensial biasa, sedangkan jika fungsi yang belum diketahui bergantung pada lebih dari satu variabel bebas maka persamaan itu disebut persamaan diferensial parsial.

Contoh : x dx + 2y dy = 0 (1) 0 6 4 3 2 2 = + + ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ y dx dy dx y d (2) 0 = ∂ ∂ + ∂ ∂ y u x u (3) x x u y u + = ∂ ∂ + ∂ ∂ 1 2 2 2 2 (4) Dari contoh di atas, dapat dilihat bahwa (1) dan (2) merupakan contoh persamaan diferensial biasa, dimana y menyatakan fungsi yang belum diketahui ( atau variabel tak bebas ) dan x menyatakan variabel bebas.

(16)

Sedangkan (3) dan (4) merupakan contoh persamaan diferensial parsial, karena memiliki lebih dari satu variabel bebas yaitu x dan y. Dari contoh di atas, dapat diketahui bahwa bentuk umum persamaan diferensial biasa adalah

(

, , ', '',..., (n)

)

=0 y y y y x f

dengan x adalah variabel bebas dan y adalah variabel terikat, sedangkan bentuk umum dari persamaan diferensial parsial adalah

⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ n n y z y z y x z x z y z x z z y x f , , , , , , , 2 ,..., 2 2 2 2 = 0

Persamaan diferensial diklasifikasikan menurut tingkat atau orde dan derajat. Tingkat atau orde persamaan diferensial adalah tingkat turunan atau derivative tertinggi yang muncul dalam persamaan diferensial tersebut. Derajat persamaan diferensial adalah pangkat dari turunaan atau derivatif tingkat tertinggi yang muncul dalam persamaan diferensial tersebut.

Dari contoh di atas dapat dilihat bahwa contoh (1) merupakan tingkat 1 dan derajat 1, contoh (2) mempunyai tingkat 2 dan derajat 3, contoh (3) merupakan persamaan diferensial parsial dengan tingkat 1 dan derajat 1, sedangkan contoh (4) dengan tingkat 2 dan derajat 1.

Dalam penulisan ini hanya akan dibahas mengenai persamaan diferensial linear. Persamaan diferensial linear tingkat-n disebut linear dalam y jika mempunyai bentuk umum

( )

x y( ) a

( )

x y( ) a

( )

x y a

( )

x y f

( )

x

an n + n1 n−1 + 1 ' + 0 = (5)

dimana an

( )

x ≠0 dan dan f(x) adalah fungsi – fungsi kontinu dalam suatu interval. Fungsi

n a a a a0, 1, 2,...,

( )

x

(17)

koefisien, sedangkan f(x) disebut fungsi masukan (input) atau penggerak (driving).

Jika f(x) = 0, maka persamaan tersebut disebut persamaan diferensial linear homogen dan jika f(x) ≠ 0 untuk semua x dalam [a, b], persamaan disebut persamaan diferensial linear tak homogen.

Bila semua koefisien a0

( ) ( ) ( )

x ,a1 x,a2 x ,...,an

( )

x adalah konstanta real, maka

persamaan diferensial linear itu disebut persamaan diferensial linear dengan koefisien konstan, sedangkan apabila koefisien – koefisiennya berubah, maka disebut persamaan diferensial linear dengan koefisien peubah ( variabel). Dalam penulisan ini akan dibahas mengenai persamaan diferensial linear homogen orde dua dengan koefisien variabel. Persamaan diferensial linear homogen orde dua dengan koefisien variabel mempunyai bentuk umum :

( )

( )

1 0

( )

0

1 ''

2 x y +a x y +a x y =

a , dimana a2

( )

x ≠0

Persamaan diferensial linear homogen orde dua mempunyai beberapa terapan, antara lain dalam getaran (vibrasi). Dari beberapa persamaan diferensial linear homogen orde dua dengan koefisien variabel yang dikenal adalah persamaan diferensial yang disebut Persamaan Diferensial Bessel. Untuk memperluas pengetahuan mengenai persamaan diferensial biasa yang telah dipelajari maka dipelajari Persamaan Diferensial Bessel yang memiliki bentuk umum :

(

2 2

)

0 ' '' 2 + + = y p x xy y x

dimana p adalah suatu konstanta sembarang, sehingga Persamaan Diferensial tersebut disebut dengan Persamaan Diferensial Bessel orde - p

(18)

Metode penyelesaian persamaan diferensial linear homogen orde dua dengan koefisien variabel yang digunakan adalah metode deret kuasa.

Mengingat pentingnya persamaan diferensial linear homogen orde dua dalam terapan, maka penulis ingin membahas tentang Persamaan Diferensial Bessel yang penerapannya terdapat dalam bidang fisika yaitu dalam getaran rantai yang digantung dan getaran membran lingkaran.

1.2. RUMUSAN MASALAH

Pokok permasalahan yang akan dibahas dalam penulisan ini dapat dirumuskan sebagai berikut:

1. Bagaimana cara menyelesaikan Persamaan Diferensial Bessel? 2. Apa saja terapan dari Persamaan Diferensial Bessel?

1.3. TUJUAN PENULISAN

1. Mengetahui penyelesaian Persamaan Diferensial Bessel dengan metode deret kuasa.

2. Mengetahui terapan Persamaan Diferensial Bessel dalam bidang fisika

1.4. METODE PENULISAN

Metode yang akan digunakan adalah metode studi pustaka, yaitu mempelajari buku – buku teks yang berkaitan dengan penyelesaian Persamaan Diferensial Bessel dengan metode deret kuasa.

(19)

1.5. SISTEMATIKA PENULISAN 1. Pendahuluan

1.1. Latar Belakang Masalah 1.2. Rumusan Masalah 1.3. Tujuan Penulisan 1.4. Metode Penulisan 1.5. Sistematika Penulisan 2. Landasan Teori

2.1. Deret Tak Hingga 2.2. Deret Pangkat

2.3. Persamaan diferensial linear homogen orde dua dengan koefisien berubah

2.3.1. Titik biasa dan titik singular

2.3.2. Deret kuasa sebagai penyelesaian di sekitar titik biasa 2.3.3. Deret kuasa sebagai penyelesaian di sekitar titik

singular yang regular 3. Persamaan Diferensial Bessel

3.1. Penyelesaian Persamaan Diferensial Bessel dengan orde nol 3.2. Penyelesaian Persamaan Diferensial Bessel dengan orde p 3.3. Penerapan dari Persamaan Diferensial Bessel

3.3.1. Getaran rantai yang digantung 3.3.2. Getaran membran lingkaran 4. Penutup

(20)
(21)

BAB 2

LANDASAN TEORI

2.1 Deret Tak Hingga

Suatu barisan tak hingga didefinisikan dan ditulis

(1)

{ }

an =a1,a2,a3,...,an,....

Deret tak hingga adalah bentuk dari a1+a2 +a3 +...+an +.... yang dilambangkan dengan notasi sigma

(2)

∞ =0 n n a ,.... , , 2 3 1 a a a 3 2 1

disebut suku – suku deret tak hingga dan .... ...+ + + + +a a a

{ }

sn n a n a a s

dapat dipandang sebagai barisan jumlah parsial dimana = 1+ 2 +a3 +...+an.

Definisi 2.1.1

Andaikan adalah suatu deret tak

hingga dan andaikan

.... ... 3 2 1 1 + + + + + =

∞ = k n n a a a a a

{ }

sn n a

adalah barisan jumlah parsial deret.

Deret disebut konvergen bila barisan jumlah parsial

{ }

konvergen. Menurut definisi barisan

∞ =1 n n s

{ }

sn konvergen bila 6

(22)

S S Lim n

n→+∞ = ada. Jika nLim→+∞Sn =S

=1

n n

a

maka deret . Jika

tidak ada, maka divergen.

S a n n =

∞ =1 n nLim→+∞S

Contoh 2.1.1

Tentukan apakah deret 1-1+1-1+1-1+…. konvergen atau divergen dan jika konvergen, tentukan jumlahnya!

Penyelesaian:

Bentuk barisan jumlah parsial

{ }

n

n n→+∞S s 0 1 1 1 1 1 0 1 = − + = + = 1 1 1 1 1 3 2 1 − = − = − = = n s s s s dan seterusnya. = 1, 0, 1, 0,....

{ }

sn 1, bila n ganjil 1

= dan Lim = , maka limitnya tidak

n

S

0, bila n genap 0

ada. Karena limitnya tidak ada, maka deretnya divergen dan deret tidak mempunyai jumlah.

(23)

Deret selang – seling adalah deret yang berbentuk

( )

1 1 2 3 4 ...

( )

1 1 .... 1 1 = + + + + − + ∞ = +

n n n n n a a a a a a (3)

dengan an>0 untuk semua n

atau

( )

1 1 2 3 4 ..

( )

1 .... 1 + − + + + − + − = −

∞ = n n n n n a a a a a a

dengan an>0 untuk semua n.

Definisi 2.1.2

a. Deret

disebut konvergen mutlak jika

=1 n n a

∞ =1 n n a konvergen

b. Deret .... disebut konvergen

bersyarat jika

∞ konvergen, tetapi ... 3 2 1 1 + + + + + =

∞ = n n n a a a a a =1 n n a

∞ =1 n n a divergen.

Teorema 2.1.1

Deret selang – seling konvergen bila memenuhi 2

syarat, yaitu

( )

∞ = + − 1 1 1 n n n a 1. an >an+1, untuk semua n 2. = 0 +∞ → n nLima

(24)

Bukti

Pandang barisan jumlah parsial

{ }

s2n , untuk suku – suku genap

2 2 2 4 6 5 4 6 2 4 3 2 4 2 1 2 0 − > > − + = > − + = > − = n n s s s a a s s s a a s s a a s M Jadi, s2 <s4 <s6 <...<s2n2 <s2n.<...

Barisan

{ }

s2n naik atau tidak turun, maka barisan

{ }

sn konvergen ke limit S, yaitu

S s Lim n

n→+∞ 2 =

Pandang barisan jumlah parsial

{ }

sn , untuk suku – suku ganjil, yaitus1,s3,s5,...,s2n−1,.... n n n a a a a a a s2 = 12 + 34 +...+ 2 12 1 2 4 3 2 1 1 2n− =aa +aa +...+a ns _ n n n s a s2 − 2 −1 =− 2

Karena suku ke-2n dalam deret selang – seling adalah −a2nmaka berlaku dapat ditulis 1 2 2 1 2n+ −s n =a n+ s 1 2 2 1 2n+ =s n +a n+ s

(

)

S S a Lim s Lim a s Lim s Lim n n n n n n n n n = + = + = + = + +∞ → +∞ → + +∞ → + +∞ → 0 1 2 2 1 2 2 1 2

(25)

Barisan s1,s2,s3,...,sn,....konvergen ke S, maka deret konvergen.

Contoh 2.1.2

Selidiki apakah deret .... 5 1 4 1 3 1 2 1 1− + − + − konvergen mutlak

atau konvergen bersyarat? Penyelesaian

( )

.... 5 1 4 1 3 1 2 1 1 1 1 1 = − + − + − −

+ n n

Menurut Teorema 2.1.2 diperoleh

n an = dan 1 1 1 1 = + + n an n < n+1 untuk semua n 1 1 1 + < n n untuk semua n ( syarat 1 dipenuhi) 1 + > n n a a dan 1 =0 +∞ → n Lim n Jadi, deret

( )

.... 5 1 4 1 3 1 2 1 1 1 1 1 = − + − + − −

+ n n konvergen. tetapi

( )

.... 5 1 4 1 3 1 2 1 1 1 1 1 = + + + + + − =

+ n an n

(26)

deret nilai mutlaknya divergen. Maka deret .... 5 1 4 1 3 1 2 1 1− + − + − konvergen bersyarat.

2.2 Deret Kuasa

Suatu deret dengan bentuk :

K K+ + + + + =

∞ = k k n n nx a a x a x a x a 2 2 1 0 0 (4)

disebut deret kuasa atau deret pangkat dalam x, dimana x adalah variabel dan anadalah konstanta sebarang.

atau

(

)

= +

(

)

+

(

)

+K+

(

)

+K

∞ = k k n n n x x a a x x a x x a x x a 0 2 0 2 0 1 0 0 0 (5)

disebut deret kuasa dalam (x− ). x0

K K, , , , 1

0 a an

a adalah koefisien – koefisien konstan dari deret kuasa itu, x

adalah variabel dari deret kuasa, dan pada (5) adalah titik tertentu yang disebut pusatdari deret kuasa itu.

0

x

Jika x dalam (4) diganti dengan bilangan, maka diperoleh deret dengan suku – suku konstan yang dapat konvergen atau divergen. Hal ini menunjuk pada masalah dasar yaitu mencari nilai x agar deret kuasa (4) konvergen. Teorema berikut adalah hasil dasar pada konvergensi deret kuasa

(27)

Teorema 2.2.1

Untuk setiap deret kuasa

tepat satu yang berikut benar

∞ =0 n n nx a

a. Deret konvergen hanya untuk x = 0 b. Deret konvergen mutlak untuk semua x

c. Deret konvergen mutlak untuk semua x dalam suatu interval terbuka tertentu ( -R , R ) dan divergen bila x < - R atau x > R. Pada titik x = R dan x = -R deret konvergen mutlak , konvergen bersyarat, atau divergen, bergantung pada deret khusus

Bukti:

Bentuk deret nilai mutlak

=0

n

n nx

a . Untuk memeriksa kekonvergenan

deret nilai mutlak dikerjakan dengan menggunakan uji rasio. Deret kuasa

akan konvergen mutlak apabila dipenuhi syarat:

∞ =0 n n nx a n n n n n n n n n n n n n n a a Lim x x a a Lim x a x a Lim u u Lim 1 1 1 1 1 + +∞ → + +∞ → + + +∞ → + +∞ → = = = = ρ

Deret kuasa konvergen mutlak jika ρ<1 1 1 < + +∞ → n n n a a Lim x R a a Lim x n n n = < + +∞ → 1 ada

(28)

dan deret kuasa akan divergen apabila x > R. Apabila

R

x = , untuk dapat mengetahui apakah deret konvergen atau divergen dapat dilakukan dengan cara mensubstitusikan setiap x = R atau x = -R ke dalam deret yang diketahui.

a. Jika 0 1 = = + +∞ → a R a Lim n n

n , maka didapat x=0, sehingga deret kuasa akan

konvergen mutlak hanya bila x = 0 dan divergen bila x≠0 , jika

0 1 ≠ = + +∞ → a R a Lim n n

n . Jadi (a) terpenuhi.

b. Jika = =∞ + +∞ → a R a Lim n n n 1

, maka didapat x <∞, sehingga setiap nilai x

pada deret kuasa konvergen mutlak. Jadi (b) terpenuhi.

c. Jika R a a Lim n n n = + +∞ → 1

, maka didapat x <R atau −R< x<R sehingga

untuk semua nilai x yang terdapat dalam interval < x< Rderet konvergen mutlak. Jadi (c) terpenuhi.

R

Himpunan semua nilai x yang menyebabkan suatu deret kuasa konvergen disebut interval konvergensi deret. Bilangan R dari syarat (c) dalam teorema 2.2.1 di atas disebut jari – jari konvergensi dari deret. Jika deret (a) berlaku, maka R = 0 dan jika syarat (b) berlaku maka R = ∞ .

(29)

Contoh 2.2.1

Tentukan interval konvergensi dan jari – jari konvergensi dari deret

∞ =0 n n x Penyelesaian

∞ =0 n n x = 1 + + +K+ n +K x x x 2 n

U = xn dan Un+1= atau bentuk deret nilai mutlak 1 + n x

∞ =0 n n x ρ = n n n U U Lim +1 +∞ → = n n n x x Lim 1 + +∞ → = nLim→+∞x = x nLim→+∞1 = x

Deret kuasa

konvergen mutlak,

∞ =0 n n x bila ρ <1 x < 1 ⇔-1 < x < 1 dan divergen bila ρ >1

x > 1 ⇔x > 1 atau x < -1 dengan R = 1.

Untuk menentukan sifat konvergensi pada titik – titik ujung x = 1 dan x = -1, disubstitusikan nilai – nilai itu dalam deret yang diberikan

Jika x = 1, deret menjadi

∞ =0 1 n n =1 + 1 + 1 + 1 +….

(30)

Untuk x = -1, deret menjadi

( )

∞ = − 0 1 n n = 1 - 1 + 1 – 1 +….

Karena deret konvergen mutlak, maka interval konvergensi untuk deret yang diberikan adalah [-1 , 1]. Jari – jari konvergensi R = 1.

Contoh 2.2.2

Tentukan interval konvergensi dan jari – jari konvergensi dari

( )

( )

∞ = − 0 2 ! 2 1 n n n n x Penyelesaian:

Bentuk deret nilai mutlak

( )

( )

∞ = − 0 2 ! 2 1 n n n n x , dimana n U =

( )

( )

∞ = − 0 2 ! 2 1 n n n n x dan Un+1=

( )

( )

(

)

(

)

∞ = + + + − 0 1 2 1 ! 1 2 1 n n n n x

Karena

( )

−1n =

( )

−1n+1 = 1, maka diperoleh

ρ = n n n U U Lim +1 +∞ → = ( )

(

)

(

)

( )

n n n x n n x Lim 2 1 2 ! 2 ! 1 2 + ⋅ + +∞ → =

(

)

( )

n n n x n n x Lim 2 2 2 ! 2 ! 2 2 + ⋅ + ∞ →= =

(

)(

)

1 2 2 2 2 + + +∞ → n n x Lim n =

(

2 2

)(

2 1

)

1 2 + + +∞ → n n Lim x n = 0 0 2⋅ = x untuk semua x.

Karena ρ <1 untuk semua x maka deret

( )

( )

∞ = − 0 2 ! 2 1 n n n n x konvergen mutlak

(31)

Contoh 2.2.3

Tentukan interval konvergensi dan jari – jari konvergensi deret

(

)

∞ = − 1 2 5 n n n x Penyelesaian

(

)

∞ = − 1 2 5 n n n x =

(

) (

+ −

)

+

(

)

+K+

(

2

)

+K 3 2 5 9 5 4 5 5 n x x x x n n U =

(

25

)

n xn dan Un+1=

(

)

(

)

2 1 1 5 + − + n x n

atau bentuk deret nilai mutlak

∞ = − 1 2 5 n n n x

Akan digunakan uji rasio untuk konvergen mutlak

ρ = n n n U U Lim +1 +∞ → =

(

)

n n n x n n x Lim 5 . 1 5 2 2 1 − + − + +∞ → = 2 1 5 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − +∞ → n n x Lim n = 2 1 1 1 5 ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ + − +∞ → n Lim x n = x−5 Deret kuasa

(

)

∞ = − 1 2 5 n n n x konvergen mutlak, bila ρ< 1 x−5 < 1 atau -1 < x – 5 < 1 -1 + 5 < x < 1 + 5 4 < x < 6

(32)

dan deret kuasa

(

)

∞ = − 1 2 5 n n n x divergen bila ρ> 1 x−5 > 1 atau x-5 > 1 atau x-5 < -1 x > 1 + 5 x < -1 +5 x > 6 x < 4

Untuk menentukan sifat konvergensi pada titik – titik ujung x = 4 dan x= 6, disubstitusikan nilai – nilai ini dalam deret yang diberikan.

Jika x = 6, deret menjadi

∞ =1 2 1 n n n =

∞ =1 2 1 n n = + 2 + 2 + 2 +K 4 1 3 1 2 1 1

merupakan deret p yang konvergen ( p= 2). Untuk x = 4, deret menjadi

( )

∞ = − 1 2 1 n n n = − + 2 − 2 + 2 −K 4 1 3 1 2 1 1

adalah deret yang konvergen mutlak.

Karena deret konvergen mutlakuntuk x = 4 dan x = 6, maka interval konvergensi untuk deret yang diberikan adalah [4 , 6]. Jari – jari konvergensi R = 1.

Operasi pada deret kuasa adalah :

Jika dan adalah dua deret kuasa yang konvergen

dalam

(

∞ = − 0 0 n n n x x b

)

(

)

∞ = − 0 0 n n n x x c R x

(33)

deret kuasa

(

, maka untuk setiap x dalam selang kekonvergenan ∞ = − 0 0 n n n x x b

)

R x

x0 < , barisan jumlah parsial

{ }

sn konvergen dan menentukan sebuah

fungsi f(x) =

(

untuk ∞ = − 0 0 n n n x x b

)

xx0 <R, maka a. Penjumlahan suku demi suku suatu deret kuasa

(

)

n n x x b

∞ = + − 0 0

(

)

(

)

n n n n x x c

∞ = − 0 0 =

(

)

(

)

(

)

(

)

} } 3 0 3 2 0 2 3 0 3 2 0 2 K K + − + − + + + − + − + x x c x x c x x b x x b

(

)

{ { 0 1 0 0 1 0 − + − + x x c c x x b b =

(

)

(

)

(

)

} ) ( ) 3 2 0 2 2 0 1 K + + − + + − +c x x b c x x ) ( ( ) {( 3 3 1 0 0 − + + + x x c b b c b

(

)

n n n c b

∞ = + 0

(

)

n n x x b

∞ = − − 0 0

(

)

0 =

(

n x x0

)

b. Pengurangan suku demi suku suatu deret kuasa

(

)

n n n n x x c

∞ = − 0 0 =

(

)

(

)

(

)

(

)

} } 3 0 3 2 0 2 3 0 3 2 0 2 K K + − + − + − + − + − + x x c x x c x x b x x b

(

)

{ { 0 1 0 0 1 0 − + − + x x c c x x b b =

(

)

(

)

(

)

} ) ( ) 3 0 2 0 2 2 0 1 K + + − − + − −c x x b c x x ) ( ( ) {( 3 3 1 0 0 − − + − x x c b b c b

(

)

n n n c b

∞ = − 0 =

(

n x x− 0

)

(34)

c. Perkalian suku demi suku suatu deret kuasa

(

(

)

= − 0 0 n n n x x b

) (

(

)

∞ = − 0 0 n n n x x c

)

=

(

)

(

)

(

)

(

)

(

....

)

.... 2 0 2 0 1 0 2 0 2 0 1 0 + − + − + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + + x x c x x c c x x b x x b b = b0c0 +

(

b0c1+b1c0

)(

xx0

) (

+ b0c2 +b1c1+b2c0

)(

xx0

)

2 +.... =

{

}(

= − ∞ = − n k n k n k n x x c b 0 0 0

)

d. Pendiferensialan suku demi suku suatu deret kuasa

( )

(

)

0 1

(

0

)

2

(

0

)

2 ...

(

0

)

.... 0 0 = + − + − + + − + − =

∞ = n n n n n x x b b x x b x x b x x b x f

( )

1 2 2

(

0

)

3 3

(

0

)

2 ...

(

0

)

1 .... ' = + + + + n+ n x x nb x x b x x b b x f =

(

)

= ∞ = − 1 1 0 n n n x x nb

(

) (

)

∞ = − + 0 0 1 n n n x x b n

e. Pengintegralan suku demi suku suatu deret kuasa

( )

x dx

{

b b

(

x x

)

b

(

x x

)

b

(

x x

)

f ... n 0 n .... 2 0 2 0 1 0 + − + − + + − + =

(

)

}

dx =

(

)

(

)

(

x x

)

C n b x x b x x b x x b nn + + + + − + − + − − ... 1 ... 3 2 1 0 3 0 2 2 0 1 0 0 =

(

x x

)

C n b n n n − + +

∞ = + 1 1 0 1

Andaikan kita bermaksud mendekati nilai fungsi f di x0dengan polinomial

( )

(

)

(

)

(

)

n n x x a x x a x x a a x P 0 2 0 2 0 1 0 + − + − +...+ − = (6)

(35)

pada suatu interval yang berpusat di x=x0, maka nilai P(x) dan n turunan

pertamanya bersesuaian dengan nilai – nilai f(x) dan n turunan pertamanya pada x= x0. Karena

( )

(

)

(

)

(

)

n n x x a x x a x x a a x P = 0 + 10 + 20 2 +...+ − 0

( )

(

)

(

)

(

)

1 0 2 0 3 0 2 1 ' ... 3 2 − + − + + − − + = n n x x na x x a x x a a x P

( )

(

)

(

) (

)

2 0 0 3 2 '' 1 ... 6 2 + − + + − − − = n n x x a n n x x a a x P

( )

(

)(

) (

)

3 0 3 '' ' 2 1 ... 6 + + − − − − = n n x x a n n n a x P M ( )

( ) (

)(

)

n n a n n n x P = −1 −2.... pada x= x0 diperoleh

( )

x0 a0 P =

( )

0 1 ' a x P =

( )

0 2 2 '' ! 2 2a a x P = =

( )

0 3 3 '' ' ! 3 6a a x P = = M ( )

( )

n n a n x P 0 = !

Karena nilai dari P(x) dan n derivatif pertama yang bersesuaian dengan nilai – nilai f(x) dan derivatif pertama pada x=x0diperoleh

( )

x0 a0

(36)

( )

0 1 ' a x f =

( )

x0 2 a! 2 f ′′ =

( )

x0 3 a! 3 f ′′′ = M (7) ( )

( )

n n a n x f 0 = !

Substitusikan ini ke dalam (6) diperoleh polinomial yang disebut polinomial Taylor ke – n di sekitar x= x0untuk f.

Definisi 2.2.1

Jika f(x) berturunan n kali pada , maka didefinisikan polinomial Taylor ke- n di sekitar

0 x 0 x x= adalah

( )

( )

( )(

)

( ) (

)

( )

( )(

)

n n n x x n x f x x x f x x x f x f x P 0 0 2 0 0 0 0 0 ! ... ! 2 − + + − ′′ + − ′ + = (8)

Definisi 2.2.2

Jika f(x) berturunan pada semua tingkat di sekitar , maka deret Taylor untuk fungsi f(x) di sekitar

0 x x= 0 x x= didefinisikan

( )

=

∞ ( )

( )(

)

= = n n n x x n x f x f 0 0 0 !

( )

x0 + f

( )(

x0 xx0

)

+ f

( ) (

)

( )

( )(

)

.... ! ... ! 2 0 0 2 0 0 − + + − + ′′ n n x x n x f x x x f (9)

(37)

2.3 Persamaan Diferensial Linear Homogen

orde

dua

dengan koefisien berubah

2.3.1 Titik Biasa dan Titik Singular

Suatu persamaan diferensial homogen orde dua dengan koefisien berubah mempunyai bentuk umum

( )

" 1

( )

' 0

( )

0

2 x y +a x y +a x y=

a (10)

dengan a2

( )

x ≠0

atau dalam bentuk normal

( )

'

( )

0 " + + = y x Q y x P y (11) dengan

( )

( )

( )

x a x a x P 2 1 = dan

( )

( )

( )

x a x a x Q 2 0 =

Pada bagian ini akan ditentukan penyelesaian persamaan diferensial dengan menggunakan metode deret kuasa dari ( x – ), dimana suatu bilangan riil. Sebuah titik dapat merupakan titik biasa atau titik singular, menurut definisi berikut:

0

x x0

0

x

Definisi 2. 3. 1

Sebuah titik disebut titik biasa dari persamaan diferensial (10)

jika kedua fungsi

0 x

( )

( )

x a x a 2 1 dan

( )

( )

x a x a 2 0 (12)

(38)

analitik pada titik . Jika paling sedikit satu fungsi dari (12) tidak analitik pada titik , maka disebut sebuah titik singular dari persamaan diferensial (10) 0 x 0 x x0

Definisi 2. 3. 2

Sebuah titik disebut titik singular yang regular dari persamaan diferensial (10) jika titik ini adalah sebuah titik singular dari kedua fungsi 0 x

(

) ( )

( )

(

)

( )

( )

x a x a x x dan x a x a x x 2 0 2 0 2 1 0 − − (13)

analitik pada titik . Jika paling sedikit satu fungsi dalam (13) tidak analitik pada titik , maka disebut titik singular tak regular dari persamaan diferensial (10)

0

x

0

x x0

Contoh 2. 3. 1

Carilah titik – titik biasa, titik – titik singular yang regular, titik – titik singular tak regular dari persamaan diferensial

(

x4 −x2

)

y'' +

(

2x+1

)

y' +x2

(

x+1

)

y=0 (14) Penyelesaian

( )

4 2 2 x x x a = − a1

( )

x = x2 +1

( )

(

1 2 0 x =x x+ a

)

(39)

Dengan demikian

( )

( )

(

1

)(

1

)

1 2 1 2 2 2 4 2 1 + − + = − + = x x x x x x x x a x a (15)

( )

( )

(

)

(

(

)(

)

)

1 1 1 1 1 1 2 2 2 4 2 2 0 − = − + + = − + = x x x x x x x x x x x a x a

Dari (15) semua bilangan riil merupakan titik biasa, kecuali titik 0, 1, -1. Jadi, titik 0, 1, -1 adalah titik singular dari persamaan diferensial (14). Berdasarkan definisi 2.3.2

Untuk x0 = 0, kedua fungsi dalam (13) menjadi

(

)

(

)(

)

(

1

)(

1

)

1 2 1 1 1 2 1 2 2 2 4 + − + = + − + = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + x x x x x x x x x x x x x dan

(

)

(

)

(

)(

)

1 1 1 1 1 2 2 4 2 4 2 2 − = + − + = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + x x x x x x x x x x x x

Fungsi di atas tidak analitik pada x = 0, jadi dapat disimpulkan bahwa titik = 0 adalah sebuah titik singular tak regular untuk persamaan diferensial (14).

0

x

Untuk x0 = 1, kedua fungsi dalam (13) menjadi

(

)

(

(

)(

)(

)

)

(

1

)

1 2 1 1 1 2 1 1 2 1 2 2 2 4 + + = + − + − = − + − x x x x x x x x x x x x dan

(

)

(

)

(

) (

(

)(

)

)

1 1 1 1 1 1 1 2 2 2 2 4 2 2 − = + − + − = − + − x x x x x x x x x x x x

Karena kedua fungsi ini analitik pada x = 1, maka titik = 1 adalah sebuah titik singular yang regular untuk persamaan diferensial (14)

0

x

(40)

(

)

(

(

)(

)(

)

)

(

1

)

1 2 1 1 1 2 1 1 2 1 2 2 2 4 − + = + − + + = − + + x x x x x x x x x x x x dan

(

)

(

)

(

(

) (

)(

)

)

(

)

1 1 1 1 1 1 1 1 2 2 2 2 2 4 2 2 − + = + − + + = − + + x x x x x x x x x x x x x

Karena kedua fungsi analitik pada x = -1 ( penyebut tidak nol pada x = -1), maka titik = -1 adalah sebuah titik singular yang regular dari persamaan diferensial itu.

0

x

2.4 Deret kuasa sebagai penyelesaian di sekitar titik biasa

Dalam bagian ini ditunjukkan penyelesaian sebarang persamaan diferensial linear homogen orde dua dengan koefisien berubah yang berbentuk :

( )

'' 1

( )

' 0

( )

0

2 x y +a x y +a x y =

a (10)

dengan a2

( )

x ≠0

dalam suatu selang yang memuat titik biasa . Titik digunakan untuk mencari penyelesaian persamaan diferensial (10) yang memenuhi syarat awal berbentuk 0 x x0

( )

x0 y0 y = (16) dan

( )

0 1 ' x y y = (17)

Dapat diingat kembali bahwa jika koefisien – koefisien

( )

x a

( )

x dana x a2 , 1 , 0

0

x

( )

berbentuk polinom – polinom dalam x, maka sebuah titik adalah titik biasa dari persamaan diferensial (10) bila a2

( )

x0 ≠0.

(41)

Karena adalah titik biasa dari persamaan diferensial (10) maka fungsi – fungsi 0 x

( )

( )

x a a 2 1 x dan

( )

( )

x a x a 2 0

dapat dinyatakan menjadi deret kuasa dalam bentuk

( )

( )

x x a a 2 1

)

=

(

untuk ∞ = − 0 0 n n n x x A xx0 <R1 (18) dan

( )

( )

x x a a 2 0

)

=

(

untuk ∞ = − 0 0 n n n x x B xx0 <R2 (19)

dengan jari – jari kekonvergenan R1 dan R2 yang positif.

Contoh 2.4.1

Selesaikan persamaan berikut dengan menggunakan deret persamaan diferensial

(

1−x

)

y''− y'+xy =0

Penyelesaian

Diketahui persamaan

(

1−x

)

y''− y'+ xy=0. (20) Maka bentuk normalnya

(

)

(

)

0

1 ' 1 1 '' = − + − − y x x y x y , sehingga

( )

(

)

x x P − dan

( ) ( )

x x x Q − = 1 − 1 = 1 Fungsi

( )

(

x

)

x − − = 1 1

)

P analitik untuk semua x kecuali pada titik x=1

Fungsi

( ) (

x x x

Q analitik untuk semua x kecuali pada titik x=1 −

= 1

(42)

Kedua fungsi P

( )

x dan Q

( )

x analitik untuk semua x kecuali di titik x=1. Jadi, semua titik selain x=1 adalah titik biasa dan titik adalah titik singular dari persamaan diferensial yang diketahui.

1 =

x

Karena dari soal tersebut diketahui syarat awal diberikan pada titik , maka akan ditentukan penyelesaian deret di sekitar titik biasa dengan penyelesaian 0 = x 0 = x

( )

(

)

(

)

= ∞ = ∞ = = − = − = 0 0 0 0 n n n n n n n n n x x a x a x a x y 0

Dengan mendiferensialkan suku demi suku diperoleh

( )

∞ = − = 1 1 ' n n nx na x y =

(

)

dan ∞ = + + 0 1 1 n n n x a n =

( )

(

)

= − − = 2 2 1 '' n n nx a n n x y

(

)(

)

∞ = + + + 0 2 2 1 n n n x a n n

Jika disubstitusikan ke dalam persamaan (20), maka diperoleh

(

) (

)(

)

(

)

∞ = + ∞ = ∞ = + = + + − + + − 0 1 0 0 2 1 0 2 1 1 n n n n n n n n n x n a x x a x a n n x

(

)(

)

(

)

(

)

(

)

+ ∞ = + + ∞ = ∞ = + + − + + − + + 1 0 1 2 0 0 2 2 1 1 2 1 n n n n n n n n x n n a x n a a n n

∞ = + = + 0 1 0 n n n n x a x

(

)(

)

(

)

(

)

∞ = − + ∞ = + ∞ = ∞ = + = + + − − + − + + + 1 1 1 1 1 1 1 1 2 2 0 1 1 2 1 2 n n n n n n n n n n n n x a x a n a x a n n x a n n a

(

1

)(

2

)

[

(

1

) (

1

)

]

} 0 { 2 1 1 1 2 1 2 − + + + + − + − + + + − = ∞ = +

n n n n n n n n a a x a n n a a

(43)

(

1

)(

2

)

(

1

)(

1

)

} 0 { 2 1 1 1 2 1 2 − + + + + − − + + + − = ∞ = +

n n n n n n n a a x a n n a a

Maka relasi berulangnya adalah

(

n+1

)(

n+2

)

an+2 +

(

n−1

)(

n+1

)

an+1 +an−1 =0

(

n+1

)(

n+2

)

an+2 =−

(

n−1

)(

n+1

)

an+1an1

(

(

)

)(

)

2 1 12 1 1 2 + + − + − = + − + n n a a n a n n n dengan n =0, 1, 2, ...

Dari syarat awal diperoleh a0 =1dan a1 =1, diperoleh

! 2 1 1 . 2 1 2 = = a a ! 3 1 ! 3 1 2 2 . 3 4 2 0 3 = − = − = a a a M ! 1 n an =

Diperoleh penyelesaian deretnya adalah

( )

= ∞ = = = 0 0 ! 1 n n n n n x n x a x y

Selanjutnya akan dibahas metode penyelesaian di sekitar titik singular. Untuk dapat mendapatkan penyelesaian di sekitar titik singular dari persamaan (10), maka terlebih dahulu diklasifikasikan titik singular x0 itu.

(44)

2.5 Deret kuasa sebagai penyelesaian di sekitar titik singular

regular

Dari definisi 2.3.2, dapat diuraikan deret kuasa berbentuk

(

) ( )

( )

(

= − = − 0 0 2 1 0 n n n x x A x a x a x x

)

untuk xx0 〈R1 (21)

(

)

( )

( )

(

= − = − 0 0 2 0 2 0 n n n x x B x a x a x x

)

untuk xx0R2 (22)

dengan jari – jari kekonvergenan dan . Karena titik merupakan titik singular dari persamaan diferensial (10), maka penyelesaian persamaan diferensial tersebut tak terdefinisi pada , tetapi pesamaan diferensial (10) mempunyai dua penyelesaian bebas linear dalam selang tanpa titik pusat 0 <

1 R R2 x0 0 x R x

x− 0 < , dimana R adalah nilai terkecil dari

dan . 1 R 2 R

Contoh 2. 5.1

Tentukan titik singular regular dari persamaan diferensial

(

)

' 0

''

2x2y + xx2 yy=

Penyelesaian:

Diketahui persamaan 2x2y ''+

(

xx2

)

y'− y=0 Maka bentuk normalnya 0

2 1 ' 2 '' 2 2 2 = − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + y x y x x x y Disini

( )

(

)

x x x x x x x x x P 2 1 2 1 2 2 2 2 − = − = − = dan

( )

2 2 1 x x Q =−

(45)

Fungsi P

( )

x analitik dimana – mana, kecuali pada titik x = 0 Fungsi Q

( )

x analitik dimana – mana, kecuali pada titik x = 0

Jadi, titik x = 0 adalah titik singular dari pesamaan diferensial yang diketahui berdasarkan definisi 2. 3. 2 Untuk x0= 0, diperoleh

( )

(

) (

)

2 1 2 1 x x x x x xP = − = −

( )

( )

2 1 2 1 2 2 2 ==x x x Q x

Karena kedua fungsi analitik pada x = 0, maka titik = 0 adalah titik singular regular dari pesamaan yang diketahui.

0

x

Jika diketahui x0 adalah titik tak hingga, maka dapat menggunakan transformasi

t

x= , sehingga nilai 1 x=∞ berkorespondensi dengan t = 0. Jika

t x= , maka 1 didapatkan rumus : t y t x t y x t t y x y y ∂ ∂ − = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ∂ ∂ = ∂ ∂ • ∂ ∂ = ∂ ∂ = 2 2 ' 1 (23) t y t t y t t t y t t y t x t x y t x y x x y y ∂ ∂ + ∂ ∂ = − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − ∂ ∂ − = ∂ ∂ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ ∂ ∂ = ∂ ∂ = 3 2 2 4 2 2 2 2 2 2 '' 2 2 (24)

Substitusikan ke dalam persamaan (11) dan diperoleh

0 1 1 2 3 2 2 2 4 = ⎠ ⎞ ⎜ ⎝ ⎛ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ∂ ∂ + ∂ ∂ y t Q t y t t P t y t t y t

(46)

0 1 1 2 3 2 2 2 4 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ∂ ∂ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + ∂ ∂ y t Q t y t P t t t y t 0 1 1 2 4 2 2 2 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ∂ ∂ ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + ∂ ∂ y t t Q t y t t P t t y 0 1 1 2 4 ' 2 '' = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ⎥ ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + y t t Q y t t P t y (25)

Didefinisikan bahwa titik tak hingga merupakan titik biasa, titik singular regular atau titik singular tak regular pada persamaan (11), sesuai dengan jenis titik pada persamaan (25).

Dari persamaan (25) diketahui bahwa

( )

x = P ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t P t t 1 1 2 2 dan Q

( )

x = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ t Q t 1 1 4 (26)

Dari (25) semua bilangan riil meryupakan titik biasa , kecuali pada t = 0, maka persamaan (26) analitik pada t = 0 dan titik tak hingga ataux=∞ adalah titik biasa dari (11).

Untuk t = 0, kedua fungsi dalam (13) menjadi

[

]

⎠ ⎞ ⎜ ⎝ ⎛ − t P t t t 2 12 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − t P t 1 1 2 dan

[

]

⎠ ⎞ ⎜ ⎝ ⎛ t Q t t2 14 1 = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ t Q t 1 1 2 (27)

(47)

Fungsi di atas tidak analitik pada t = 0, jadi dapat disimpulkan bahwa titik tak hingga atau x=∞ adalah sebuah titik singular tak regular untuk persamaan diferensial (11).

Selanjutnya akan dibahas suatu metode deret untuk menentukan penyelesaian dari persamaan diferensial (4) di sekitar titik singular regular . Metode ini disebut metode Frobenius. Dalam hal ini, tidak akan dibahas penyelesaian deret dari persamaan diferensial (11) di sekitar titik singular tak regular.

0

x

Teorema 2. 5. 1

Setiap persamaan diferensial berbentuk

( )

( )

0 2 ' " + + = y x x c y x x b y (28)

dengan fungsi – fungsi b(x) dan c(x) analitik pada x = 0, mempunyai sekurang – kurangnya satu penyelesaian yang dapat dinyatakan dalam bentuk (29)

( )

(

= + + + = = 0 2 2 1 0 ... n r n n r x a x a a x x a x x y

)

dengan

(

a0 ≠0

)

dimana pangkat r merupakan bilangan real. Bukti:

(48)

(

)

(

0

) ( )

'

( )

0 " 2 0 + − + = −x y x x b x y c x y x (30)

dengan b(x) dan c(x) analitik di x = x0, dimana

( ) (

) ( )

( )

x a x a x x x b 2 1 0 − = dan

( ) (

)

( )

( )

x a x a x x x c 2 0 2 0 − =

Sekarang akan ditentukan penyelesaian dari persamaan (30) di sekitar titik . Akan diperlihatkan bahwa persamaan diferensial (30) ini mempunyai sekurangnya satu penyelesaian deret di sekitar yang berbentuk

0 x 0 x

( )

x x x a

(

x x

)

x x R y n n n r 〈 − 〈 − − =

∞ = 0 0 0

0 ,0 dengan r suatu konstanta.

Pada kesempatan ini hanya akan dibahas kasus x− < R, oleh karena itu dapat x0

menyederhanakan notasi xx0 =x− . Dari teorema di atas, telah diketahui x0

= 0 adalah titik singular dari persamaan (10), maka persamaan (30) berbentuk

0 x

( )

'

( )

0 " 2 + + = y x c y x xb y x (31)

Pertama akan mengubah b(x) dan c(x) dalam deret kuasa

( )

x =b0 +b1x+b2x2 +... b dan c

( )

x =c0 +c1x+c2x2 +...

( )

∞ = = 0 n n nx b x b dan

( )

(32) ∞ = = 0 n n nx c x c Andaikan penyelesaiannya

( )

= + ∞ = = = 0 0 n r n n n n n r x a x a x x y , 0〈 xR

Referensi

Dokumen terkait

Penyakit ini biasanya dimanifestasikan dalam bentuk adanya demam, adanya obstruksi hidung dengan sekret yang encer sampai dengan membuntu saluran pernafasan, bayi

Kondisi tersebut menunjukkan bahwa partisipan penelitian ini adalah individu dengan karakteristik kepribadian tidak pencemas, senang sendiri, cenderung konvensional dalam

Adanya kontradiksi antara teori mengenai tanggungjawab sosial dengan berbagai penelitian mengenai faktor yang mempengaruhi pengungkapan tanggung jawab sosial perusahaan

Alhamdulillah, segala puji hanya bagi Allah SWT yang telah menciptakan alam semesta beserta isinya, serta sholawat dan salam kepada pemimpin umat islam, junjungan yang

Kebiasaan dan tradisi yang dilakukan orang-orang tanpa melalui penalaran apakah yang dilakukan baik atau buruk. Dengan demikian seseorang akan bertambah

Telah kita ketahui bersama bahwa tembakau atau yang sudah dalam bentuk rokok merupakan salah satu penyumbang devisa terbanyak bagi Negara. Namun dari waktu ke waktu,

Mutan dengan perlakuan awal 15 + 15 Gy + 14 ppm AI, yang di- tanam pada larutan bebas AI, menunjukkan perbedaan yang sangat nyata bila dibandingkan dengan Sentani normal