6. DAFTAR PUSTAKA
Araújo, C.A.C. & L.L. Leon. (2001). Biological Activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz, Rio de Janeiro, Vol. 96(5).
Azizah, B. & Nina S. (2013). Standarisasi parameter non spesifik dan perbandingan kadar kurkumin ekstrak etanol dan ekstrak terpurifikasi rimpang kunyit. Jurnal Ilmiah Kefarmasian, Vol. 3 No. 1:21-30.
Anonim. (2010). Acuan Sediaan Herbal Volume V Edisi 1. BPOM RI, Jakarta.
Brooker, D.B.; Bakker-Arkema, F.W. & Hall, C.W. (1992). Drying and Storage of Grains and Oil Seed. 4th edition, van Nostrad USA.
Cahyono, B., Muhammad D.K.H & Leenawaty L. (2011). Pengaruh proses pengeringan rimpang temulawak (Curcuma xanthorriza ROXB) terhadap kandungan dan komposisi kurkuminoid. Reaktor, Vol. 13 No. 3:165-171.
Cai, Y. Z. & H.Corke. (2000). Production and Properties of Spray-Dried Amaranthus Betacyanin Pigments. Journal of Food Science Vol.65 No.6. USA.
Čanadanović-Brune ,J.M.; S.S. Sava ović, G.S. Će ković,J.J. Vulić, S.M. Djilas, S.L. Markov & D.D. Cve ković. (2011). Antioxidant and Antimicrobial Activities of Beet Root Pomace Extracts. Czech J. Food Sci. Vol. 29, No. 6: 575–585.
Cousins, M.; J. Adelberg; F. Chen; J. Rieck. (2007). Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Industrial Crops and Products. An International Journal. 129-135.
Darmadi, F.S. & Victoria K.A. (2008). Studi penerapan teknologi solar tunnel drying pada proses produksi tiwul instan. Jurnal Litbang Provinsi Jawa Tengah. Volume 6(1). Dumas, Y., Dadomo, M. & Grolier, P., (2003). Review: Effects Of Environmental Factors
and Agricultural Techniques on Antioxidant Content of Tomatoes. Journal of the Science of Food and Agriculture. Vol 83: 369–382.
Elizarni; Firdausni; Anwar, H. & Risma S. (2014). Stabilitas ekstrak kurkumin kunyit dan klorofil daun pandan menggunakan α tocoferol dan dekstrin. Jurnal Litbang Industri. Vol. 4 No. 2. Desember 2014: 97-103.
Esper. A., Hensel. O., & Mühlbauer. W. (1994). PV-driven Solar Tunnel Drier. Agricultural Engineering Conference. Bangkok. Dec. 6-9.
European Microfinance Platform. (2013). Solar tunnel dryer. Product Catalogue. E-MFP Action Group on Microfinance and Environment.
Anonim. (2004). Curcumin. Chemical and Techincal Assessment. 61st JECFA.
Fellows, P. (1990). Dehydration. In Encyclopedia of Food Science and Technology. Volume 1. Jhon Willey and Son, Inc. New York.
Fennema, O.R. (1985). Food Chemistry. Marcel Dekker, Inc. New York.
Green, R.J. (2004). Antioxidant activity of peanut plant tissues. Thesis. North Caroline State University: Department Food Science, Raleigh.
Gupta S.K., Lather A., Jaiswal V., Garg S., Jyoti & Kumar A. (2010). Phytochemistry of Curcuma Longa – An Overview. Journal of Pharmaceutical and Biomedical Sciences (JPBM). Vol. 04, Issue 04.
Gurav, S., M. Deshkar, V. Gulkari, N. Duragkar, A. Patil. (2007). Free radical scavening
activity of Polygata chinensis Linn. Pharmacologyline, 2, 245-253.
Hasibuan, R. (2005). Proses Pengeringan. E-USU Repository. Universitas Sumatra Utara. Jain, S.; Shrivastava, S.; Nayak, S.; Sumbhate, S. (2008). Plant review recent trends in
Curcuma longa Linn. Pharmacognosy Reviews. 1(1): 119-28. Available from:
URL: http://www.phcogrev.com/issue1/14.
Kandiannan, K., Sasikumar, B., Thankamani, Suseela Bhai, R.C.K., Santhosh J.E., Devasahayam S. & John Z.T. (2008). Tumeric. Indian Institute of Spices Research. Kendall, P.; P. Dipersio & J. Sofos. (2004). Preparation Drying Vegetables.Corolado Sate
University Cooperative Extension. USA.
Kristina, N.N.; Rita N.; Siti F.S. & Molide R. (___). Peluang peningkatan kadar kurkumin pada tanaman kunyit dan temulawak. Balai Penelitian Tanaman Obat dan Aromatik. Lin, C.-C., Lin, H.-Y., Chen, H.-C., Yu, M.-W. & Lee, M.-H., (2009), Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions, Food Chemistry, 116, pp. 923–928.
Mac Dougall, D.B. (2000). Colour in Food (Improving Quality. CRC Press. Cambridge. England.
Maizura, M., Aminah, A. & Wan Aida, W.M. (2011). Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and tumeric (Curcuma longa) extract. International Food Research Journal. 18:529-534.
Mastekbayeva, G.A.; Agustus Leon, M. & S. Kumar. (1998). Performance evaluation of solar tunnel dryer for chilli drying. Asian Institute of Technology. Bangkok, Thailand.
Nurba, D. (2008). Analisis distribusi suhu, aliran udara, RH dan kadar air dalam in-store
dryer (ISD) untuk biji jagung. Institut Pertanian Bogor.
Pan, M.H.; Huang, T.M. & Lin J.K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Met Dispos. 27:486–494.
Pusat Data dan Informasi Pertanian. (2014). Statistik Pertanian. Pusat Data dan Informasi Pertanian, Jakarta. hlm. 191.
Raohmawan, O. (2001). Pengeringan, Pendinginan dan Pengemasan Komoditas Pertanian. Direktorat Pendidikan Kejuaraan. Jakarta.
Saputra, A. & Dewi K.N.S. (2010). Pengeringan Kunyit Menggunakan Microwave dan Oven. Universitas Diponegoro. Semarang.
Setiyo, Y. (2003). Aplikasi Sistem Kontrol Suhu dan Pola Aliran Udara pada Alat Pengering Tipe Kotak untuk Pengerigan Buah Salak. Pengantar Falsafah Sains. Program Pasca Sarjana, Institut Pertanian Bogor.
Sharma, R. A.; A. J. Gescher; W. P. Steward. (2005). Curcumin: the story so far. European Journal of Cancer 41:1955–1968.
Shrishail, D., Handral H.K., Handral R., G. Tulsianand and S.D. Shruthi. (2013). Tumeric : Nature’s precious medicine. Asian Journal of Pharmaceutical and Clinical Research. Vol. 6, Issue 3:10-16.
Singleton V.L. & Rossi J.A. Jr. Colorunetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticult. 16:144-58, 1965.
Subeki. (1998). Pengaruh Cara Pemasakan Terhadap Kandungan Antioksidan Beberapa Macam Sayuran Serta Daya Serap dan Retensinya pada Tikus Percobaan. Institut Pertanian Bogor. (Tesis).
Suresh, D., Manjunatha, H. & Srinivasan, K. (2007). Effect of heat processing of spices on the concentrations of their bioactive principles: Turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum), J. Food Comp. Anal., 20, pp. 346-351.
Taib ,G.; Sa’id, E.G.; Wiraatmaja, S. (1988). Operasi Pengeringan Pada Pengolahan Hasil Pertanian. Mediyatama Sarana Perkasa. Jakarta.
Taufiq, M. (2004). Pengaruh temperature terhadap laju pengeringan jagung pada pengering konvensional dan fluidized bed. Universitas Sebelas Maret. Surakarta.
Hartati, S.Y. (2013). Khasiat kunyit sebagai obat tradisional dan manfaat lainnya. Warta Penelitian dan Pengembangan Tanaman Industri. Vol 19 No 2.
Weiss, W. & Josef B. (2009). Solar Drying. Institute for Sustainable Technologies. Austria. Wibawanto, N.R.; Victoria K.A.; & Rika P. (2014). Optimasi suhu pengeringan dan
penggunaan drying agent pada pengolahan serbuk bit merah (Beta vulgaris L.) dengan metode oven drying. UNIKA Soegijapranata. Semarang.
Winarno, F. G. (1992). Kimia Pangan dan Gizi. Jakarta : PT Gramedia Pustaka Utama. Wrolstad, R.E., Robert W.D. & Jungmin Lee. (2005). Tracking color and pigment changes
in anthocyanin products. Trends in Food Science & Technology 16:423–428.
Yani, E., Abdurrachim & Adjar P. (2009). Penghitungan Efisiensi Kolektor Surya pada Pengering Surya Tipe Aktif Tidak Langsung pada Laboratorium Surya ITB. Jurnal Vol.2 (31): 20-25.
Zapsalis, C.A.Beck. (1985). Food Chemistry and Nutritional Biochemistry. John Willey and Sons, New York, hal 453-454.
35 7. LAMPIRAN
Lampiran 1. Intensitas Warna Kunyit
Lampiran 1.1. Uji Normalitas Intensitas Warna Kunyit
Tests of Normal ity
.157 15 .200* .909 15 .129 .206 15 .085 .885 15 .056 .200 15 .111 .800 15 .004 .182 15 .197 .896 15 .083 .165 15 .200* .933 15 .303 .186 15 .173 .861 15 .025 .187 15 .167 .928 15 .259 .175 15 .200* .926 15 .239 .152 15 .200* .932 15 .289 .157 15 .200* .949 15 .507 .216 15 .059 .847 15 .016 .196 15 .127 .820 15 .007 .132 15 .200* .958 15 .660 .205 15 .090 .905 15 .115 .198 15 .116 .850 15 .018 .200 15 .109 .873 15 .037 .213 15 .065 .924 15 .218 .324 15 .000 .797 15 .003 perlakuan basah sitrat kontrol chamber 1 kontrol chamber 4 f an chamber 1 f an chamber 4 basah sitrat kontrol chamber 1 kontrol chamber 4 f an chamber 1 f an chamber 4 basah sitrat kontrol chamber 1 kontrol chamber 4 f an chamber 1 f an chamber 4 L a b
St at ist ic df Sig. St at ist ic df Sig. Kolmogorov -Smirnova Shapiro-Wilk
This is a lower bound of the true signif icance. *.
Lillief ors Signif icance Correction a.
Lampiran 1.2. Uji Beda One Way Anova Intensitas Warna Kunyit (lightness)
Lampiran 1.3. Uji Beda One Way Anova Intensitas Warna Kunyit (a*)
L Duncana 15 53.4160 15 56.3180 15 57.4033 57.4033 15 57.5987 57.5987 15 58.6133 58.6133 15 60.0307 1.000 .251 .278 .177 perlakuan kontrol chamber 1 f an chamber 4 f an chamber 1 sitrat kontrol chamber 4 basah Sig. N 1 2 3 4 Subset f or alpha = .05
Means f or groups in homogeneous subsets are display ed. Uses Harmonic Mean Sample Size = 15.000. a. a Duncana 15 14.6593 15 14.8747 15 15.2740 15 15.6700 15 18.2033 15 18.5120 .117 .597 perlakuan kontrol chamber 4 f an chamber 1 kontrol chamber 1 f an chamber 4 sitrat basah Sig. N 1 2 Subset f or alpha = . 05
Means f or groups in homogeneous subset s are display ed. Uses Harmonic Mean Sample Size = 15.000. a.
Lampiran 1.4. Uji Beda One Way Anova Intensitas Warna Kunyit (b*)
Lampiran 1.5. Nilai (a*) dan (b*) pada Kunyit Segar
b Duncana 15 24.1447 15 24.3967 15 24.6060 15 28.4140 15 32.2413 15 33.0333 .620 1.000 .364 perlakuan kontrol chamber 1 f an chamber 1 f an chamber 4 kontrol chamber 4 basah sitrat Sig. N 1 2 3 Subset f or alpha = .05
Means f or groups in homogeneous subsets are display ed. Uses Harmonic Mean Sample Size = 15. 000. a. -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00 kunyit segar a b * a b *
Lampiran 1.6. Nilai (a*) dan (b*) pada Kunyit yang Direndam dengan Asam Sitrat
Lampiran 1.7. Nilai (a*) dan (b*) pada Kunyit yang Dikeringkan Tanpa Perlakuan (Kontrol) pada Chamber 1
-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00
kunyit direndam dengan asam sitrat a b * a b * -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00 kontrol chamber 1 a b * a b *
Lampiran 1.8. Nilai (a*) dan (b*) pada Kunyit yang Dikeringkan Tanpa Perlakuan (Kontrol) pada Chamber 4
Lampiran 1.10. Nilai (a*) dan (b*) pada Kunyit yang Dikeringkan dengan Perlakuan Fan pada Chamber 1
-60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00 kontrol chamber 4 a b * a b * -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00 fan chamber 1 a b * a b *
Lampiran 1.11. Nilai (a*) dan (b*) pada Kunyit yang Dikeringkan dengan Perlakuan Fan pada Chamber 4
Lampiran 2. Aktivitas Antioksidan Kunyit
Lampiran 2.1. Uji Normalitas Aktivitas Antioksidan Kunyit -60.00 -40.00 -20.00 0.00 20.00 40.00 60.00 -60.00 -10.00 40.00 fan chamber 4 a b * a b *
Tests of Normal ity
.254 9 .096 .775 9 .010 .154 9 .200* .953 9 .724 .256 9 .090 .844 9 .064 .213 9 .200* .935 9 .526 .258 9 .086 .935 9 .528 .206 9 .200* .862 9 .101 perlakuan basah sitrat kontrol chamber 1 kontrol chamber 4 f an chamber 1 f an chamber 4 antioksidan
St at ist ic df Sig. St at ist ic df Sig.
Kolmogorov -Smirnova Shapiro-Wilk
This is a lower bound of the true signif icance. *.
Lillief ors Signif icance Correction a.
Lampiran 2.2. Uji Beda One Way Anova Aktivitas Antioksidan Kunyit
Lampiran 2.3. Grafik Aktivitas Antioksidan Kunyit Segar dan Kunyit Setelah Pengeringan anti oksidan Duncana 9 67.0933 9 67.2444 9 69.8900 9 70.6022 9 88.0022 9 88.2911 .362 .934 perlakuan f an chamber 4 kontrol chamber 1 kontrol chamber 4 f an chamber 1 sitrat basah Sig. N 1 2 Subset f or alpha = . 05
Means f or groups in homogeneous subset s are display ed. Uses Harmonic Mean Sample Size = 9.000.
a. 60.00 62.00 64.00 66.00 68.00 70.00 72.00 74.00 76.00 78.00 80.00 82.00 84.00 86.00 88.00 90.00 92.00 94.00
kunyit segar kunyit direndam asam sitrat kunyit kering chamber 1 kunyit kering chamber 4 Aktivi tas Antiok sid an (% ) Kontrol Fan
Lampiran 3. Kurkumin Kunyit
Lampiran 3.1. Uji Normalitas Kurkumin Kunyit
Lampiran 3.2. Uji Beda One Way Anova Kurkumin Kunyit
Tests of Normality .240 9 .144 .826 9 .041 .178 9 .200* .903 9 .268 .224 9 .200* .865 9 .109 .249 9 .114 .816 9 .031 .251 9 .107 .880 9 .158 perlakuan basah kontrol chamber 1 kontrol chamber 4 f an chamber 1 f an chamber 4 kurkumin
St at ist ic df Sig. St at ist ic df Sig.
Kolmogorov -Smirnova Shapiro-Wilk
This is a lower bound of the true signif icance. *.
Lillief ors Signif icance Correction a. kurkumin Duncana 9 5457.5185 9 5628.3827 9 5687.3827 9 5845.6296 9 5866.8889 1.000 1.000 1.000 .172 perlakuan basah kontrol chamber 4 kontrol chamber 1 f an chamber 1 f an chamber 4 Sig. N 1 2 3 4 Subset f or alpha = .05
Means f or groups in homogeneous subsets are display ed. Uses Harmonic Mean Sample Size = 9. 000.
Lampiran 3.3. Kurva Standar Kurkumin
Lampiran 3.4. Grafik Konsentrasi Kurkumin pada Kunyit Segar dan Kunyit Setelah Pengeringan y = 0.0003x + 0.0077 R² = 0.9807 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 500 1000 1500 2000 2500 3000 3500 Absor ba nsi Konsentrasi (mg/Kg) 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100
kunyit segar kunyit kering chamber 1 kunyit kering chamber 4 K on se n tr asi K u rk u m in ( p p m ) Kontrol Fan
Lampiran 4. Gambar Pengeringan Kunyit Lampiran 4.1. Alat Solar Tunnel Dryer
Lampiran 4.1.1. Area Hitam (Penangkap Panas) Alat Solar Tunnel Dryer
Lampiran 4.1.2. Area Pengeringan Alat Solar Tunnel Dryer
Lampiran 4.3. Penambahan Fan Di antara Chamber 2 dan Chamber 3 pada Alat Solar Tunnel Dryer
Lampiran 4.4. Fan yang Ditambahkan pada Alat Solar Tunnel Dryer
Lampiran 5. Oven yang Digunakan untuk Pengukuran Kadar Air Kunyit
Lampiran 6. Ekstraksi Sampel Kunyit
Lampiran 6.1. Ekstraksi Sampel Kunyit Segar
Lampiran 7. Pengujian Antioksidan pada Kunyit Lampiran 7.1. Alat Spektrofotometer yang Digunakan
Lampiran 7.3. Ekstrak Kunyit Segar Setelah Dicampur dengan Larutan DPPH
Lampiran 8. Pengujian Kurkumin pada Kunyit
Lampiran 8.1. Ekstraksi Sampel Kunyit dengan Shaker