• Tidak ada hasil yang ditemukan

Spektroskopi Difraksi Sinar-X (X-ray difractionXRD)

N/A
N/A
Protected

Academic year: 2018

Membagikan "Spektroskopi Difraksi Sinar-X (X-ray difractionXRD)"

Copied!
9
0
0

Teks penuh

(1)

Spektroskopi Difraksi Sinar-X (X-ray difraction/XRD)

Spektroskopi difraksi sinar-X (X-ray difraction/XRD) merupakan salah satu metoda karakterisasi material yang paling tua dan paling sering digunakan hingga sekarang. Teknik ini digunakan untuk mengidentifikasi fasa kristalin dalam material dengan cara menentukan parameter struktur kisi serta untuk mendapatkan ukuran partikel

Difraksi sinar-X terjadi pada hamburan elastis foton-foton sinar-X oleh atom dalam sebuah kisi periodik. Hamburan monokromatis sinar-X dalam fasa tersebut memberikan interferensi yang konstruktif. Dasar dari penggunaan difraksi sinar-X untuk mempelajari kisi kristal adalah berdasarkan persamaan Bragg :

n.

λ

= 2.d.sin

θ

; n = 1,2,...

Dengan λ adalah panjang gelombang sinar-X yang digunakan, d adalah jarak antara dua bidang kisi, θ adalah sudut antara sinar datang dengan bidang normal, dan n adalah bilangan bulat yang disebut sebagai orde pembiasan.

Berdasarkan persamaan Bragg, jika seberkas sinar-X di jatuhkan pada sampel kristal, maka bidang kristal itu akan membiaskan sinar-X yang memiliki panjang gelombang sama dengan jarak antar kisi dalam kristal tersebut. Sinar yang dibiaskan akan ditangkap oleh detektor kemudian diterjemahkan sebagai sebuah puncak difraksi. Makin banyak bidang kristal yang terdapat dalam sampel, makin kuat intensitas pembiasan yang dihasilkannya. Tiap puncak yang muncul pada pola XRD mewakili satu bidang kristal yang memiliki orientasi tertentu dalam sumbu tiga dimensi. Puncak-puncak yang didapatkan dari data pengukuran ini kemudian dicocokkan dengan standar difraksi sinar-X untuk hampir semua jenis material. Standar ini disebut JCPDS.

(2)

perlambatan saat masuk ke dalam logam dan menyebabkan elektron pada kulit atom logam tersebut terpental membentuk kekosongan. Elektron dengan energi yang lebih tinggi masuk ke tempat kosong dengan memancarkan kelebihan energinya sebagai foton sinar-X.

Metode difraksi sinar X digunakan untuk mengetahui struktur dari lapisan tipis yang terbentuk. Sampel diletakkan pada sampel holder difraktometer sinar X. Proses difraksi sinar X dimulai dengan menyalakan difraktometer sehingga diperoleh hasil difraksi berupa difraktogram yang menyatakan hubungan antara

sudut difraksi 2θ dengan intensitas sinar X yang dipantulkan. Untuk difraktometer

sinar X, sinar X terpancar dari tabung sinar X. Sinar X didifraksikan dari sampel yang konvergen yang diterima slit dalam posisi simetris dengan respon ke fokus sinar X. Sinar X ini ditangkap oleh detektor sintilator dan diubah menjadi sinyal listrik. Sinyal tersebut, setelah dieliminasi komponen noisenya, dihitung sebagai analisa pulsa tinggi. Teknik difraksi sinar x juga digunakan untuk menentukan ukuran kristal, regangan kisi, komposisi kimia dan keadaan lain yang memiliki orde yang sama.

SUMBER DAN SIFAT SINAR X

Tabung sinar-X

Pada umumnya, sinar diciptakan dengan percepatan arus listrik, atau setara dengan transisi kuantum partikel dari satu energi state ke lainnya. Contoh : radio ( electron berosilasi di antenna) , lampu merkuri (transisi antara atom)

Ketika sebuah elektron menabrak anoda :

1. Menabrak atom dengan kecepatan perlahan, dan menciptakan radiasi bremstrahlung atau panjang gelombang kontinyu

2. Secara langsung menabrak atom dan menyebabkan terjadinya transisi menghasilkan panjang gelombang garis

(3)

energi 103 -106 eV. Panjang gelombang sinar X memiliki orde yang sama dengan jarak antar atom sehingga dapat digunakan sebagai sumber difraksi kristal.

Difraksi Sinar X merupakan teknik yang digunakan dalam karakteristik material untuk mendapatkan informasi tentang ukuran atom dari material kristal maupun nonkristal. Difraksi tergantung pada struktur kristal dan panjang gelombangnya. Jika panjang gelombang jauh lebih dari pada ukuran atom atau konstanta kisi kristal maka tidak akan terjadi peristiwa difraksi karena sinar akan dipantulkan sedangkan jika panjang gelombangnya mendekati atau lebih kecil dari ukuran atom atau kristal maka akan terjadi peristiwa difraksi. Ukuran atom dalam orde angstrom (Å) maka supaya terjadi peristiwa difraksi maka panjang gelombang dari sinar yang melalui kristal harus dalam orde angstrom (Å).

Skema Tabung Sinar X

Sinar X dihasilkan dari tumbukan antara elektron kecepatan tinggi dengan logam target. Dari prinsip dasar ini, maka alat untuk menghasilkan sinar X harus terdiri dari beberapa komponen utama, yaitu :

a. Sumber elektron (katoda)

b. Tegangan tinggi untuk mempercepat elektron c. Logam target (anoda)

(4)

KOMPONEN DALAM XRD

Komponen XRD ada 2 macam yaitu: 1. Slit dan film

2. Monokromator

Sinar-X dihasilkan di suatu tabung sinar katode dengan pemanasan kawat pijar untuk menghasilkan elektron-elektron, kemudian electron-elektron tersebut dipercepat terhadap suatu target dengan memberikan suatu voltase, dan menembak target dengan elektron. Ketika elektron-elektron mempunyai energi yang cukup untuk mengeluarkan elektron-elektron dalam target, karakteristik spektrum sinar-X dihasilkan. Spektrum ini terdiri atas beberapa komponen-komponen, yang paling umum adalah Kα dan Kβ. Ka berisi, pada sebagian, dari Kα1 dan Kα2. Kα1 mempunyai panjang gelombang sedikit lebih pendek dan dua kali lebih intensitas dari Kα2. Panjang gelombang yang spesifik merupakan

karakteristik dari bahan target (Cu, Fe, Mo, Cr). Disaring, oleh kertas perak atau kristal monochrometers, yang akan menghasilkan sinar-X monokromatik yang diperlukan untuk difraksi. Tembaga adalah bahan sasaran yang paling umum

untuk diffraction kristal tunggal, dengan radiasi Cu Kα =05418Å. Sinar-X ini bersifat collimated dan mengarahkan ke sampel. Saat sampel dan detektor diputar, intensitas Sinar X pantul itu direkam. Ketika geometri dari peristiwa sinar-X tersebut memenuhi persamaan Bragg, interferens konstruktif terjadi dan suatu puncak di dalam intensitas terjadi. Detektor akan merekam dan memproses isyarat penyinaran ini dan mengkonversi isyarat itu menjadi suatu arus yang akan dikeluarkan pada printer atau layar komputer.

PROSEDUR DIFRAKSI SINAR X

(5)

kumparan yang biasa digunakan untuk menentukan struktur molekul yang mempunyai ukuran yang sangat besar, seperti DNA, protein, dan sebagainya.

Alat yang digunakan untuk mengukur dan mempelajari difraksi sinar X dinamakan Goniometer. Pada metoda kristal tunggal, sebuah kristal yang berkualitas baik diletakkan sedemikian rupa sehingga dapat berotasi pada salah satu sumbu kristalnya. Ketika kristal itu diputar pada salah satu sumbu putar, seberkas sinar X monokromatik dipancarkan ke arah kristal. Ketika kristal berputar, perangkat-perangkat bidang yang ada dalam kristal berurutan akan memantulkan berkas sinar X. berkas sinar X yang dipantulkan ini kemudian direkam pada sebuah piringan fotografik. Jika yang digunakan piringan datar, akan diperoleh suatu pola seperti terlihan pada gambar dibawah ini. tetapi apabila yang digunakan adalah film fotografik yang lengkung berbentuk silinder dengan kristal yang diuji terletak ditengah silinder, maka akan diperoleh suatu deretan spot yang berbentuk garis lurus sehingga pengukuran akan menjadi semakin mudah.

Gambar Difraksi sinar X menggunakan metode rotasi kristal

(6)

Difraksi sinar X yang kita perkirakan kemudian kita bandingkan dengan hasil percobaan. Adanya perbedaan antara pola difraksi hasil perkiraan dan hasil percobaan menunjukkan struktur molekul yang kita perkirakan masih salah dengan membandingkan kedua pola difraksi, kita dapat membuat perbaikan-perbaikan sehingga hasilnya diperoleh struktur molekul yang tepat, tetapi dalam beberapa kasus, misalnya apabila jumlah atom dalam unit sel sangat banyak, metode diatas menjadi tidak parktis lagi. Dalam kasus seperti ini biasanya posisi atom atau ion ditentukan berdasarkan intensitas relatif dari spot yang diasilkan.

Ketika sinar X menumbuk kristal, sebenarnya elektron yang terdapat di sekeliling atom atau ionlah yang menyebabkan terjadinya pemantulan. Makin banyak jumlah elektron yang terdapat disekeliling atom pada suatu bidang, makin besar intensitas pemantuklan yang disebabkan oleh bidang tersebut dan akan mengakibatkan makin jelasnya spot yang terekam dalam film. Dengan menggunakan metode sintesis fourier, kita dapat menghubungkan intensitas spot dengan kepekatan distribusi elektron dalam unit sel. Dengan mengamati kepekatan dalam unit sel, kita dapat menduga letak atom dalam unit sel tersebut. Atom akan terletak pada daerah-daerah yang mempunyai kepekatan distribusi elektron maksimum.

Dengan menggunakan metode difraksi sinar X, struktur molekul yang sangat kompleks dapat ditentukan. Misalnya struktur DNA yang sangat kompleks dapat ditentukan dengan metode sinar X seperti yang telah dilakukan oleh Crick, Wilkins dan Watson

PETUNJUK PENGGUNAAN, PENYIAPAN SAMPLE

 Ambil sepersepuluh berat sample (murni lebih baik)

 Gerus sample dalam bentuk bubuk. Ukuran kurang dari ~10 μm atau 200 -mesh lebih disukai

 Letakkan dalam sample holder

(7)

 Untuk analisa dari tanah liat yang memerlukan single orientasi, teknik-teknik yang khusus untuk persiapan tanah liat telah diberikan oleh USGS

Pengumpulan Data

Intensitas sinar-X yang didifraksikan secara terus-menerus direkam sebagai contoh dan detektor berputar melalui sudut mereka masing-masing. Sebuah puncak dalam intensitas terjadi ketika mineral berisi kisi-kisi dengan d-spacings sesuai dengan difraksi sinar-X pada nilai θ Meski masing-masing puncak terdiri

dari dua pemantulan yang terpisah (Kα1 dan Kα2), pada nilai-nilai kecil dari 2 θ lokasi-lokasi puncak tumpang-tindih dengan Kα2 muncul sebagai suatu gundukan

pada sisi Kα1. Pemisahan lebih besar terjadi pada nilai-nilai θ yang lebih tinggi .

KEGUNAAN DAN APLIKASI

Kegunaam dan aplikasi XRD:

 Membedakan antara material yang bersifat kristal dengan amorf  Membedakan antara material yang bersifat kristal dengan amorf.  Mengukur macam-macam keacakan dan penyimpangan kristal.  Karakterisasi material kristal

 Identifikasi mineral-mineral yang berbutir halus seperti tanah liat  Penentuan dimensi-dimensi sel satuan

Dengan teknik-teknik yang khusus, XRD dapat digunakan untuk:

1. Menentukan struktur kristal dengan menggunakan Rietveld refinement 2. Analisis kuantitatif dari mineral

(8)

KEUNTUNGAN DAN KERUGIAN DARI XRD KRISTAL DAN BUBUK

1. Kristal Tunggal - Keuntungan

Kita dapat mempelajari struktur kristal tersebut. - Kerugian

Sangat sulit mendapatkan senyawa dalam bentuk kristalnya 2. Bubuk

- Kerugian

Sulit untuk menentukan strukturnya - Keuntungan

(9)

DAFTAR PUSTAKA

I.chorkendroff, J.W. Niemantsverdiet. Concepts of Modern Catalysis and Kinetics. Wliey-VCH GmbH&Co. New York. 2003. Hal 143 -147

http://ardiannisworld.blogspot.com/2008/01/difraksi-neutron_31.htm http://www.chem-is-try.org/

Gambar

Gambar Difraksi sinar X menggunakan metode rotasi kristal

Referensi

Dokumen terkait

Jaringan prosedur pemberian kredit yang telah diterapkan oleh pihak PT Bank Tabungan Negara (Persero) Tbk masih terdapat kekurangan sehingga perlu adanya perbaikan dengan

Tujuan dari penelitian ini adalah untuk menganalisis pengaruh ukuran perusahaan, profitabilitas, kompleksitas operasi dan opini audit terhadap audit delay

PANITIA PEMUNGUTAN SUARA ADI, S.Pd.

berdasarkan kriteria tertentu melalui menilaian” 34. Dari pengertian-pengertian tentang evaluasi yang telah dikemukakan beberapa ahli diatas, dapat ditarik benang merah tentang

Perangkat pembelajaran yang dikembangkan layak digunakan apabila kualitas RPS, RTM, modul, media pembelajaran dan Instrumen Tes Keterampilan Berpikir Tingkat Tinggi

Peserta merupakan mahasiswa aktif S1 atau Diploma perguruan tinggi negeri atau swasta di Indonesia dan masih berstatus mahasiswa (dibuktikan dengan fotokopi KTM yang disertakan

Adapun limbah itu dapat berupa sampah rumah tangga, buangan closet, sisa buangan air yang secara terus-menerus dihasilkan ru mah tangga yang apabila tidak

Tubuh bersisik; permukaan sisik bergaris-garis halus; bentuk sisik lonjong; warna tubuh coklat muda; panjang tubuh kurang lebih 3.11 mm; nisbah antena