• Tidak ada hasil yang ditemukan

Analisis Keruntuhan Jacket Platform Akibat Beban Gempa Dengan Variasi Elevasi Deck

N/A
N/A
Protected

Academic year: 2021

Membagikan "Analisis Keruntuhan Jacket Platform Akibat Beban Gempa Dengan Variasi Elevasi Deck"

Copied!
5
0
0

Teks penuh

(1)

Abstrak— Penilaian kembali atau assessment pada jacket platform dilakukan apabila terdapat perubahan ketinggian deck. Dalam hal ini ketinggian deck dapat berubah karena adanya penurunan tanah. Tugas akhir ini bertujuan untuk melakukan analisis keruntuhan pada jacket platform dengan memvariasikan ketinggian deck. Metode pushover dilakukan untuk mendapatkan Reserve Strength Ratio (RSR) dengan incremental lateral load berupa beban gempa hingga struktur runtuh. Dari hasil analisis diperoleh RSR terkecil 1.39 yaitu pada model dengan penambahan elevasi deck 4 m, dan 1.99 pada model dengan penambahan elevasi deck 3.5 m, serta 2.01 pada model dengan penambahan elevasi deck 3 m. Dari analisis yang telah dilakukan juga terdapat perbandingan plastisitas yang terjadi pada tiap model. Plastisitas mulai terjadi pada load step 148 pada model dengan tinggi deck ditambah 3 m, sehingga menyebabkan keruntuhan pada load factor 2.26. Pada model dengan penambahan deck 3.5 m, plastisitas mulai terjadi pada load step 146 dan akhirnya runtuh pada load factor 2.21. Dan pada model dengan penambahan deck 4 m, plastisitas mulai terjadi pada load step 135 dan runtuh pada load factor 1.53.

Kata Kunci: pushover, gempa, RSR, plastisitas.

I. PENDAHULUAN

enis anjungan terpancang (Fixed Jacket Platform) saat ini paling banyak digunakan di dunia, walaupun jenis ini hanya ekonomis beroperasi di perairan terbatas, yakni dengan kedalaman sekitar 400-500 meter saja. Dengan kondisi perairan Indonesia yang rata-rata kedalamannya kurang dari 100 meter, maka jenis anjungan yang paling cocok digunakan adalah bangunan lepas pantai terpancang, atau Fixed Jacket Platform.

Seiring waktu pengoperasian platform tersebut, maka akan muncul masalah berupa berubahnya ketinggian SWL terhadap deck. Dampak dari perubahan ini adalah naiknya batas splash zone sehingga air dapat melimpas mengenai deck dan mengganggu kegiatan diatasnya. Dampak lainnya yaitu apabila platform dikenai beban mengakibatkan penurunan kekuatan struktur secara keseluruhan bahkan keruntuhan karena platform sudah berbeda dengan rancangan awalnya.

Observasi altimetri menggunakan satelit, yang ada sejak tahun 90-an, menyediakan data kenaikan ketinggian air yang lebih akurat dan menunjukkan bahwa sejak tahun 1993 ketinggian air laut meningkat dengan laju 3 mm/thn [5].

Para peneliti Geologi, oceanografi dan pengamat lingkungan memprediksi bahwa penurunan tanah akan banyak terjadi pada

abad ke-21 dengan pemanasan global dan naiknya permukaan laut seluruh dunia [7].

Contoh Bukti-bukti penurunan tanah di daerah eksploitasi minyak dan gas bumi terlihat di beberapa anjungan minyak yang ada di Amerika, bahkan di wilayah Indonesia, seperti di anjungan minyak di Laut Utara Jawa. Fakta penurunan tanah di platform minyak memberikan warning bagi risk assesment karena dampak penurunan tanah dapat memberikan kerusakan pada struktur platform [6].

Apabila platform dengan kondisi sedemikian sehingga sudah berubah dari rancangan awal tetapi masih dapat dioperasikan dengan pertimbangan finansial dan kinerja, maka akan dilakukan langkah-langkah untuk mempertahankan platform. Salah satu metode untuk menyelamatkan platform adalah dengan memanjangkan kaki pada deck leg dengan mengangkat deck menggunakan tenaga hidrolis sampai elevasi tertentu. Maka dari itu sebelumnya diperlukan adanya analisis mengenai dampaknya apabila struktur platform dikenai beban gempa, apakah platform tersebut dapat bertahan atau runtuh.

Dalam Penelitian ini akan dibahas mengenai analisa keruntuhan jacket platform akibat beban gempa dengan memvariasikan elevasi deck.

Beberapa penelitian yang telah dilakukan berhubungan dengan pushover diantaranya adalah Alam [1] yang menganalisis mengenai keruntuhan jacket platform akibat beban gempa berbasis keandalan dan Hardiansah [4] yang menganalisis kekuatan ultimate pada jacket platform akibat beban slamming.

II. URAIANPENELITIAN A. Dasar Teori

1) Umum

Beban dinamis merupakan beban yang berlaku pada platform dalam kaitan dengan respon terhadap eksitasi siklis natural atau reaksi terhadap tumbukan. Eksitasi dari platform dapat berasal dari gelombang, angin, dan gempa bumi atau permesinan. Sedangkan reaksi tumbukan berasal dari barge atau kapal yang merapat ke platform maupun proses pengeboran [10].

Salah satu beban dinamis yang bekerja pada suatu struktur anjungan lepas pantai adalah beban gempa. Hasil Eksperimen menunjukkan bahwa penting kiranya untuk melakukan investigasi karakteristik getaran struktur lepas pantai untuk menjamin keberhasilan dalam desain.

Analisis Keruntuhan

Jacket Platform

Akibat

Beban Gempa Dengan Variasi Elevasi

Deck

A. Y. Maharlika, Handayanu, Murdjito

Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS)

Jl. Arief Rahman Hakim, Surabaya 60111

E-mail

: handayanu@oe.its.ac.id

(2)

Untuk memenuhi persyaratan kekuatan, struktur jacket harus didesain atas gempa periodik dengan interval kejadian 200 tahun (SLE/strength level earthquake) dan gempa jarang dengan interval 800 s/d 1000 tahun (DLE/ductility level earthquake)

Persyaratan Kekuatan:

Platform harus mampu menerima gempa SLE menggunakan analisa dinamis

CQC (complete quadratic combination) bisa digunakan untuk menggabungkan modal response, dan SRSS (square root of the sum of the squares) bisa digunakan untuk menggabungkan directional response

• Tegangan ijin dasar AISC (bagian 3.2 API RP2A) bisa ditingkatkan 70% (menjadi 1.7 kalinya)

Walaupun beban dinamis yang bekerja pada sistem struktur bisa diabaikan oleh salah satu dari mekanisme sumber yang berbeda, termasuk angin ataupun gelombang, tipe masukan dinamis yang paling penting bagi ahli struktur yang tidak dapat diragukan lagi adalah yang ditimbulkan oleh gempa bumi. Ahli struktur terutama memperhatikan efek lokal gempa yang besar di mana gerak tanah cukup kuat untuk menyebabkan kerusakan struktur [8].

2) Tegangan Ijin

Tegangan ijin tekan aksial, Fa harus ditentukan dari formula AISC untuk member dengan perbandingan D/t kurang atau sama dengan 60 : 𝐹𝐹𝐹𝐹= �1− (𝐾𝐾𝐾𝐾 𝑟𝑟⁄ )2 2𝐶𝐶𝑐𝑐2 � 𝐹𝐹𝐹𝐹 5 3⁄ + 3(𝐾𝐾𝐾𝐾 𝑟𝑟2𝐶𝐶⁄ ) 𝑐𝑐 − (𝐾𝐾𝐾𝐾 𝑟𝑟⁄ ) 8𝐶𝐶𝑐𝑐3 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐾𝐾𝐾𝐾/𝑟𝑟<𝐶𝐶𝑐𝑐 (1) 𝐹𝐹𝐹𝐹=23(12𝐾𝐾𝐾𝐾 𝑟𝑟𝜋𝜋2𝐸𝐸)2𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐾𝐾𝐾𝐾𝑟𝑟 ≥ 𝐶𝐶𝑐𝑐 (2) 𝐶𝐶𝑐𝑐=�12𝐹𝐹𝐹𝐹 �𝜋𝜋2𝐸𝐸 1 2⁄ (3) Dengan:

Cc =Modulus Elastisitas, Ksi (MPa) E = Faktor Panjang Efektif L = Panjang tanpa bracing, in R = Jari-jari girasi, in

Untuk member dengan perbandingan D/t yang lebih besar dari pada 60, menggunakan formula Local Buckling.

Tegangan ijin bending, Fb menurut [2] dinyatakan:

𝐹𝐹𝐹𝐹= 0.75 𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝐷𝐷𝑢𝑢 ≤1500𝐹𝐹𝐹𝐹 (4)

𝐹𝐹𝐹𝐹=�0.84−1.74𝐹𝐹𝐹𝐹𝐷𝐷𝐸𝐸𝑢𝑢 � 𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢1500𝐹𝐹𝐹𝐹 <𝐷𝐷𝑢𝑢 ≤3000𝐹𝐹𝐹𝐹 (5)

𝐹𝐹𝐹𝐹=�0.72−0.58𝐹𝐹𝐹𝐹𝐷𝐷𝐸𝐸𝑢𝑢 � 𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢3000𝐹𝐹𝐹𝐹 <𝐷𝐷𝑢𝑢 ≤300 (6) Merujuk pada [2] dapat dijelaskan bahwa member silinder ditujukan pada kombinasi antara kompresi dan regangan yang harus diproporsionalkan pada kedua persyaratan berikut :

𝑓𝑓𝐹𝐹 𝐹𝐹𝐹𝐹+ 𝐶𝐶𝐶𝐶�𝑓𝑓𝐹𝐹𝑏𝑏2 +𝑓𝑓𝐹𝐹𝐹𝐹2 �1− 𝑓𝑓𝐹𝐹𝑓𝑓 𝑒𝑒� 𝐹𝐹𝐹𝐹 ≤1.0 (7) 𝑓𝑓𝐹𝐹 0.6𝐹𝐹𝐹𝐹+ �𝑓𝑓𝐹𝐹𝑏𝑏2 +𝑓𝑓𝐹𝐹𝐹𝐹2 𝐹𝐹𝐹𝐹 ≤1.0 (8) Dengan,

Fa = Tegangan aksial yang diijinkan, N fa = Tegangan aksial, N

Fb = Tegangan bending yang diijinkan, N fb = Tegangan bending, N

Cm = Faktor reduksi 3) Gempa

Sebagian besar penyelesaian persamaan gerak atau penentuan respon struktur akibat gempa, biasanya hanya ditentukan dengan besar respon yang maksimum, seperti fungsi kecepatan. Harga maksimum dari fungsi respon ini disebut “Spectral Velocity“ atau lebih akurat jika disebut “Spectral Pseudo-Velocity“, sebab tidak sepenuhnya sama dengan kecepatan maksimum pada sistem teredam. Spektrum kecepatan ini dinyatakan dalam persamaan berikut [3]: 𝑆𝑆𝑣𝑣≡ 𝑉𝑉𝐶𝐶𝐹𝐹𝑏𝑏 ≡ �� 𝑣𝑣𝑔𝑔(𝜏𝜏)𝑒𝑒𝑏𝑏𝑒𝑒[−𝜉𝜉 ∙ 𝜔𝜔(𝑢𝑢 − 𝜏𝜏)] sin𝜔𝜔(𝑢𝑢 − 𝜏𝜏)𝑑𝑑𝜏𝜏 𝑢𝑢 0 � 𝐶𝐶𝐹𝐹𝑏𝑏 (9) Dari persamaan di atas, maka dapat ditentukan pula besarnya “Spectral Displacement“, yaitu :

𝑆𝑆𝑑𝑑≡𝑆𝑆𝜔𝜔𝑣𝑣 (10)

sedangkan untuk “Spectral Acceleration (Pseudo-Acceleration)“ dirumuskan sebagai berikut:

𝑆𝑆𝐹𝐹≡ 𝜔𝜔 ∙ 𝑆𝑆𝑣𝑣 (11)

4) CQC

Complete Quadratic Combination (CQC) yaitu korelasi yang bersebrangan antara semua model dalam perhitungan, digunakan dalam menggabungkan modal respon.

𝑅𝑅=�� � 𝑅𝑅𝑖𝑖𝜌𝜌𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 𝑁𝑁 𝑖𝑖=1 𝑁𝑁 𝑖𝑖=1 � 1 2⁄ (12) Dengan,

(3)

i j

r

=

ω

ω

ωi = Frekuensi natural ke I ni 𝜌𝜌𝑖𝑖𝑖𝑖= 8�𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖�𝑢𝑢𝑖𝑖+𝑢𝑢𝑖𝑖�𝑟𝑟3 2⁄ (1− 𝑟𝑟2) + 4𝑢𝑢𝑖𝑖+𝑢𝑢𝑖𝑖𝑟𝑟(1 +𝑟𝑟2) + 4�𝑢𝑢𝑖𝑖2+𝑢𝑢 𝑖𝑖2�𝑟𝑟2

= Modal damping ratio ke I

(13)

5) Pushover

Analisis pushover dapat di definisikan suatu metode yang dipakai dalam menganalisa keruntuhan struktur dan merupakan analisa nonlinear dengan pembebanan incremental untuk menentukan pembebanan yang menyebabkan struktur runtuh dan juga merupakan salah satu cara untuk mengetahui besarnya kapasitas struktur untuk menerima beban maksimal [9]. Metode yang dilakukan adalah dengan melakukan simulasi penambahan beban secara bertahap sampai struktur tersebut runtuh. Dari hasil tersebut akan diketahui Reserve Strength Ratio (RSR) atau rasio kekuatan cadangan struktur untuk mengetahui apakah jacket platform memiliki cukup kekuatan dan stabilitas untuk tetap menahan beban akibat overstress yang melebihi tegangan ijin, namun tanpa keruntuhan.

6) RSR

Reserve Strength Ratio (RSR) dapat dihitung dengan menggunakan persamaan [2]:

𝑅𝑅𝑆𝑆𝑅𝑅=𝐵𝐵𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑒𝑒𝐹𝐹𝑑𝑑𝐹𝐹𝐵𝐵𝑒𝑒𝐹𝐹𝐹𝐹𝑢𝑢𝑠𝑠𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢𝑐𝑐𝑢𝑢𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑢𝑢𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑟𝑟𝐹𝐹𝑎𝑎𝐹𝐹𝐾𝐾𝑐𝑐𝑐𝑐𝐾𝐾𝐾𝐾𝐹𝐹𝑒𝑒𝑠𝑠𝑒𝑒 (14) 𝑅𝑅𝑆𝑆𝑅𝑅=𝑃𝑃𝐹𝐹𝑎𝑎𝐹𝐹𝐾𝐾+𝑇𝑇𝑐𝑐𝑢𝑢𝐹𝐹𝐾𝐾𝑃𝑃𝐹𝐹𝑎𝑎𝐹𝐹𝐾𝐾𝑃𝑃𝑖𝑖𝑢𝑢𝑐𝑐𝑟𝑟𝑒𝑒𝐶𝐶𝑒𝑒𝑢𝑢𝑢𝑢 (15)

Dengan,

P awal = P pada desain level. P increment = P pada analisa pushover

7) Hukum Hooke’s

Kekenyalan (ductility) dari struktur baja merupakan sifat khas yang tidak ada pada bahan lain. Konsep kekenyalan struktur baja merupakan dasar teori plastis untuk menahan deformasi yang cukup besar. Bila baja lunak ditarik gaya aksial tertentu pada suhu ruang, dapat digambarkan hubungan antara tegangan dan regangannya sebagai berikut,

Gambar. 1. Hubungan antara Tegangan dan Regangan

OA : Garis lurus (daerah linier elastic), kemiringan garis = besarnya modulus elastic (Modulus Young)

σ

y : Titik leleh bawah (lower yield point)

σ

yu : Titik leleh atas (upper yield point)

B : Kurva mulai mendatar, merupakan tegangan leleh. BC : Disebut daerah plastis (regangan bertambah, tetapi

tegangan tetap)

C : Titik dimana regangan 10 x regangan leleh.

CE : Disebut daerah regangan keras (strain hardening), dimana pertambahan regangan akan diikuti dengan

sedikit pertambahan tegangan, disini ε tidak linier. M : Terjadi tegangan tarik ultimate (ultimate tensile

strength)

E : Titik dimana kondisi material putus

Yield point (titik leleh) adalah batas dimana material akan terus mengalami deformasi tanpa adanya penambahan beban (tarik, tekan, bending atau puntiran).

8) Keruntuhan

Klasifikasi member dapat dibedakan menjadi beberapa kategori berdasarkan konsekuensi kemungkinan kerusakan akibat pembebanan lateral yang ditingkatkan.

1. Special Category member : kerusakan member yang tidak dapat diperbaiki dan menyebabkan kerusakan/keruntuhan total pada platform (Global Structure Collapse).Yang termasuk didalamnya adalah pile, deck leg.

2. First Category member : kerusakan pada member menyebabkan shut down total atau sebagian pada platform, tetapi menyebabkan kerusakan sebagian pada platform (Local Collapse). Yang termasuk didalamnya adalah jacket leg, bracing, conductor guide.

3. Second Category member : member selain yang termasuk dalam Special Category dan First Category. Yang termasuk didalamnya adalah boatlanding, bumper, mudmat.

B. Analisa dan Pembahasan 1) Pemodelan

Untuk mempermudah mengingat nama model, maka penamaan dilakukan seperti Tabel 1. dengan beberapa konfigurasi sebagai berikut:

(4)

Tabel 1.

Definisi Model yang digunakan dalam analisis

No. Nama Model Penambahan Panjang Deck Leg Panjang Deck Leg (ft) (m) (ft) (m) 1 0 0 0 9.125 2.781 2 1 3.281 1 12.406 3.781 3 2 6.562 2 15.687 4.781 4 3 9.843 3 18.968 5.781 5 3.5 11.484 3.5 20.609 6.282 6 4 13.124 4 22.249 6.781 2) Analisis Gempa

Analisis gempa dilakukan untuk mendapatkan model yang perlu untuk dianalisis collapse dengan peak ground acceleration 0.22g.

Tabel 2.

Unity Check untuk semua model

Model Code Check 0 UC<1 1 UC<1 2 UC<1 3 UC>1 3.5 UC>1 4 UC>1

*UC=Unity Check, yaitu rasio tegangan yang terjadi dengan tegangan ijin dasar. Dalam analisis gempa, tegangan ijin dapat ditingkatkan menjadi 70%.

UC>1 mulai terjadi pada model 3 yaitu pada bagian deck leg dengan UC=1.024 dan pada bagian jacket leg dengan UC=1.043

3) Analisis Collapse

Hasil analisis Collapse menunjukkan bahwa model model 4 mengalami penurunan RSR yang cukup signifikan dari model 3 dan model 3.5, yang kemudian dapat disajikan dalam grafik berikut ini:

Gambar. 2. Grafik Model Vs RSR.

Gambar. 3. Grafik Model Vs Load Step. Terlihat sekali bahwa terdapat penurunan RSR maupun Load Step yang signifikan dari Model 4 (model dengan penambahan deck 4 m)

Kemudian dapat ditampilkan pula perbandingan RSR untuk tiap model dalam tabel sebagai barikut:

Tabel 3.

Base Shear Collapse untuk semua model yang dianalisis

Nama Model Base Shear Earthquake (DLE) (Kips) Base Shear Collapse (Kips) RSR Load Factor Load Step Collapse 3 455.456 876.57 2.01 2.26 228 3.5 437.104 852.23 1.99 2.21 223 4 429.312 582.99 1.39 1.53 155 4) Plastisitas

Dapat disajikan pula grafik Plastisitas Vs Load Step pada beberapa model yang dianalisis collapse dengan satu member acuan yaitu sebagai berikut:

Gambar 4. Plastisitas pada beberapa model

Pada analisis ini, member yang mengalami full plastis (plastisitas 100%) adalah member pile. Sesuai dengan kategori keruntuhan, member yang mengalami kerusakan adalah member dengan “Special Category Member” sehingga menyebabkan keruntuhan total pada struktur (Global Structure Collapse).

(5)

III. KESIMPULAN/RINGKASAN A. Kesimpulan

Dari analisis yang telah dilakukan, terdapat beberapa kesimpulan yaitu sebagai berikut:

1. Model yang dianalisis collapse adalah model dengan UC>1 yaitu model 3, model 3.5, dan model 4. Kemudian didapatkan hasil bahwa model 4 memiliki RSR terkecil yaitu 1.39, kemudian model 3.5 dengan RSR 1.99, dan model 3 dengan RSR 2.01.

2. Sesuai dengan hasil analisis, plastisitas pada struktur akan mulai terjadi pada load factor 2.26 pada model 3, 2.21 pada model 3.5, serta 1.53 pada model 4 dan akan meningkat hingga struktur mengalami full plastis dan runtuh.

UCAPANTERIMAKASIH

Penulis menyampaikan terima kasih yang sebesar-besarnya kepada Bapak Ir. Handayanu, M.Sc., Ph.D dan Bapak Ir. Murdjito, M.Sc.Eng selaku dosen pembimbing I, dan dosen pembimbing II. Seluruh dosen serta karyawan di Jurusan Teknik Kelautan ITS. Teman-teman penulis yang sangat banyak membantu baik moral dan materi.

DAFTARPUSTAKA

[1] Alam, D. S, 2007. Analisa Keruntuhan Jacket Platform Akibat Beban Seismic Berbasis Keandalan. Tugas Akhir. Jurusan Teknik Kelautan – FTK, Institut Teknologi Sepuluh Nopember, Surabaya. [2] American Petroleum Institute. 2002. Recommended Practice For

Planning, Designing and Constructing Fixed Offshore Platform. Official Publication. Washington D.C.

[3] Craig, M.J.K. 1981. Structural Dynamics, John Wiley & Sons, New York.

[4] Hardiansah, Ibnu M. 2012. Analisa Kekuatan Ultimat Pada

Konstruksi Deck Jacket Platform Akibat Beban Slamming Gelombang. Tugas Akhir. Jurusan Teknik Kelautan – FTK, Institut Teknologi Sepuluh Nopember, Surabaya.

[5] IPPC, 2007. Intergovermental Panel on Climate Change: Summary For Polycimaker. Synthesis Report, Spain.

[6] Kelompok Keilmuan Geodesi, 2007. Dokumentasi Monitoring Oil Platform Subsidence.

[7] Lewis, R. Barry, 1999. Sea Level Rise and Subsidence Effect on Gulf Archaelogical Site Distribution. Department of Anthropology, University of Illinois, 109 Davenport Hall, 607 S. Mathews St., Mc-148, Urbana.

Fakultas Ilmu dan Teknologi Kebumian, ITB, Bandung.

[8] McClelland, B., et. All. 1986. Planning and Designing of Fixed Offshore Platforms, Van Norstand Reinhold, New York.

[9] PMB Engineering. 1988, Final Report Phase III, Assesment

Inspection And Maintenance. San Fransisco, CA.

[10] Soedjono, J. J. (1998). Diktat Mata kuliah Konstruksi Bangunan Laut II. Jurusan Teknik Kelautan ITS, Surabaya.

Referensi

Dokumen terkait

Industri otomotif Thailand banyak mengambil keuntungan dari ASEAN Free Trade Area (AFTA) untuk menemukan pasar bagi produk-produknya. Didalam negerinya sendiri, Thailand

Selanjutnya hasil penelitian juga menunjukkan, bahwa secara simultan (bersama-sama) prestasi belajar mata pelajaran Perawatan Perbaikan Motor Otomotif dan

Sitihinggil Utara yang memiliki bentuk tapak segi enam dengan delapan buah bangunan di dalamnya, masing-masing mempunyai fungsi yang berbeda-beda pada saat dilaksanakannya

Optimasi kinerja suatu persimpangan bersinyal dapat dilakukan dengan cara penentuan waktu sinyal lalulintas, pengaturan ulang batasan parkir di badan jalan dapat menurunkan

Utjecaj koeficjenta ejekcije na visinu statorskih lopatica i izentropsku iskoristivost stupnja. Promjenom koeficjenta ejekcije mijenjaju se tlak i temperatura na ulazu u turbinu,

Lebih lanjut, Muhaimin menjelaskan bahwa terdapat dimensi yang hendak ditingkatkan dan dituju oleh kegiatan pembelajaran pendidikan agama Islam, yaitu 1) dimensi

Fakta menunjukkan bahwa pada sedimen di perairan dangkal dengan sedikit padang lamun, akan terjadi penurunan proses kimiawi beberapa millime- ter, dan memperlihatkan

Ikan penghuni perairan pesisir hingga muara sungai yang bersubstrat pasir, lumpur, berbatu dan tergolong memiliki distribusi yang luas adalah Nibea saldado ,