Received2 March2006. Accepted5 June2006. Corresponding author: T. Yoshida ([email protected], fax +81-28-649-5401).
VariationinSpikelet-RelatedTraitsofRicePlantsRegenerated
fromMatureSeed-DerivedCallusCulture
NonoCarsono1
andTomohikoYoshida2
(1UnitedGraduateSchoolofAgriculturalScience,TokyoUniversityofAgricultureandTechnology,Fuchu183-8509,Japan; 2FacultyofAgriculture,UtsunomiyaUniversity,Utsunomiya321-8505,Japan)
Abstract:Callusisanexcellentsourceforinvitroplantregeneration,butplantsregeneratedfromcallus sometimesshowphenotypicandgenotypicvariationfromtheinitialplants.Inthisstudy,thevariationin spikelet-relatedtraitsofthericeplantsregeneratedfromcallusesandtheirperformanceinthepaddyield wereexamined.Thephenotypicvariationinspikelet-relatedtraitsoftheregeneratedplantswasnotalwaysin areductionintheirmeanvalue.Forinstance,paniclelength,spikeletnumberandfertilespikeletnumberof IndonesianricegenotypesCiapusandBP-140intheregeneratedplantsweresigniicantlygreaterthanthose oftheinitialplants(developedfromtheseeds).Thespikeletfertilityoftheregeneratedriceplantswasnot signiicantlylowerthanthatoftheinitialplantsexceptinCiapusandBP-140.Theoccurrenceofsomaclonal variantsvariedwiththegenotype.CiapusandBP-140,whichinducemanysomaclonalvariants,aresuggestedto bevaluableforgenetic,breedingorfunctionalgenomicstudies,whileFatmawati,whichisstable,couldbeused forgenetictransformationstudy.
Keywords:Callus,Regeneratedplants,Rice,Spikeletfertility.
The major goal of plant breeding is to improve
existingcultivarsandtodevelopneworelitecultivars.
Thegeneticvariabilityinducedbyinvitroculturehas
been exploited to serve breeding purposes due to
thefactthattheplantsobtainedfrominvitroculture
sometimesshowphenotypicandgenotypicvariations from the initial plant. This phenomenon is called
‘somaclonalvariation’(LarkinandScowcroft,1981),
whichreferstothevariationarisingincellcultures, regeneratedplantsandtheirprogenies(Larkinand
Scowcroft,1981; Karp,1995). The genetic basis of
somaclonal variation is not yet fully understood. However,itispostulatedthattheeventssuchaslarge-scale deletions and gross changes in chromosome structure/numberanddirectedandundirectedpoint mutations, transposon activation and epigenetic
changes(Kaeppleretal.,2000;Jain,2001)suchas
DNAmethylation,hystoneacetylationandchromatin
remodeling(Joyceetal.,2003),contributetothein
vitro variations. Somaclonal variation is considered to be a useful source of variation and has been demonstrated to be valuable in rice (Zheng et al.,
1989; Ling et al.,1989; Yamamoto et al.,1997).
Somaclonal variants tolerant to sheath blight,
Rhizoctoniasolani(Xieetal.,1992);drought(Adkins
etal.,1995);chilling(BertinandBouharmont,1997);
aluminium (Jan et al.,1997); salinity (Lutts et al.,
2001); and blast,Pyricularia grisea (de Araujo and
Prabhu,2002)aresuccessfulexamplesofriceplants
obtainedbyinvitroselection.
Awiderangeofalteredphenotypicexpressionin
regeneratedplantscanbefound,suchas,chlorophyll deiciency,dwarfs,seedcharacteristics,reproductive structures, and necrotic leaves (Phillips et al.,
1994).Areductioninspikeletfertilityorchangesin
agronomictraitshasbeenreportedtooccurininvitro
-regeneratedplants(Leeetal.,1999;Rongbaietal.,
1999).However,incontrast,somaclonalvariantsare
undesiredwhenthetissuecultureprotocolsapplied fordevelopingtransgenicplantssincetheoccurrence ofsomaclonalvariantswillcomplicatetheevaluation oftheeffectsofinsertedgene(s),thusconstitutesa
majorproblems(Luttsetal.,2001).Jiangetal.(2000)
reportedthatparticlebombardmentusingcallusasa
targettissueproduced8%aberrantphenotypesamong
thetransgenicplants.Todevelopstabletransgenicrice plantsexpressingthegenesofinterestwhileretaining thegenomicandphenotypicintegrity,apreliminary testonthepossibilityofsomaclonalvariantsofcallus-regeneratedplantsamongricegenotypesistherefore considerednecessary.Thepresentpaperwasdesigned
toevaluatethespikelet-relatedtraitsofR0plantsin
comparisonwiththoseoftheinitialgenotypesand toevaluatetheperformanceofregeneratedplantsin theield.Spikeletfertilityanditsrelatedtraitsarethe
mainconcernofinvitroregeneratedplantsespecially
MaterialsandMethods
FiveIndonesianricegenotypesFatmawati,Ciapus,
BP-23, BP-140, BP-360-3 (all indica ssp), and one
japonicaNipponbarewereregeneratedfromcalluses followingthemethodsreportedpreviously(Carsono
and Yoshida,2006a, b). Briely, mature seeds were
cultured on callus induction medium (4 weeks),
calluses were then subcultured (3 weeks) and
regenerated(3-5weeks).Afteracclimatizationfor3-4
weeks,542regeneratedplantsrandomlyselectedwere
transplantedtothepot(17.2cmindiameter,19.2cm
inhigh)containingAndosolsoilwith5to7seedlings
per pot and grown in a glasshouse. Another308
regeneratedplantsweregrowninthepaddyield.The initialgenotypes,developedfromtheseeds,werealso grownintheglasshouse.
Atthetimeofsowing,potswerefertilizedwithequal
to60kgN,60kgP2O5and60kgK2Oha-1.Additional
top-dressing with the same dosage was applied at panicle initiation. In the paddy ield experiment,
plantingdensitywas15×30cmspacingand16kgN,
16kgP2O5and16kgK2Oha-1plus16kgha-1oforganic
fertilizerwasapplied.Theexperimentwasconducted
at113.26mabovesealevel.Intheglasshouse,plants
wereirrigatedat2~3-dintervalsformaintainingthe
wateravailabilitybydirectwateringtothepots,while inthepaddyield,waterwasmaintainedapproximately
5 to10 cm from the soil sur face. The daytime
temperatureduringtheexperimentrangedfrom25º
Cto38ºCinaglasshouseandfrom20ºCto33ºCinthe
ield,andthenighttimetemperaturefrom23ºCto25º
Cintheglasshouseand15ºCto25ºCintheield.
Phenotypic traits were then recorded for plant
height(fromgroundleveltotipofthetallestpanicle), spikeletfertility(percentageofilledandhalf-illed seeds per total spikelets), panicle length, ratio of illed or half-illed spikelets to unilled spikelets, spikeletnumberperpanicle,fertilespikeletnumber
per panicle, and100-grain weight. Spikelets were
characterizedasunilledwhenthepaleaandlemma
foldedeasilywhenpressedwithingers(IRRI,2002).
Tillers were excluded from the analysis. Panicles werecarefullyharvestedbyhandtopreventtheloss of spikelets and they were removed manually and subsequentlydividedintogroupsofilledandunilled distribution, data were transformed; however, transformationdidnotresultinmarkedimprovement ofthedistribution.Therefore,nontransformeddata
wereusedthroughout(SteelandTorrie,1980).
ResultsandDiscussion
1. Comparison of spikelet-related traits of regenerated plants grown in the glasshouse with thoseoftheinitialplants
Spikelet-related traits of rice plants regenerated
frommatureseed-derivedcalluscultureareimportant to be explored since it is a crucial determinant of seed set, which is a basis for both transmission to thenextgenerationandayieldperse.Inthisstudy,
542regeneratedplantsgrowninaglasshousewere
Table 1. Comparativeperformanceoftheplantsregeneratedfromcallusandtheinitialgenotypesgrowninaglasshouse.
Genotype Origin ofplantsNumber Plantheight(cm) length(cm)Panicle fertility(%)Spikelet
Ratioofilled non-signiicant(ns)orsigniicantatP=0.05(*)orP=0.01(**)byaStudentt-testwithconsideringhomogeneityofvarianceby Levene’stest.Datashowmeanvalueswithstandarderrorofmeans.
scored for plant height and spikelet-related traits
(Table1).Thespikeletfertilityofcallus-regenerated
plantsvariedwiththegenotyperangingfrom44.8%
(partiallyfertile)inFatmawatito92.2%(fertile)in
Nipponbare(Table1).Lowspikeletfertilityobserved
inFatmawatiandBP-360-3ispossiblyduetoahighair
temperature(above35ºC)whichfrequentlyobserved
in a glasshouse during lowering stage in summer
(mid-August2005)andmostlikelythesegenotypesare
twooftheheat-sensitiveonesaspreviouslyreported
bySatakeandYoshida(1978)andmorerecentlyby
Prasadetal.(2006).
The mean spikelet fertility of callus-regenerated
plantswassigniicantlylower(P=0.01)thanthatof
the initial plants in Ciapus and BP-140, but not in
other genotypes (Table1). This particular trait in
theregeneratedplantstendedtobelowerthanthat
intheinitialplants.Leeetal.(1999)andRongbai
etal.(1999)reportedadecreaseofspikeletfertility
inin vitro-regenerated plants. Thus, it is suggested thatthegeneticinstabilityofcalluscultureofCiapus
andBP-140inregeneratingfertileplantsisgreater
than that of the other four genotypes since the occurrenceofsomaclonalvariationisstrictlyaffected
bygenotype(Karp,1995;Luttsetal.,1998;Joyceet
al.,2003), cultivated explants (Lutts et al.,2001),
medium, duration of culture (Jain,2001) and the
survivalofplantletstransplantedintosoil(Rongbaiet
al.,1999).Geneticinstabilityofcalluscultureoccurs
due to the cells face traumatic experiences from isolation,proliferation,andmayreprogramduring plantregenerationwhicharedifferentfromnatural condition.Suchreprogrammingorrestructuringof events can create genetic and epigenetic changes resultinginawiderangeofphenotypicexpression
(Phillips et al.,1994; Jain,2001) as shown in the
signiicant difference in spikelet fertility of Ciapus
andBP-140.Suchaphenomenonwasalsoobservedin
plantheightinBP-23,BP-140,andBP-360-3;panicle
lengthinCiapusandBP-23;ratioofilledtounilled
spikelets in BP-23 and BP-140; spikelet number in
Ciapus,BP-23andBP-360-3;fertilespikeletnumber
inCiapusandBP-23,andin100-grainweightinive
genotypes except Fatmawati (Table1). These data
suggest that phenotypic alteration in the primary callus-regeneratedplantsisnotalwaysinanegative direction(reductionintheirmeanvalue).Possible reasons for these differences can be attributed to thegenotypewithregardtoitssensitivitytogenerate
geneticalterationduringinvitrocultureinthenucleus
orchromosome(fromapointmutation,largescale deletion,aneuploidyandorpolyploidy)(Brownet
al.,1990; Chatterjee and Das Gupta,1997), in the
cytoplasmicgenomesuchaschloroplastdeletion(Abe
etal.,2002)oractivationoftransposableelements
suchasretrotransposonswhichareactivatedastissue
culturegetolder(Hirochikaetal.,1996)orepigenetic
mechanismsuchasDNAmethylationevent(Brownet
al.,1990;Kaeppleretal.,2000).Thelatterevencan
enhancequantitativetraitsbecauseseveralgenescan
beaffectedsimultaneously(Jain,2001),asfoundin
thisstudy.Moreover,itseemslikelythatnosingleevent orfactorcontrolsanalteredphenotypeobtainedfrom
invitroculture(Jain,2001).Thegenotypesfoundto inducesomaclonalvariantsinthepresentstudyshould be then further investigated for genetic, breeding orfunctionalgenomicstudies.Ontheotherhand, genotypesthatarerelativelystablewouldbevaluable forgenetictransformationstudies.
Judgingfromthesigniicanceoft-testongiventraits
in Table1, the genetic instability of callus culture
among the six genotypes was the highest in BP-23
followed by Ciapus, BP-140, BP-360-3, Nipponbare
andFatmawatiinthisorder.Table1alsoshowsthat
allphenotypictraitsoftheregeneratedplantswere not signiicantly different from those of the initial plantsinFatmawati.ThissuggeststhatFatmawatihas ahighgeneticstabilityinregeneratingnormalplants fromcallus,althoughforothertraitsthatwerenot evaluated, variations are still possible to be found, becausecalluscultureactsasamutagenic(Phillipset
al.,1994;Jain,2001)andmostlikelychangesintissue
cultureoccursbyacellularstress-responsemechanism
(Phillipsetal.,1994;Kaeppleretal.,2000;Joyceetal.,
2003).Thompsonetal.(1986)reportedthatcallus
DNA showed many discrete bands. Banerjee et al.
Table 2. Analysisofvariancefortheregeneratedplantsgrowninthepaddyield.
Sourceof
Datashowmeansquarevalue.**:signiicantat0.01probabilitylevel.df1anddf2:degreeoffreedomfortheirstsixtraitsand 100-grainweight,respectively.
(1997)andChowdarietal.(1998)alsoreportedthat
were randomly sampled and examined for plant heightandspikelet-relatedtraits.Analysisofvariance showed that all traits of the regenerated plants
signiicantlyvariedwiththegenotype(P = 0.01)(Table
2),indicatingthatthosegenotypesvariedwidelyinthe
2005).FurthercomparisonusingDuncan’sMultiple
Range Test showed that the regenerated plants of Fatmawatihadthehighestmeanvalueinplantheight,
fertilityinBP-140,Ciapus,BP-23andFatmawaticould
beattributedtogenotypicdifferencesinsource-sink relationshipwhichplaysasigniicantroleinriceyield potential,oritcouldbepossiblethattraithasbeen
inluencedbyinvitroculture(Leeetal.,1999;Rongbai
etal.,1999).BP-140hadtheheaviest100-grainweight
oftheothers(Table3).Fromtheseresults,weconsider
that Fatmawati, BP-140 and Ciapus are promising
parentsforcreatingthehigh-yieldingvariety.
Ingeneral,invitrocultureincreasedthevariability
ofregeneratedriceplantsasalreadyshowninother
works(Adkinsetal.,1995;ChatterjeeandDasGupta,
1997;Luttsetal.,1998).Inthisstudy,callusculture
did not promote a high phenotypic variation as we anticipated, but some callus-derived plants of Indonesiangenotypeswerefoundtobepromisingfor PlantPhysiol.159:917-923.
Adkins,S.W.,Kunanovatchaidach,R.andGoldwin,L.D.1995. Somaclonalvariationinrice – droughttoleranceandother agronomiccharacters.Aust.J.Bot.43:201-209.
Banerjee, H., Chimote, V. and Raina, S.K.1997. DNA polymorphism among rice somaclones. Biol. Plant.40: 543-553.
Bertin,P.andBouharmont,J.1997.Useofsomaclonalvariation andinvitroselectionforchillingtoleranceimprovementin rice.Euphytica96:135-142.
Brown,P.T.H.,Kyozuka,J.,Sukekiyo,Y.,Kimura,Y.,Shimamoto, K. and Lorz, H.1990. Molecular changes in protoplast-derivedriceplants.Mol.Gen.Genet.223:324-328.
Carsono, N. and Yoshida, T.2006a. Identiication of callus inductionpotentialof15IndonesianRiceGenotypes.Plant Prod.Sci.9:65-70.
Carsono,N.andYoshida,T.2006b.Plantregenerationcapacity ofcallusesderivedfrommatureseedofiveIndonesianrice genotypes.PlantProd.Sci.9:71-77.
Chatterjee,B.andDasGupta,P.1997.Inductionofsomaclonal variationbytissuecultureandcytogeneticanalysisinOryza sativaL.Biol.Plant.40:25-32.
Table 3. Performanceoftheregeneratedplantsinspikelet-relatedtraitsgrowninthepaddyield.
Genotype Plantheight(cm) length(cm)Panicle fertility(%)Spikelet
Ratioofilled werenotsigniicantlydifferentaccordingtoDuncan’sMultipleRangeTestat0.05probabilitylevel.Datashowmeanvalueswith standarderrorofmeans.
Chowdari,K.V.,Ramakrishna,W.,Tamhankar,S.A.,Hendre, R.R.,Gupta,V.S.,Sahasrabudhe,N.A.andRanjekar,P.K.1998. IdentiicationofminorDNAvariationsinricesomaclonal variants.PlantCellRep.18:55-58.
de Araujo, L.G. and Prabhu, A.S.2002. Blast resistant somaclonesofaromaticricecultivarBhasmati-370.Presq. Agropec.Bras.37:1127-1135*.
Fabre,D.,Siband,P.andDingkuhn,M.2005.Characterizing stresseffectsonricegraindevelopmentandillingusinggrain weightandsizedistribution.FieldCropsRes.92:11-16. Hirochika,H.,Sugimoto,K.,Otsuki,Y.,Tsugawa,H.andKanda,
M.1996. Retrotransposons of rice involved in mutations inducedbytissueculture.Proc.Natl.Acad.Sci.USA.93: 7783-7788.
IRRI.2002.StandardEvaluationSystemforRice(SES).Manila, thePhilippines.1-56.
Jain, S.M.2001. Tissue culture-derived variation in crop improvement.Euphytica118:153-166.
Jan,V.V.S.,deMacedo,C.C.,Kinet,J-M.andBouharmont,J. 1997.SelectionofAl-resistantplantsfromasensitiverice cultivar,usingsomaclonalvariation,invitroandhydroponic cultures.Euphytica97:303-310.
Jiang,J.,Linscombe,S.D.,Wang,J.andOard,J.H.2000.High eficiencytransformationofU.S.ricelinesfrommatureseed-derivedcalliandsegregationofglufosinateresistanceunder ieldconditions.CropSci.40:1729-1741.
Joyce, S.M., Cassells, A.C. and Jain, S.M.2003. Stress and aberrant phenotypes ininvitro culture. Plant Cell Tissue OrganCult.74:103-121.
Kaeppler,S.M.,Kaeppler,H.F.andRhee,Y.2000.Epigenetic aspectsofsomaclonalvariationinplants.PlantMol.Biol.43: 179-188.
Karp, A.1995. Somaclonal variation as a tool for crop improvement.Euphytica85:295-302.
Larkin, P.J. and Scowcroft, S.C.1981. Somaclonal variation – a novel source of variability from cell culture for plant improvement.Theor.Appl.Genet.60:197-214.
Lee,S.H.,Young,G.H.,Cha,Y.K.,Hyun,J.C.,Yong,H.C.,Zhoo, H.K.,Zhin,R.C.,Young,J.C.andMoo,J.C.1999.Variationsin themorphologyofriceplantsregeneratedfromprotoplasts usingdifferentcultureprocedures.PlantCellTissueOrgan Cult.57:179-187.
Ling, D.H., Liang, C.Y., Ma, Z.R. and Chen, M.F.1989. SomaclonalmalesterilemutantsinIndicarice.InS.Iyama andG.Takedaeds.,Proc.6thInternat.CongressofSABRAOII. 737-740.
Lutts,S.,Kinet,J.M.andBouharmont,J.1998.NaClimpacton somaclonalvariationexhibitedbytissueculture-derivedfertile plantsofrice(OryzasativaL.).J.PlantPhysiol.152:92-103. Lutts,S.,Kinet,J.M.andBouharmont,J.2001.Somaclonal
variationinriceaftertwosuccessivecyclesofmatureembryo derivedcalluscultureinthepresenceofNaCl.Biol.Plant.44 :489-495.
Phillips, R.L., Kaeppler, S.M. and Olhoft, P.1994. Genetic instabilityofplanttissuecultures.Proc.Natl.Acad.Sci.USA. 91:5222-5226.
Prasad,P.V.V.,Boote,K.J.,Allen,J.R.,Sheehy,J.E.andThomas, J.M.G.2006. Species, ecotype and cultivar differences in spikeletfertilityandharvestindexofriceinresponsetohigh temperaturestress.FieldCropsRes.95:398-411.
Rongbai,L.,Pandey,M.P.,Pandey,S.K.andDwivedi,D.K.1999. Agro-morphologicalcharacterizationofovaryculture-derived plantsofrice(OryzasativaL.).Euphytica106:197-207. Satake, T. and Yoshida, S.1978. High temperature-induced
sterilityinindicariceatlowering.Jpn.J.CropSci.47:6-17. Steel,G.D.S.andTorrie,J.H.1980.PrinciplesandProcedurein
Statistics–ABiometricalApproach.2 ndedition.McGraw-Hill,NewYork.1-633.
Thompson, J.A., Abdullah, R. and Cocking, E.C.1986. Protoplast culture of rice (Oryza sativa L.) using media solidiiedwithagarose.PlantSci.47:129-133.
Xie,Q.,Lisncombe,R.,Rush,M.C.andJodari-Karimi,F.1992. RegistrationofLSBR-33andLSBR-5sheathblight-resistant germplasmlinesinrice.CropSci.32:507.
Yamamoto, T., Nishikawa, A., Nakajima, Y., Oeda, K. and Hirohara,H.1997.Geneticsandmorphologicalstudieson glabrousness of a somaclonal variant induced by anther cultureinrice(OryzasativaL.).Breed.Sci.47:1-6.
Zheng,K.L.,Zhou,Z.M.,Wang,G.L.,Luo,Y.K.andXiong, Z.M.1989.Somaticcellcultureofricecultivarswithdifferent graintypes:somaclonalvariationinsomegrainandquality characters.PlantCellTissueOrganCult.18:201-208.